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ABSTRACT

Like in any other industry, manufacturing departments of semiconductor
plants are evaluated by their ability to meet the delivery schedules. However,
the final quantities and the flow times of individual semiconductor batches are
affected by multiple uncertain factors, like material quality, process
variability, equipment condition, and others. Thus, the tasks of predicting the
batch quality (measured by yield) and its total flow time are an important part
of the production planning activities. = Beyond prediction, the plant
management is interested in identifying the main causes of yield excursion
and process delays.

In this paper, we are applying several methods of data mining and
knowledge discovery to WIP (Work-in-Process) data, collected in a
semiconductor plant. The information on each manufacturing batch includes
its design parameters, process tracking data, line yield, etc. The data is
prepared for data mining by converting a sequential dataset into a relational
format. Classification models for predicting line yield and flow times are
built from the pre-processed data by using the Info-Fuzzy Network (IFN)
methodology. Fuzzy-based techniques of automated perception are used for
post-processing the data mining results. We conclude the paper with a critical
evaluation of the discovered knowledge and the methods used.

Keywords: data mining, knowledge discovery, info-fuzzy network,
automated perceptions, yield management.



INTRODUCTION

The outgoing yield of manufactured batches is the basic measure of
profitability in semiconductor industry. Overall, or line yield of the
manufacturing process is defined as the ratio between the number of good
parts (microelectronic chips) in a completed batch and the maximum number
of parts, which can be obtained from the same batch. Since capitalization
costs constitute the major part of manufacturing costs in semiconductor
industry, the direct cost of producing a single batch is almost fixed. However,
the income from a given batch is proportional to the number of good chips.
Thus, there is a direct relationship between the yield and the profits of
semiconductor companies, which usually treat the yield performance as one of
their top commercial secrets.

The expected yield of every batch is also an important parameter for the
production planning and control. An “optimistic” estimate of the outgoing
yield may cause delays in the order delivery due to insufficient quantities
produced. On the other hand, “overbooking” in the number of batches
designated for a given order may lead to a waste of precious resources, like
technicians, machines, and electricity. Unnecessary batches may also cause
delays in the production of other, more critical batches. Consequently, this is
the primary interest of the planning personnel to have an accurate prediction
of the actual yield.

The problem of yield prediction is closely related to another problem of
planning the supply of orders, namely the problem of predicting the flow times
of individual batches. Though the net time of each production step in
semiconductor industry is nearly fixed, the waiting times between the
operations are very hard to predict, due to such variable factors as equipment
downtimes, process failures, and line congestions.

Controlling and preserving the yield is a complex engineering problem.
Both new and mature semiconductor products suffer from variability of yield
within and between individual batches and even on specific wafers of the
same batch. Improved understanding of this variability can save significant
manufacturing costs by focusing on problematic processes and taking
appropriate actions, whenever excursion of yield is expected for a given
batch, wafer, etc.

Although the amount of manufacturing data collected by semiconductor
companies is constantly increasing, it is still hard to identify the most
important parameters required for yield modeling and prediction. As
indicated by Tobin et al. (2000), the amount of data generated is exceeding
the yield engineer’s ability to effectively monitor and correct unexpected
trends and excursions. Consequently, there is a strong need for automated
yield management systems, which will be able to explain and predict yield
excursions by using sophisticated data management and data mining tools.
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The use of standard data mining methods for the yield and the flow time
prediction in semiconductor industry faces several difficulties. First, such
common methods as association rules (see Agrawal et al., 1996) and decision
trees (see Quinlan, 1993) are aimed at analyzing structured data, organized in
two-dimensional tables, where all the variables relevant to the target are
located in a single row (record) of one table. In a real-world situation, the
factors affecting the final yield of a manufacturing batch are spread across
many data tables, which may be even stored in separate database systems.
Moreover, multiple records of parametric data, collected in the course of the
manufacturing process, may be related to the outcome of a single batch.
Important information may be lost if the timing of those records is ignored by
the data mining tools.

Second, the basic assumption of most data mining methods is that all the
data stored in a database is complete and correct. The actual semiconductor
data may not comply with the assumption of data correctness for several
reasons including erroneous data entry, inaccurate measurements, etc. Since
it is not practical to ensure the 100% data quality, the methods used should be
robust to the presence of errors in the mined data. Another common problem
of data quality is the absence of values for certain attributes due to either
incomplete data entry process or non-existence of the values themselves (e.g.,
missing measurements of a scraped wafer). In both cases, a data mining
method should deal with a missing value without ignoring the values of the
other attributes in the same record.

Finally, the abundance and the diversity of automatically collected data
pose another potential problem to data mining. Most of the available
attributes may be completely irrelevant to the target (e.g., the final yield).
Since most data mining methods (especially those based on the Bayesian
approach) are trying to incorporate as many attributes as possible in the
model, the learning process may be misled by the irrelevant attributes,
resulting in over complex and inaccurate representations of discovered
knowledge. The continuous nature of the target (dependent) variables, like
the yield and the flow time, precludes them from being used directly by
classification techniques (e.g., decision trees and Bayesian methods), which
assume the target to take a limited number of distinct values.

The process of knowledge discovery in semiconductor databases,
presented in this paper, is based on a novel method for mining real-world
data, termed [FN for Info-Fuzzy Network (see Maimon and Last, 2000). The
method builds upon the principles of Shannon’s information theory (see
Cover, 1991) and fuzzy logic (see Klir and Yuan, 1995). It is applicable to
databases of mixed nature containing quantitative (continuous), qualitative
(nominal), and binary-valued attributes. The relevant features are selected
automatically in the process of constructing the prediction model (IFN).
Ranked association rules between the selected factors and the target attribute
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(e.g., final yield) can be extracted from the network structure. The network
output can also be used for evaluating reliability of target data. In (Maimon
and Last, 2000), the [FN method is shown to have several benefits, including:
built-in feature selection, compact and interpretable representation of
extracted knowledge, reasonable predictive accuracy (compared to other
methods), stