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Accurate and timely prediction of a manufacturing process yield and flow times is
often desired as a means of reducing overall production costs. To this end, this
paper develops a new decision-theoretic classification framework and applies it to
a real-world semiconductor wafer manufacturing line that suffers from constant
variations in the characteristics of the chip-manufacturing process. The decision-
theoretic framework is based on a model for evaluating classifiers in terms of their
value in decision-making. Recognizing that in many practical applications the
values of the class probabilities as well as payoffs are neither static nor known
exactly, a precise condition under which one classifier ‘dominates’ another
classifier (i.e. achieves higher payoff ), regardless of payoff or class distribution
information, is presented. Building on the decision-theoretic model, two robust
ensemble classification methods are proposed that construct composite classifiers
that are at least as good as any of the existing component classifiers for all
possible payoff functions and class distributions. It is shown how these two robust
ensemble classifiers are put into practice by developing decision rules for
effectively monitoring and controlling the real-world semiconductor wafer
fabrication line under study.

Keywords: Decision theory; Knowledge discovery; Actionable data mining;
Cost-sensitive classification; Ensemble classification; Stochastic yield;
Semiconductor manufacturing

1. Introduction

Various techniques that aim at improving the ability of meeting delivery schedules
are employed by the semiconductor industry in order to increase their manufacturing
profitability. Meeting delivery schedules is often considered difficult; particularly
due to uncertainty associated with the material’s quality and the state of the
manufacturing equipment, resulting in unpredicted flow times of individual
semiconductor batches. Consequently, it is highly desirable to develop techniques
for predicting the quality of a production batch during the manufacturing process,
thus having a satisfactory estimation of the overall production time.
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Two basic performance measures are often utilized to assess profitability in the
semiconductor industry: yield and flow times of production batches (Cunningham
et al. 1995, Last and Kandel 2001). Here, ‘yield’ is defined as the ratio between the
number of integrated circuits (chips) that emanate from the production process and
pass quality control tests and the maximal theoretical number of integrated circuits
that can be produced from the same number of wafers. Accurate estimation of the
yield per batch is an important parameter that affects control and production
planning (Barad and Braha 1996, Braha 1999). Imprecise estimation of the yield may
result in delayed product delivery, or inventory costs due to excess manufacturing.
The flow time measure refers to the problem of estimating the completion dates of
individual batches in the production line. The flow times are not fixed due to
unexpected equipment malfunctions along the production line and line balancing
problems. Flow times and yield are closely related.

Managing the yield and flow times is a challenging engineering task. In the
semiconductor industry, the problem appears in the form of yield variability between
individual batches and even between specific wafers of the same production batch.
This problem is associated with any production line regardless of the manufacturing
technology. New methods that help to understand this variability could also suggest
ways to improve the overall manufacturing process.

The manufacturing data collected by semiconductor companies is constantly
growing. Still, it is very difficult to locate the important parameters that should be
used to build a model, which would accurately estimate the yield. Tobin et al. (2000)
found that the data collected does not enable manufacturing departments to
effectively monitor and control the production process. Thus, there is a need for
automated yield management systems, which will be able to explain and predict yield
variations by using sophisticated data management and data mining techniques.

Last and Kandel (2001) applied the Info-Fuzzy Network (IFN) methodology
of data mining and knowledge discovery to Work-in-Process (WIP) data obtained
from a semiconductor plant. IFN is an advanced classification model having
the form of an oblivious decision graph (Kohavi and Li 1995). In this methodology,
the recorded features of each manufacturing batch include its design parameters,
process tracking data, line yield, etc. The data are prepared for data mining by
converting a sequential dataset into a relational table. Fuzzy-based techniques of
automated perception are then used for producing a compact set of linguistic rules
from the induced classification models. Other classifier algorithms have been utilized
in a variety of semiconductor manufacturing processes as described in Braha (2001)
and Braha and Shmilovici (2002, 2003). The present paper develops a model for
evaluating classifiers in terms of their value in decision-making. Recognizing that in
many practical applications the values of the class probabilities as well as payoffs
(usually represented by misclassification costs) are neither static nor exactly known,
we present a precise condition under which one classifier ‘dominates’ another
classifier (i.e. achieves higher payoff ), regardless of payoff or class distribution
information. Building on the decision-theoretic model, we propose two robust
ensemble classification methods that construct composite classifiers, which are at
least as good as any of the component classifiers for all possible payoff functions
and class distributions. We show how these two robust ensemble classification
methods can be used to improve the prediction accuracy of yield and flow time of
every batch in a real-world semiconductor manufacturing environment.
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More specifically, the contribution of this paper is fourfold:

. We develop a new model for evaluating classifiers in terms of their value in
decision-making. According to the new model, the predictions displayed by a
classifier, or an ensemble of classifiers, lead to actions by the decision-maker.
The actions, based on the derived information, are determined so as to
maximize the expected payoff for the decision-maker. The proposed model
is based on the belief that the question of evaluating classifiers can only be
addressed in a microeconomic framework, and that the predictions displayed
by a classifier are ‘effective’ only insofar as the derived information leads to
actions that increase the expected payoff for the decision-maker (other
decision-theoretic considerations may include dynamic allocation problems,
e.g. Freund and Schapire 1997).

. Building on the decision-theoretic model, we derive a precise condition under
which one classifier ‘dominates’ another (i.e. achieves higher expected
payoff ) for all possible cost and class distributions. This condition is based
on the respective confusion matrices of the compared classifiers; thus,
it decouples classification performance from class and cost distribution
information. Similarly to the ROC convex hull method (Provost and Fawcett
2001), the method we propose for the comparison of classifier performance
shares some of the goals of robustness to imprecise (changing) class
distributions and misclassification costs. (The ROC convex hull method for
evaluating classifiers is limited to two class domains. Extending this method
to multiple dimensions is an open problem (Provost et al. 1998).)

. In the context of standard non-cost-sensitive learning, many authors have
found that the accuracy of standard classifiers (e.g. decision trees) can be
improved or exceeded through composite classifier architectures incorporat-
ing a set of component classifiers (Skalak 1995). When payoffs associated
with the decisions are taken into account, our modelling approach enables us
to address the goal of achieving a robust composite classifier, i.e. a composite
classifier that produces a dominating model, which is at least as good (which
here means achieving higher payoff ) as any of the constituent classifiers for
all possible payoff and class distributions. We propose two ways by which
component classifiers can be combined. In both cases, we show that the
resulting composite classifier produces dominating models.

. Finally, we apply the decision-theoretic classification framework to a real-
world situation in the semiconductor industry showing how this research
is useful beyond the purely theoretical arena. We show how two robust
ensemble classification methods constructing composite classifiers can be
used to reduce fabrication costs as a result of improving the prediction
accuracy of the expected yield and flow time of every batch in the
semiconductor manufacturing process.

The paper is organized as follows. Section 2 reviews knowledge discovery with
classifiers that is one of the widely used tasks in data mining. Section 3 presents
the basic decision-theoretic framework, and the notion of a ‘dominating’ classifier.
We present a condition under which one classifier ‘dominates’ another based on their
underlying confusion matrices. Section 4 presents two ways by which component
classifiers can be combined. We show that, in both cases, the resulting composite
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classifier is at least as good (‘dominates’) as each component classifier. In section 5,
we describe an application of the proposed decision-theoretic framework to
a real-world problem of production control in semiconductor manufacturing.
Section 6 concludes the paper. For clarity, the proofs of the theorems are presented
in Elovici and Braha (2003).

2. Knowledge discovery with classifiers

Classification is one of the most widely used tasks of machine learning. The most
common method for evaluating the performance of a classifier is to assess its
predictive accuracy on a test set or using various resampling techniques such as
cross-validation and boot-strapping, which provide a very good indication of
the predictive performance on future records (Kohavi 1995).

The classification accuracy performance measure tacitly assumes that mis-
classification costs are equal, which is rarely the case in real-world applications
(Provost and Fawcett 1997, Provost et al. 1998). This realization has led to the
development of studies that take the cost into consideration (Turney 1995).
Considerable work has been devoted to classification accuracy (Provost et al. 1998).
The most common method of achieving this cost-sensitive learning, which is
concerned with the developing and the analysis of algorithms that produce minimum
cost-classifiers and do not necessarily maximize the objective is to rebalance
(‘stratify’) the training set given to the learning algorithm (Chan and Stolfo 1998,
Domingos 1999, Elkan 2001).

Often in real-world applications, the misclassification costs and class distribu-
tions are imprecise or change from situation to situation (Friedman and Wyatt 1997,
Zahavi and Levin 1997, Provost et al. 1998). In such cases, several proposals for
comparing multiple classifiers have been made (Bradley 1997, Provost et al. 1998,
Adams and Hand 1999, Margineantu and Dietterich 2000). Provost and Fawcett
(2001) proposed a method, called the ROC convex hull, for evaluating classifiers
in two class domains based on the true positive and false positive rates. The method
specifies how classifiers can be compared under imprecise misclassification costs
and class distributions. Domingos (1998) proposed a method for comparing two
alternative classifiers by employing a cost model based on the notion of Net Present
Value (NPV). (The proposed cost model extends the models used in Turney (1995)
and Masand and Piatetsky-Shapiro (1996).) The comparison method uses as input
variables the classifier’s confusion matrix, the ‘cash flow matrix’, the cost per
decision, the one-time cost of deploying the system, and the rate of return on
investments.

While much research on cost-sensitive learning and classifier evaluation has
focused on making optimal cost-sensitive classification decisions, there is virtually
no rigorous and formal research related to the question of actionability — the ability
of the classifier to suggest concrete and profitable action (or strategy) by the
decision-makers. (The common approach employs Bayes’ optimal prediction, which
assigns each example to the class that minimizes the conditional risk, i.e. the expected
cost of predicting that an example belongs to a particular class. The Bayes’ optimal
prediction is guaranteed to achieve the lowest possible overall expected cost.)
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The present paper sets the question of actionability in the context of decision-making
under uncertainty in general, and information economics in particular. The question
of decision-making under uncertainty has been extensively studied in the fields
of decision theory, organizational decision-making, and management science
(e.g. Raiffa 1976); however, this line of research has not yet been explored by the
data mining and machine learning community. The model, the results, and the
case study presented in this paper aim at closing this gap.

3. Decision-theoretic classification model

3.1 Basic terminology

The paper considers induction problems for which machine-learning algorithms
generate classification models that are used to classify future unlabeled examples
(e.g. ‘silicon wafers’) into two or more predetermined classes (e.g. ‘high wafer yield’).
It views a classification algorithm as a tool used by the decision-maker that
generates ‘signals’ (e.g. predicted ‘wafer yield’) about unobservable ‘states’ of the
world (e.g. actual ‘wafer yield’). The decision-maker then selects an action (e.g.
‘scrapping a wafer’) out of a set of available actions. The rule that assigns an action
for each possible observed signal is called a decision rule. The decision-maker aims
at implementing the ‘optimal’ decision rule, which maximizes the expected payoff
derived from using the classification algorithm.

The proposed decision-theoretic framework is applied to the classification
problem as follows. (The present modelling approach is based on the Information
Structure model presented by Marschak (1971), McGuire and Radner (1986) and
others (Demski 1972, Ahituv and Ronen 1988).) Certain examples (instances) are
to be labelled as coming from a set of actual classes, say S¼ {s1, . . . , sn}. Let
�¼ (�1, . . . ,�n} denote the vector of prior probabilities of the actual classes in the
population under study. Each example gives rise to certain measurements, which
together form the feature vector X. The task of the classifier is to classify an example
to one of n predicted classes in Y¼ {y1, . . . , yn} on the basis of the observed value
X¼ x. We use the labels Y¼ {y1, . . . , yn} for the classifications produced by a model
in order to distinguish between the actual class and the predicted class of an example.
For simplicity and without loss of generality, we assume the predicted classes to have
the same meaning as the actual classes (as in standard classification learning).
In section 3, when considering multiple classifier combination, we allow for the set
of predicted classes Y to be distinct from the set of actual classes S. The classifier
measure of performance is defined in terms of the confusion matrix P (Domingos
1998, Kohavi and Provost 1998). (In practice, the confusion matrix can be estimated
by dividing the database randomly into training and test instances, learning on
the training instances, and counting the number of test instances for which the
predicted class is j given the actual class is i, e.g. Turney (1995) and Domingos
(1998).) The confusion matrix is a stochastic (i.e. Markovian) matrix of size n� n
of conditional probabilities, where each of its elements pij defines the probability of
predicting a class yj given an example of actual class si.

Next, we extend the traditional classification problem by incorporating decisions
associated with the classifier predictions. More specifically, a previously unseen
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example is introduced to the classifier, the decision-maker observes the predicted
class, and chooses actions accordingly. This is radically different from the classical
formulation of the classification problem where the sets of classes and actions are
assumed to be identical. Let A¼ {a1, . . . , am} be a finite set of actions that can be
taken by the decision-maker. The decision rule of the decision-maker is described by
a stochastic matrix D of size n�m, where an element di,j denotes the probability that
the decision-maker applies action aj given the predicted class yi.

After following the probabilistic decision rule, a particular action ai is realized
and employed by the decision-maker. Actions are payoff-sensitive. (The present
model is formulated in terms of revenues or benefits instead of costs (hence, the use
of ‘payoff ’). Costs can be treated as negative revenues (e.g. Elkan 2001).) If the
decision-maker applies strategy ai and the example’s actual class turns out to be sj,
then a payoff ui,j is incurred. Let U be the cardinal payoff matrix of size m� n, which
associates payoffs with pairs of actions and actual classes. (Existing models of cost-
sensitive learning (e.g. Provost and Fawcett 2001) consider only misclassification
costs, i.e. costs associated with pairs of predicted and actual classes rather than costs
(payoffs) resulting from concrete actions.)

3.2 Evaluating classifier performance

Given a particular decision matrix D, the expected payoff is:

EU ¼ traceðP �D �U ��Þ ð1Þ

where trace is the matrix trace operator. The square matrix � is obtained by placing
the vector of prior probabilities � along the main diagonal and zeros elsewhere,
and the trace operator denotes the sum of the elements along the main diagonal.

The decision-maker wishes to maximize the expected payoff as given by
equation (1). This is achieved by choosing an optimal decision matrix D� 2 D,
where D is the set of all Markovian matrices. Since the expected payoff as given by
equation (1) is linear in the elements di,j of the decision matrix D, the optimal
decision rule can be obtained by solving the following linear programming problem:

max
dij

traceðPDU�Þ

subject to:

Xm
j¼1

dij ¼ 1 for i ¼ 1, 2, . . . , n ð2Þ

dij � 0 for i ¼ 1, 2, . . . , n, j ¼ 1, 2, . . . , n

The constraints in (2) follow from the properties of a stochastic matrix. It can be
shown that at least one of the optimal solutions is in the form of a decision matrix
whose elements are 0 or 1 (a pure decision rule). This fact can be exploited to obtain
an efficient algorithm for producing the optimal decision rule (we make use of this
fact below).

Having established the basic model, we define the classifier performance as
the maximum expected payoff that can be achieved by employing the classifier
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as a means for delivering potential payoff. (Recall that a classifier affects the
maximum expected payoff through its confusion matrix P.)

Example 1: The following simple example is provided to illustrate the above
notation. Consider a loan-screening application in which applicants for a loan from a
bank are classified as one of three classes: ‘low’, ‘medium’ or ‘high’ payment risks.
The bank has applied a machine-learning algorithm to its database of previous loan
applications and their payment results, and has induced a classifier that is used to
classify future loan applications. The set of actions that can be taken by the bank
(the decision-maker), based on the currently employed classifier’s prediction,
includes ‘approve an application’ or ‘reject an application’. The consequence of
rejecting a low payment-risk applicant carries a certain reputation cost; the cost
of approving a loan for a high payment-risk applicant can be much higher. The
above information is formalized as follows:

. Actual classes (S) of an applicant: {‘low risk’, ‘medium risk’, ‘high risk’}.

. Prior probabilities (�): {0.8 for ‘low risk’, 0.15 for ‘medium risk’, 0.05 for
‘high risk’}.

. Predicted classes (Y): {‘low risk’, ‘medium risk’, ‘high risk’}.

. Actions (A): {‘approve application, ‘reject application}.

Actual Class

Action low medium high
� Payoff matrix: U¼ approve 200 100 �1000

reject �30 �20 20

Predicted Class

Actual Class low medium high
� Confusion matrix: P¼ low 0.7 0.2 0.1

medium 0.1 0.8 0.1
high 0.05 0.15 0.8

The optimal decision rule D, which is obtained by maximizing the expected
payoff via solving the linear programming problem as given by (2), is:

Action

Predicted Class approve reject
� Optimal decision rule: D¼ low 1 0

medium 1 0
high 0 1

By plugging this optimal decision rule in the expected payoff EU as given by
equation (1), we obtain the maximum expected payoff of 145.6.

Assume that the bank is considering modifying the existing classification
procedure by employing a new classifier for which the confusion matrix is:

Predicted Class

Actual Class low medium high
Q¼ low 0.9 0.05 0.05

medium 0.1 0.8 0.1
high 0.1 0.15 0.75
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The maximum expected payoff that can be achieved by this classifier is 152.25. Thus,
the new classifier represented by the confusion matrix Q is preferred over the existing
classification system. (In reality, the final decision whether to deploy the new
classification system is an investment decision, which can be addressed using
standard net present value (NPV) analysis (Domingos 1998).)

3.3 Comparing classifiers

Given a set of classifiers, a database of past instances, and a precise cost function, the
classifier that achieves the largest maximum expected-payoff value is selected.
Unfortunately, in many practical applications the values of the class probabilities or
payoffs are neither static nor precisely known (Provost and Fawcett 2001). Without
class distribution and payoff information, a method for comparing multiple
classifiers that is robust to imprecise and changing environments is required. In
the context of our decision-theoretic framework, we present a precise condition
under which one classifier ‘dominates’ another (i.e. achieves higher payoff ) for all
possible cost and class distributions.

As mentioned above, we can identify classifiers in terms of their respective
confusion matrices. That is, given two classifiers that are used to classify future
unlabeled examples coming from the same set of actual classes, we can contrast their
measures of performance by comparing their respective confusion matrices. The
domination condition below (Theorem 1) is based on the respective confusion
matrices of the compared classifiers; thus, it decouples classification performance
from payoff and class distribution information.

Definition 1: Consider two classifiers CP and CQ with corresponding confusion
matrices P and Q, respectively. The confusion matrix Q dominates the confusion
matrix P if the maximal expected payoff yielded by P is not larger than that yielded
by Q for all payoff matrices U and all prior probability matrices �. We also say, in
this case, that ‘classifier CQ dominates classifier CP’.

The domination condition is given in terms of the following partial rank ordering
of confusion matrices (known as Blackwell’s theorem; Demski 1972).

Theorem 1: The confusion matrix Q dominates the confusion matrix P if and only if
there exists a Markovian matrix M with appropriate dimensions such that Q �M ¼ P:

Explanation: Assume that the decision-maker must select one of several alternative
classification systems before observing the predicted class. To this end, the decision-
maker can apply the procedure described in section 3.2 to evaluate the maximum
payoff that can be achieved from each classifier—given the decision-maker’s prior
probability of the actual classes, the corresponding confusion matrices, and the
payoff matrices corresponding to the alternative classifiers. This process of
determining the payoff maximizing decisions for each classifier will allow the
decision-maker to rank order the classifiers according to the expected payoffs
derived from employing them.

Can two classifiers be rank ordered directly without carrying out the process
of comparing their expected payoff to the decision-maker? Theorem 1 shows that
this can be done by looking for a direct representation of one classifier as a
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transformation of the other. The condition stated in Theorem 1 can also be written
as Pik ¼

P
j QijMjk; therefore, Mjk can be interpreted as the conditional probability

that when the predicted class k is obtained by classifier CP, and a predicted class j was
actually obtained by classifier CQ. In other words, the predictions of the classifier CQ

are garbled by the matrix M. Intuitively, the garbled classifier CP is essentially of
lesser utility than classifier CQ. Put differently, classifier CQ yields a more precise
description of which of the actual classes will occur than the second classifier CP

(CQ is finer than CP). Since the finer classifier conveys as much and possibly more
information about the actual classes, it is generally preferred to another.

Example 2: Consider two classifiers represented by the following confusionmatrices:

P ¼

0:6 0:2 0:2
0:2 0:6 0:2
0:2 0:2 0:6

2
4

3
5, Q ¼

0:9 0:1 0
0:1 0:9 0
0:25 0:25 0:5

2
4

3
5:

It can be checked that the Markovian matrix

M ¼

0:65 0:15 0:2
0:15 0:65 0:2
0 0 1

2
4

3
5

satisfies Q �M ¼ P; thus, according to Theorem 1, the classifier represented by Q
dominates the classifier represented by P, regardless of payoff or class distribution
information.

In reality, it would be hard to find evidence for which standard learning
algorithms (e.g. C4.5 or naı̈ve Bayes) produce dominating classifiers (models) for
standard benchmark data sets (e.g. Provost et al. 1998). Thus, if the class
probabilities and payoffs are unavailable, we cannot claim that one standard
learning algorithm dominates the other. In this case, one has to look at ranges of
class distributions and payoffs for which each classifier dominates. Despite that,
we show (building on Theorem 1) in the remaining of the paper how to construct
composite classifiers that dominate any of their component classifiers. (A composite
classifier is obtained by learning several models and then ‘combining’ their
predictions (Skalak 1995, Braha and Shmilovici 2002).)

4. Building ‘dominating’ classifiers

4.1 Composite classification

The past several years has witnessed a resurgence of research by the machine learning
and pattern recognition communities to learn how to create and combine an
ensemble of classifiers (Skalak 1995, Braha and Shmilovici 2002). There are many
ways by which a composite classifier can be designed to perform supervised learning.
For example, each component classifier can classify the observed feature vector to
one of a number of classes. Then, the combining classifier incorporates the
predictions of the component classifiers (e.g. by voting) to form the composite
classifier prediction. There are various architectures for combining classification
algorithms of which the primary architectures are: stacked generalization
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(Wolpert 1992), boosting (Schapire 1990, Freund and Schapire 1997), bagging
(Breiman 1996), and recursive partitioning (Brodley 1994).

When considering machine-learning algorithms for which the classification
accuracy is the used performance metric, combining the predictions of a set of
classifiers has been empirically documented to be an effective way to create
composite classifiers that are generally more accurate than any of the component
classifiers on disparate domains such as identification of satellite data (Benediktsson
et al. 1993), hand-written character recognition (Ho et al. 1994), economic and
weather predictions (Clemen 1989), and protein sequence identification (Zhang et al.
1992). (The interest in classifier combination has also been heightened by the
possibility that by intelligently combining a set of ‘simple’ classifiers, we may be able
to perform classification better than with the sophisticated algorithms currently
available (Skalak 1995).)

Although the fact that classifiers can be combined to create a composite classifier
with higher accuracy has not been formally shown, several strategies have been
effective in achieving this goal. (For an excellent review of various composite
classifiers design criteria and architectures, see Skalak (1995).) The first strategy is to
construct component classifiers that are highly accurate as independent classifiers.
The second strategy is to have composite classifiers that are diverse and behave very
differently from one another. The third strategy is to avoid prohibitively expensive
classifiers both in terms of number of component classifiers and the computational
resources assigned for their training.

While much research on composite classification has focused on constructing
architectures that achieve highly accurate composite classifiers, little attention has
been given to composite classification when misclassification costs are taken into
account. Domingos (1999) presented a cost-sensitive learning procedure called
MetaCost. (For other cost-sensitive learning procedures that incorporate multiple
classifiers include, see Chan and Stolfo (1998) and Ting and Zheng (1998).)
MetaCost, which uses a variant of Bagging (Breiman 1996) as the ensemble method,
is based on relabelling training examples with their estimated minimal-cost classes,
and applying the error-based learner to the new training set. The method is shown
empirically to yield lower costs compared to error-based classification and to
stratification. Provost and Fawcett (2001) proposed a visualization method in two-
class domains (called ROC convex hull), which given a set of classifiers produces a
robust classifier that performs at least as the best classifier under any target cost and
class distributions. The method requires exact knowledge of the target conditions
(misclassification costs and class distribution) when used for classification in run
time (Provost and Fawcett 2001, section 3.6). (More specifically, the ROC convex
hull method needs to translate environmental conditions to the slope of the
corresponding iso-performance line (mec). This, in turn, is used to locate the false-
positive (FP) value of the point where the slope of the ROC convex hull is mec.)
Despite its intuitive appeal, the ROC convex hull method is hard to generalize to
multiple dimensions (Domingos 1998, Provost et al. 1998).

Both of the above methods focus on optimal cost-sensitive classification
decisions. Building on our decision-theoretic model, when payoffs associated with
the decisions are taken into account, the fundamental question is whether classifiers
from any given model type can be combined to create dominating composite
classifier, i.e. robust classifiers that achieve higher payoffs for the decision-maker for
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all possible costs and class distributions. In the following, we formally show that the
answer is affirmative by proposing two ways by which component classifiers can be
combined.

4.2 Cartesian composite classification

This section presents an ensemble method (called Cartesian composite classification)
that combines into one composite classifier two independent component classifiers
that are used to classify examples coming from the same set of actual classes. The
predictions displayed by the Cartesian composite classifier will then lead to actions
by the decision-maker.

The ensemble method presented below assumes that component classifiers are
probabilistically independent. Component classifiers are probabilistically indepen-
dent if the probability of deciding by one classifier that an example of actual class si
belongs to class yj does not depend on the classification produced by the other
classifier. For error-based learners, the independence assumption has been examined
by a number of researchers who observed an improvement in predictive accuracy
from combining classifiers that make independent errors or are not highly correlated
(Hansen and Salamon 1990, Wolpert 1992, Skalak 1995, Ali and Pazzani 1996).
Several methods for creating independent component classifiers have been identified
(Skalak 1995): training the component classifiers on different samples of the training
set; using classifiers from different model types (e.g. decision trees and neural
networks); making the classifiers applicable to separate regions of the space of
examples; selecting component classifiers that apply different features; and varying
the dependent parameters of a classifier, thus creating different component classifiers
from the same model type.

4.2.1 Defining the Cartesian composite classifier. Next, we define the Cartesian
composite classifier. First, we describe the Cartesian product of two vectors x and y,
x� y, by taking all possible products between the elements of x and those of y.
That is, if x¼ (x1, x2, . . . , xn) and y¼ (y1, y2, . . . , ym) then x� y is the 1 by nm vector:

x� y ¼ ðx1y1; x1y2; . . . ; x1ym; x2y1; x2y2; . . . ; x2ym; . . . ; xny1; xny2; . . . ; xnymÞ:

The Cartesian product of two matrices P and Q of size n by m1 and n by m2,
respectively, is defined as follows:

P�Q ¼

p1 � q1

p2 � q2

..

.

pn � qn

0
BBB@

1
CCCA, ð3Þ

where pi (respectively qi) is the ith row in P (respectively Q).
Consider two independent classifiers represented by the confusion matrices P and

Q of size n�m1 and n�m2, respectively. (Recall that the model allows for classifiers,
where the set of predicted classes is not necessarily identical to the set of actual
classes. This is especially relevant when considering multiple classifier combination.)
The two independent classifiers are combined into one composite classifier, called the
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Cartesian composite classifier, whose confusion matrix R of n rows and m1m2

columns is defined as follows:

R ¼ P�Q: ð4Þ

The Cartesian composite classifier is used to classify examples coming from the same
set of actual classes as that of P and Q, and it classifies actual example classes to one

of the predicted classes in the set YP
�YQ. (The Cartesian composite classifier can be

defined over several component classifiers, e.g. R¼ (P�Q)�S, etc.)

Example 3: Consider two independent classifiers represented by the following

confusion matrices:

yP1 yP2 y
Q
1 y

Q
2

P ¼
s1

s2

0:8 0:2

0:3 0:7

� �
, Q ¼

s1

s2

0:6 0:4

0:2 0:8

� �
:

The Cartesian composite classifier is used to classify examples coming from the set of
actual classes SCartesian

¼ {s1, s2}. The task of the classifier is to classify an example to

one of the four classes in YCartesian ¼ fyP1&y
Q
1 , y

P
1&y

Q
2 , y

P
2&y

Q
1 , y

P
2&y

Q
2 gon the basis of

the observed value X¼x. The confusion matrix associated with the Cartesian

composite classifier is:

yP1&y
Q
1 yP1&y

Q
2 yP2&y

Q
1 yP2&y

Q
2

R ¼ P�Q ¼
s1

s2

0:48 0:32 0:12 0:08

0:06 0:24 0:14 0:56

� �
:

The Cartesian composite classifier is implemented as follows. First, an example (say
with actual class S2) is classified by both classifiers, and their predictions

are concatenated to form one of the four predicted classes in YCartesian. The

decision-maker observes the predicted class (say yP1&y
Q
2 ), and chooses the optimal

action (say a1) accordingly from within the set of available actions

ACartesian
¼ {a1, a2}. In other words, both classifiers are run, and a payoff u1,2 is

associated with the action a1 and actual class s2.
Table 1 shows an algorithm for producing the optimal decision rule given two

independent classifiers P and Q combined with the Cartesian product. The algorithm

in table 1 exploits the fact that at least one of the optimal solutions of the linear

programming problem (2) is in the form of a decision matrix whose elements are 0

or 1 (a pure decision rule).

4.2.2 Domination of the Cartesian composite classifier. We now show that the
Cartesian composite classifier produces a dominating model that is at least as good

(in terms of maximization of payoffs) as any of the component classifiers for all

possible payoff and class distributions.

Theorem 2: If R is the Cartesian product of the confusion matrices P and Q, then

R dominates both confusion matrices P and Q.
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We conclude from Theorem 2 that the maximum expected payoff that
is achieved by a standard classifier could be improved, regardless of payoff or
class distribution information, through Cartesian composite classifier
architectures that incorporate additional component classifiers. (The final decision
whether to deploy the Cartesian composite classifier or not is an investment
decision, which depends on the deployment costs of the additional component
classifiers.)

Given a Cartesian composite classifier, the decision-maker may wish to improve
one or more of the component classifiers. Theorem 3 below shows that improving the
‘quality’ of any one of the constituent classifiers improves the effectiveness (in terms
of maximization of payoffs) of the overall composite classifier as well.

Theorem 3: Let P, Q, and R be three confusion matrices. If R dominates Q, then
R�P dominates Q�P.

4.3 Doubly-Cartesian composite classification

Section 3.1 showed how several independent component classifiers that are used to
classify examples coming from the same set of actual classes are combined using the
Cartesian operator into one composite classifier. This section addresses scenarios
in which the component classifiers are independent, and are used to classify
examples coming from disjoint sets of actual classes. We say that such component
classifiers are disjoint. To illustrate, consider two classifiers: a decision tree
classifier that is used to classify examples coming from one of two credit risk classes
(e.g. good or bad), and a neural network classifier that is used to classify examples
coming from one of two credit usage classes (e.g. heavy or light). For error-based
learners, a few combining algorithms, which incorporate disjoint component
classifiers have been suggested, such as the Error Correction Output
Coding (ECOC) ensemble method (Dietterich and Bakiri 1991). Building on our
decision-theoretic model, we next present an ensemble method (called Doubly-
Cartesian composite classification), which incorporates a set of disjoint
component classifiers.

Table 1. Algorithm for generating the optimal decision rule given a Cartesian
composite classifier.

Input: �, P, Q, A, U
Output:
Decision rule of the Cartesian Classifier, D*.
Maximum expected payoff achievable from the Cartesian Classifier, V*.
begin
Compute confusion matrix R¼P�Q
Let D¼ [dij] be an algebraic matrix representing the decision rule of the composite
classifier. Compute the linear polynomial trace(R �D �U ��)¼

P
i

P
j cijdij (cij is the

constant coefficient of the variable dij)
for every predicted class i of the composite classifier, let j� ¼ argmax

j
fcijg.

Set dij¼ 1 for j¼ j*, and dij¼ 0 for j 6¼ j*.
Set D*¼ [dij], V

� ¼
P

i

P
j cijdij:

Compute the maximum expected payoff, V*¼ trace(R �D* �U ��)
end
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4.3.1 Defining the Doubly-Cartesian composite classifier. First, we define the
Doubly-Cartesian product of two matrices P and Q of size n1�m1 and n2�m2,

respectively, as follows:

P�Q ¼

p1 � q1

p1 � q2

..

.

p1 � qn2

..

.

pn1 � q1

pn1 � q2

..

.

pn1 � qn2

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

, ð5Þ

where pi (respectively qi) is the ith row in P (respectively Q), and� is the Cartesian
product defined in section 3.2.1.

Next we show how several independent component classifiers that are used to

classify examples coming from disjoint sets of actual classes are combined into one
composite classifier. Consider two independent classifiers represented by the

confusion matrices P and Q of size n1¼m1 and n2¼m2, respectively. The two

independent classifiers are combined into one composite classifier, called the
Doubly-Cartesian composite classifier, whose confusion matrix R of n1n2 rows and

m1m2 columns is defined as follows:

R ¼ P�Q: ð6Þ

The Doubly-Cartesian composite classifier is used to classify examples coming from
the set of actual classes in SP

�SQ, and it classifies actual example classes to one

of the predicted classes in the set YP
�YQ. Layered networks of classifiers can be

easily defined, e.g. (P�Q)� (R�S), etc.

Example 4: Consider two independent classifiers represented by the following

confusion matrices:

yP1 yP2 y
Q
1 y

Q
2

P ¼
sP1

sP2

0:8 0:2

0:3 0:7

 !
, Q ¼

s
Q
1

s
Q
2

0:6 0:4

0:2 0:8

� �
:

The Doubly-Cartesian composite classifier is used to classify examples coming
from the set of actual classes SD�Cartesian ¼ fsP1&s

Q
1 , s

P
1&s

Q
2 , s

P
2&s

Q
1 , s

P
2&s

Q
2 g: The

task of the classifier is to classify an example to one of the four classes in
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YD�Cartesian ¼ fyP1&y
Q
1 , y

P
1&y

Q
2 , y

P
2&y

Q
1 , y

P
2&y

Q
2 g on the basis of the observed value

X¼ x. The confusion matrix associated with the Doubly-Cartesian composite
classifier is:

yP1&y
Q
1 yP1&y

Q
2 yP2&y

Q
1 yP2&y

Q
2

R ¼ P�Q ¼

sP1&s
Q
1

sP1&s
Q
2

sP2&s
Q
1

sP2&s
Q
2

0:48 0:32 0:12 0:08

0:16 0:64 0:04 0:16

0:18 0:12 0:42 0:28

0:06 0:24 0:14 0:56

0
BBBBB@

1
CCCCCA:

The Doubly-Cartesian composite classifier is implemented as follows. An example
(say with actual classes sP2 and s

Q
2 ) is classified by both classifiers, and their

predictions are concatenated to form one of the four classes in YD-Cartesian.
The decision-maker observes the predicted class (say yP1&y

Q
2 ), and chooses the

optimal action (say a1) accordingly from within the set of available actions
AD-Cartesian

¼ {a1, a2}. A payoff u1,3 is associated with the action a1 and actual
class sP2&s

Q
1 :

Table 2 shows an algorithm for producing the optimal decision rule given two
disjoint classifiers P and Q combined with the Doubly-Cartesian product.

4.3.2 Domination of the Cartesian composite classifier. Next, we prove that the
Doubly-Cartesian composite classifier dominates any of the component classifiers
from which it is formed, regardless of payoff or class distribution information.

Theorem 4: If R is the Doubly-Cartesian product of the confusion matrices P and Q,
then R dominates both confusion matrices P and Q.

In addition, it is shown that improving one of the component classifiers provides
a more effective composite classifier for the decision-maker, regardless of the quality
of the other component classifiers.

Table 2. Algorithm for generating the optimal decision rule given
a Doubly-Cartesian composite classifier.

Input: �P, �Q, P, Q, A, U
Output:
Decision rule of the Doubly-Cartesian Classifier, D*.
Maximum expected payoff achievable from the Doubly-Cartesian
Classifier, V*.
begin

Compute confusion matrix R¼P�Q
Compute the vector of prior probabilities of the actual classes in
SD-Cartesian, �D-Cartesian

¼�P
��Q.

Same as Steps 2–5 in table 1.
end
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Theorem 5: Let Q, R be two confusion matrices that are used to classify examples
coming from the same set of actual classes. Let P be a confusion matrix that is disjoint
from both Q and R. If R dominates Q, then R� P dominates Q� P:

5. Case study

5.1 Semiconductor production control problem

This section applies the decision-theoretic classification framework to a real-world
semiconductor wafer fabrication line that suffers from constant variations in the
characteristics of the chip fabrication process.

Integrated circuits are built up from a number of patterned silicon, oxide, or
metal layers with specific characteristics. Photolithography is the most complex and
time-consuming process of the operations involved in the fabrication of a wafer. The
goal of the lithographic process is to transfer accurately a set of opaque images from
the masks, which represent the elements of the basic circuit design, to a substrate
on the wafer, with virtually zero defects. A photoresistant chemical is used to transfer
the desired pattern by masking specific regions of the device from etching or ion
implantation processes. During the process of wafer fabrication, a series of loops are
performed, each one adding another layer to the device. Each loop is comprised of
some or all of the major steps of photolithography, etching, stripping, diffusion, ion
implantation, deposition, and chemical/mechanical planarization. At each stage,
various inspections and measurements are performed to monitor the process and
equipment. Supporting the entire process is a complex infrastructure of material
supply, waste treatment, support, logistics, and automation.

The two important parameters that represent the process variability are ‘line
yield’ and ‘flow time’. The ‘line’ or ‘overall’ yield of a semiconductor batch is defined
as the ratio between the number of good microelectronic chips obtained from a
completed batch and the maximum number of chips that can be obtained from the
same batch if no chips are scrapped. The actual yield of a batch can be precisely
measured only at the end of the manufacturing process, although the early steps in a
batch routing mostly affect it. ‘Flow time’ is the number of days required to complete
the production of a given batch. Although the processing time of each production
step in the semiconductor industry is nearly fixed, the waiting times between the
operations are subject to such variable factors as equipment downtimes, process
failures, and line congestions.

The Production Planning and Control department at the case study company is
interested in predicting accurately the expected yield and flow time of every batch
in the manufacturing process as early as possible. Since the direct cost of each
fabrication step is nearly fixed, only batches with a high yield should continue their
production, while batches expected to have a low yield should be stopped and
scrapped immediately as being non-profitable (Barad and Braha 1996, Braha 1999).
The batch flow time also affects profitability — slow batches may lose their
designated customers, and thus turn into ‘dead’ inventory.

The expected payoff per batch can be calculated by the following formula:

Payoff ¼ pu � PSðtÞ � Y �Q� C ð7Þ
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where pu is the unit price of a chip; Ps(t) is the probability of selling a good chip
(decreases with the flow time t); Y is the actual line yield (i.e. percentage of good
chips in a batch); Q is the maximum number of chips in a batch; and C is the cost of
continuing the production of one batch to the end of the manufacturing process.

It is worthwhile to reiterate here that traditional cost-sensitive learning and
classifier evaluation techniques do not provide the conceptual framework necessary
for incorporating actions stemming from predictions (central for the above real-
world production control). Indeed, as mentioned in section 2, the novelty of our
work is the disassociation of predictions and actions. This framework also broadens
the scope of traditional ensemble classification techniques in two important ways:

. It allows the combination of models that classify the examples into different
sets of classes to produce a single model for choosing actions.

. It can be used to compose classifiers based on disjoint object types.

Below we show how the above advantages are put into practice by developing
decision rules for effectively monitoring and controlling the semiconductor wafer
fabrication line under study.

5.2 Applying the decision theoretic classification framework

To address the underlying production control problem, the decision-theoretic
classification framework has been applied, and is stated as follows:

. Examples (instances). Manufacturing batches in their early stages of
production.

. Actual classes. Actual values of ‘yield’ and ‘flow time/date of completion’
(two disjoint sets of actual classes). Both values refer to the ‘pieces’ part of
the manufacturing process (see below). While the classification algorithms
we used can deal with continuous values for the different input variables
(attributes), the class target function should have discrete values (Braha 2001,
Braha and Shmilovici 2002, 2003). To that end, the data corresponding to the
continuous output variables (i.e. ‘yield’ and ‘flow time/date of completion’)
have been disretized prior to applying the algorithms. Two methods could be
employed to transform a continuous dependent variable into discrete class
(Braha and Shmilovici 2002). In the first method, human experts define
discrete classes based on their experience and intuition. In the second
method, a clustering algorithm (e.g. Kohonen’s self-organizing maps) is
applied to search for hidden clusters (i.e. ‘natural classes’) in the input
vectors, which correspond to input patterns with similar characteristics. In
our case, the first method has been used; particularly due to the repeated
nature of the semiconductor wafer fabrication line and the knowledgeable
people involved in eliciting the discrete classes.

. The number of discrete classes defined by the human experts has been
determined based on the intrinsic trade-off between model accuracy and
model precision. According to information theory, the entropy of an output
variable is proportional to the number of classes. This implies that the
accuracy of the classification algorithm is expected to decrease with
increasing number of classes. On the other hand, when classes represent
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discretization intervals, model predictions (e.g. of ‘actual yield’ or ‘expected

payoff per batch’) will be more precise if the continuous output range is

partitioned into more intervals. In our case, the experts suggested that ten

discretization intervals would provide a sufficient precision in predicting

the values of the two continuous output variables (and expected payoff per

batch thereof ). If the training set could increase significantly, a finer

partition of the variables range (beyond ten) could lead to even more precise

prediction of the continuous output values without impeding the model’s

accuracy. Here, we denote the actual ‘yield’ classes as {AY0, AY1, AY2,

AY3, AY4, AY5, AY6, AY7, AY8, AY9}, where AY stands for the ‘actual

yield’. Similarly, the actual ‘flow time/date of completion’ classes are denoted

as {AD0, AD1, AD2, AD3, AD4, AD5, AD6, AD7, AD8, AD9}, where AD

stands for the ‘actual date of completion.’
. Actions. ‘Scrapping a batch’ (since it is not expected to be profitable) versus

‘continuing production of a batch’). It is assumed that the decision is taken

immediately after the batch wafers have been cut (‘diced’) into microchips

(‘pieces’). The transition from wafers to individual microchips is considered a

crucial point in the semiconductor manufacturing process. Most yield

excursions are caused by operations preceding this point.
. Predicted classes. Predicted values of ‘yield’ and ‘flow time/date of

completion’. The predicted ‘yield’ classes are denoted as {PY0, PY1, PY2,

PY3, PY4, PY5, PY6, PY7, PY8, PY9}, where PY stands for the ‘predicted

yield’. The predicted ‘flow time/date of completion’ classes are denoted as

{PD0, PD1, PD2, PD3, PD4, PD5, PD6, PD7, PD8, PD9}, where PD stands

for the ‘predicted date of completion.’
. Payoff. The net profit as a result of applying a certain action (‘scrapping

a batch’ or ‘continuing production’) to a given batch, as determined by

equation (7). The payoff is equal to the difference between the batch selling

price and the cost associated with manufacturing the batch after a decision is

made. The action of ‘scrapping a batch’ always results in zero profit, since no

further costs are incurred and no income is obtained. The action ‘continuing

a batch production’ may result in either a net profit or a net loss, depending

on the batch yield and its flow time. The payoff matrix associated with

the action ‘continuing production’ is presented in table 3. The values in

table 3 have been calculated by applying equation (7). This equation includes

three constant terms, which do not depend on the output variables yield and

flow time: unit price of a chip pu, the maximum number of chips in a batch Q,

and the cost of continuing production C. The payoff is directly proportional

to the yield Y and the probability of selling a good chip Ps(t), which is

a decreasing function of the flow time t. Thus, we can see in table 3 that the

payoff increases as we go down from the first yield class AY0 (representing

the lowest yield) to the last yield class AY9 (representing the highest yield).

On the other hand, going from left (the shortest flow time) to right (the

longest flow time) decreases the payoff, eventually rendering it negative.

The actual values of the parameters used in formula (7) cannot be revealed

here due to their confidentiality. Due to the commercial confidentiality, the

actual values of the parameters used in equation (7) cannot be revealed.
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Two classification algorithms of different character have been used. C4.5 builds
a decision tree using a standard top-down induction procedure (Quinlan 1993). C4.5
post-prunes an induced tree by using the pessimistic error approach. IFN is an
Oblivious Decision Graph, where each level (layer) is associated with a single input
feature (Maimon and Last 2000). Unlike C4.5, the IFN induction algorithm is based
on completely pre-pruning the model by ignoring statistically insignificant features
and patterns. Maimon and Last (2000) showed that the IFN algorithm tends to
produce compact models that use much less attributes than C4.5. The experiments in
(Last et al. 2002) also suggest that these models are usually more stable than C4.5-
based models. Both classification algorithms have been trained and tested on non-
identical (randomly generated) samples. The strategy of using different types of
component classifiers along with selecting different training sets is well known
effectively to achieve independent component classifiers (Skalak 1995).

The manufacturing data sets include 1378 batches with yield data and 1635
batches with flow time data. A complete description of these data sets is available in
Last and Kandel (2001). The partition into the training/testing sets was 945/433 and
1102/533 for the yield and flow time data, respectively.

The confusion matrices representing the IFN classifier for predicting the ‘yield’,
the C4.5 classifier for predicting the ‘yield’, the IFN classifier for predicting the ‘date
of completion’, and the C4.5 classifier for predicting the ‘date of completion’ are
described, in tables 4a–d, respectively.

The payoffs associated with the action ‘continuing production’ (denoted by C)
are calculated by using equation (7), and are shown in table 3. The payoffs associated
with the action ‘scrapping a batch’ (denoted by S) are 0 for any pair of actual ‘yield’
and ‘date of completion’ classes.

5.3 Constructing the classifiers

This section examines a variety of classifiers by applying the algorithms presented
in tables 1 and 2. Table 5 presents the characteristics of the various
composite classifiers that have been constructed. For example, row 9 indicates a
Doubly-Cartesian classifier that combines the classifiers described in rows 5 and 6.

Table 3. Payoffs when taking the action ‘continuing production’.

Payoffs Actual ‘date of completion’ class

Actual ‘yield’ class AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9

AY0 36 (80) (138) (203) (265) (350) (448) (559) (661) (964)
AY1 322 174 100 18 (62) (171) (296) (438) (567) (954)
AY2 438 277 196 107 20 (98) (234) (388) (530) (950)
AY3 504 336 251 158 67 (57) (199) (360) (508) (947)
AY4 557 383 295 198 104 (24) (171) (338) (491) (945)
AY5 604 425 334 235 138 6 (146) (318) (475) (944)
AY6 652 467 374 272 172 36 (120) (297) (459) (942)
AY7 700 510 414 308 206 66 (95) (277) (444) (940)
AY8 751 555 456 347 242 98 (68) (255) (427) (939)
AY9 867 658 553 437 324 171 (6) (206) (389) (935)
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Table 4a. Confusion matrix of the IFN classifier for predicting ‘yield’.

PIFN
Y Predicted class

Actual class PY0 PY1 PY2 PY3 PY4 PY5 PY6 PY7 PY8 PY9

AY0 0.273 0.303 0.061 0.030 0.212 0.030 0.000 0.030 0.000 0.061
AY1 0.071 0.179 0.125 0.107 0.393 0.018 0.000 0.018 0.000 0.089
AY2 0.049 0.268 0.122 0.146 0.268 0.073 0.000 0.049 0.000 0.024
AY3 0.077 0.179 0.026 0.205 0.333 0.077 0.000 0.000 0.000 0.103
AY4 0.000 0.074 0.130 0.222 0.407 0.037 0.000 0.037 0.000 0.093
AY5 0.045 0.114 0.068 0.182 0.409 0.045 0.000 0.114 0.000 0.023
AY6 0.056 0.083 0.194 0.111 0.361 0.000 0.000 0.083 0.000 0.111
AY7 0.026 0.158 0.079 0.132 0.289 0.053 0.000 0.105 0.000 0.158
AY8 0.019 0.074 0.000 0.167 0.259 0.056 0.000 0.130 0.000 0.296
AY9 0.079 0.079 0.026 0.053 0.211 0.026 0.000 0.132 0.000 0.395

Table 4b. Confusion matrix of the C4.5 classifier for predicting ‘yield’.

PC45
Y Predicted class

Actual class PY0 PY1 PY2 PY3 PY4 PY5 PY6 PY7 PY8 PY9

AY0 0.242 0.152 0.212 0.030 0.091 0.030 0.091 0.091 0.000 0.061
AY1 0.179 0.107 0.054 0.071 0.125 0.143 0.143 0.071 0.071 0.036
AY2 0.171 0.171 0.098 0.073 0.073 0.171 0.220 0.000 0.000 0.024
AY3 0.128 0.103 0.077 0.103 0.051 0.103 0.256 0.026 0.077 0.077
AY4 0.074 0.074 0.111 0.204 0.130 0.019 0.185 0.056 0.093 0.056
AY5 0.091 0.068 0.045 0.068 0.114 0.114 0.295 0.023 0.136 0.045
AY6 0.139 0.028 0.083 0.028 0.056 0.167 0.250 0.083 0.111 0.056
AY7 0.079 0.053 0.132 0.053 0.105 0.132 0.132 0.053 0.079 0.184
AY8 0.074 0.093 0.019 0.111 0.056 0.111 0.148 0.037 0.093 0.259
AY9 0.026 0.026 0.053 0.000 0.026 0.132 0.105 0.053 0.079 0.500

Table 4c. Confusion matrix of the IFN classifier for predicting ‘date of completion’.

PIFN
D Predicted class

Actual class PY0 PY1 PY2 PY3 PY4 PY5 PY6 PY7 PY8 PY9

AD0 0.262 0.279 0.148 0.000 0.115 0.148 0.016 0.016 0.016 0.000
AD1 0.245 0.358 0.132 0.000 0.094 0.151 0.000 0.019 0.000 0.000
AD2 0.167 0.130 0.204 0.000 0.111 0.333 0.037 0.019 0.000 0.000
AD3 0.167 0.167 0.148 0.000 0.148 0.315 0.019 0.000 0.037 0.000
AD4 0.183 0.100 0.150 0.000 0.150 0.300 0.083 0.033 0.000 0.000
AD5 0.111 0.159 0.159 0.000 0.143 0.365 0.032 0.016 0.016 0.000
AD6 0.146 0.208 0.083 0.000 0.021 0.188 0.229 0.125 0.000 0.000
AD7 0.265 0.162 0.103 0.000 0.029 0.221 0.088 0.118 0.015 0.000
AD8 0.250 0.075 0.050 0.000 0.125 0.150 0.150 0.175 0.025 0.000
AD9 0.219 0.219 0.125 0.000 0.094 0.188 0.031 0.094 0.000 0.031
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The decision whether to scrap a batch or continue production will be determined
after observing one of the 10 000 potential predicted classes.

We have generated the optimal decision rules (for each of the classifiers in table 5)
to be used by the Production Planning and Control department. For example, table 6
presents the decision rule associated with classifier 5 (i.e. ‘Cartesian ensemble of IFN
for yield and C4.5 for yield’). To illustrate, if IFN predicts the yield class PY3 and
C4.5 predicts the yield class PY7, then the process engineers should scrap the batch.

The process engineers should choose the classifier to work with by considering
the following three factors: the performance of each classifier (i.e. maximum
expected payoff, the deployment cost of each classifier, and the usability of
each classifier. The maximum expected payoff of each classifier may be estimated
by applying Step 5 in tables 1 and 2. These evaluation results are provided in table 7.

Table 4d. Confusion matrix of the C4.5 classifier for predicting ‘date of completion’.

PC45
D Predicted class

Actual class PY0 PY1 PY2 PY3 PY4 PY5 PY6 PY7 PY8 PY9

AD0 0.361 0.164 0.148 0.066 0.131 0.049 0.016 0.033 0.000 0.033
AD1 0.415 0.170 0.151 0.057 0.038 0.075 0.038 0.038 0.000 0.019
AD2 0.259 0.148 0.204 0.056 0.130 0.037 0.130 0.037 0.000 0.000
AD3 0.167 0.241 0.148 0.148 0.111 0.130 0.019 0.037 0.000 0.000
AD4 0.250 0.233 0.117 0.050 0.133 0.067 0.083 0.067 0.000 0.000
AD5 0.190 0.079 0.111 0.048 0.159 0.302 0.048 0.032 0.016 0.016
AD6 0.083 0.146 0.104 0.083 0.042 0.083 0.292 0.146 0.000 0.021
AD7 0.162 0.074 0.118 0.044 0.059 0.132 0.074 0.265 0.029 0.044
AD8 0.100 0.025 0.050 0.075 0.100 0.050 0.175 0.275 0.100 0.050
AD9 0.188 0.156 0.156 0.063 0.063 0.063 0.031 0.156 0.000 0.125

Table 5. Variety of classifiers considered by the Production Planning and Control
department.

Classifiers

Type of classes Type Number
Confusion
matrix

Number of
predicted classes

1 Yield IFN 1 PIFN
Y 10

2 Yield C4.5 1 PC45
Y 10

3 Date of completion IFN 1 PIFN
D 10

4 Date of completion C4.5 1 PC45
Y 10

5 Yield IFN, C4.5 2 PIFN
Y � PC45

Y 100
6 Date of completion IFN, C4.5 2 PIFN

D � PC45
D 100

7 Yield and date
of completion

IFN 2 PIFN
Y � PIFN

D 100

8 Yield and date of
completion

C4.5 2 PC45
Y � PC45

D 100

9 Yield and date of
completion

IFN, C4.5 4 ðPIFN
Y � PC45

Y Þ � ðPIFN
D � PC45

D Þ 10,000
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The evaluation results of each component classifier are presented in rows 1–4
of table 7. The results suggest that C4.5 is expected to achieve higher payoffs than the
IFN classifier. It is seen that the maximum expected payoff can be improved (with
respect to the component classifiers) by using Cartesian ensembles as shown in rows
5 and 6 of table 7. Rows 7 and 8 of table 7 show that the Doubly-Cartesian classifier
constructed from using C4.5 outperforms the Doubly-Cartesian classifier obtained
from using IFN. In addition, each Doubly-Cartesian classifier outperforms any of
its constituent classifiers. Finally, the last row of table 7 shows the improved
performance of using a complex hierarchical classifier (using both the Cartesian and
Doubly-Cartesian operations) over the other classifiers. (Intuitively, repeated
composition of a finite repertoire of classifiers eventually leads to a maximal
dominating composite classifier.)

Table 7. Evaluation results.

Classifier
Maximum

expected payoff
Computation

time (s)

1. IFN for yield, PIFN
Y 4.79453 0.141

2. C4.5 for yield, PC45
Y 6.19675 0.062

3. IFN for date of completion, PIFN
D 5.201 0.063

4. C4.5 for date of completion, PC45
D 23.5085 0.078

5. Cartesian ensemble of IFN for yield and
C4.5 for yield, PIFN

Y � PC45
Y

8.65311 2.438

6. Cartesian ensemble of IFN for date of
completion and C4.5 for date of
completion, PIFN

D � PC45
D

38.2436 2.515

7. Doubly-Cartesian ensemble of
IFN for yield and IFN for date of
completion, PIFN

Y � PIFN
D

14.9279 13.703

8. Doubly-Cartesian ensemble of C4.5 for
yield and C4.5 for date of completion, PC45

Y � PC45
D

30.3458 15.844

9. Doubly-Cartesian ensemble of classifiers 5 and 6,
PIFN
Y � PC45

Y

� �
� PIFN

D � PC45
D

� � 46.6229 41 h

Table 6. Optimal decision rule for PIFN
Y � PC45

Y .

C4.5

IFN PY0 PY1 PY2 PY3 PY4 PY5 PY6 PY7 PY8 PY9

PY0 S S S S S S C S C S
PY1 S S S S S S C S C S
PY2 S S S S S S C S C S
PY3 S S S S S S C S C S
PY4 S S S S S S C S C S
PY5 S S S S S S C C C C
PY6 S S S S S S C C C C
PY7 S S S S S S C C C C
PY8 S S S S S S C C C C
PY9 S S S C C C C C C C
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6. Summary

Classification systems have been used as a means for extracting valuable
decision-making information in various applications ranging from medical diagnosis
(Núñez 1991) to industrial production processes (Braha 2001). The recognition that
in most machine-learning applications non-uniform misclassification costs are the
governing rule has led to a resurgence of interest in cost-sensitive classification. In
this paper, we extend the scope of cost-sensitive classification by including the aspect
of ‘actions’. More specifically, the decision-maker observes classes as predicted by
the classification system and chooses actions accordingly. The decision-maker wishes
to maximize the expected payoff by choosing an optimal decision rule.
The underlying assumption of this paper is that the predictions displayed by a
classifier are ‘effective’ only insofar as the derived information leads to actions that
increase the payoff for the decision-maker.

The decision-theoretic framework allows one to define and analyse rigorously the
concept of classifier domination — the ability of one classifier to achieve an expected
payoff at least as high as another one, regardless of the current payoff values and
class distributions. We present a precise condition under which one classifier
‘dominates’ another.

Besides providing an economic perspective on the value of ‘extracted informa-
tion’, the decision-theoretic model hints at the wide range of robust composite
classifier architectures that might arise from this point of view. In this paper, two
architectures for combining classifiers have been proposed. In both cases, the
combining classifiers have been shown to dominate any of the constituent classifiers.
An indication of the utility of the proposed framework for complex real-world
problems (beyond the purely theoretical aspects) has been demonstrated on the
semiconductor manufacturing domain.

This paper suggests that on-line monitoring of the manufacturing process
using data mining may be highly effective supporting previous work (Braha
and Shmilovici 2002, 2003). It also shows that composite classifier architectures
are expected to yield higher performance than the performance of each
individual classifier on its own. This is particularly important for semiconductor
manufacturing environments where data are scarce and costly, and various physical
and chemical parameters that affect the process exhibit highly complex
interactions. The component classifiers can use data sets of a relatively small
volume, and need only a reasonable amount of time and memory for training
and application. Thus, a composite classifier may be highly effective when embedded
in real-time monitoring of semiconductor manufacturing processes (also Braha and
Shmilovici 2002).

Beyond the expected benefits of the suggested framework, in reality one has
to consider additional deployment factors. The large amount of yield data
generated during daily semiconductor manufacturing operations makes it almost
impractical to analyse the data manually for valuable decision-making information.
In semiconductor manufacturing environments, this situation calls for new
techniques and tools that can intelligently and (semi-)automatically store and
manage large amounts of yield data, which will be turned into high-level and
useful knowledge. This knowledge extraction process should be supported
by powerful data-acquisition systems such as computers, microprocessors,
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transducers, and analogue-to-digital converters for collecting, analysing, and
transferring data (Braha and Shmilovici 2002).

In summary, the integration of real-time data-mining methodologies with closed-
loop process control and decision analysis may become a critical ingredient of future
yield management, which will be integrated, agile, and capable of continuous
prevention and improvement.
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Núñez, M., The use of background knowledge in decision tree induction. Mach. Learn., 1991,
6, 231–250.

Provost, F. and Fawcett, T., Analysis and visualization of classifier performance: comparison
under imprecise class and cost distributions, in Proceedings of the Third International
Conference on Knowledge Discovery and Data Mining, 1997 (AAAI Press, Madison,
WI), pp. 43–48.

Provost, F. and Fawcett, T., Robust classification for imprecise environments. Mach. Learn.,
2001, 42(3), 203–231.

Provost, F., Fawcett, T. and Kohavi, R., The case against accuracy estimation for comparing
classifiers, in Proceedings of the Fifteenth International Conference on Machine Learning,
pp. 445–453, 1998 (Morgan Kaufmann).

Quinlan, J.R., C4.5: Programs for Machine Learning, 1993 (Morgan Kaufmann).
Raiffa, H., Decision Analysis, 1976 (McGraw Hill: New York, NY).
Schapire, R.E., The strength of weak learnability. Mach. Learn., 1990, 5, 197–227.
Skalak, D.B., Prototype Selection for Composite Nearest Neighbor Classifiers. Technical

Report No. 95-74, 1995 (Department of Computer Science, University of
Massachusetts, Amherst, MA).

Theory of actionable data mining 3083



Ting, K.M. and Zheng, Z., Boosting trees for cost-sensitive classifications, in Proceedings of
the 10th European Conference on Machine Learning, Chemnitz, Germany, 1998,
pp. 191–195.

Tobin, K.W., Karnowski, T.P. and Lakhani, F., A survey of semiconductor data management
systems technology, in Proceedings of SPIE’s 25th Annual International Symposium on
Microlithography, Santa Clara, CA, USA, February 2000.

Turney, P., Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree
induction algorithm. J. Artif. Intell. Res., 1995, 2, 369–409.

Wolpert, D., Stacked generalization. Neur. Network., 1992, 5, 241–259.
Zahavi, J. and Levin, N., Issues and problems in applying neural computing to target

marketing. J. Direct Market., 1997, 11(4), 63–75.
Zhang, X., Mesirov, J.P. and Waltz, D.L., A hybrid system for protein secondary structure

prediction. J. Molec. Biol., 1992, 225, 1049–1063.

3084 D. Braha et al.


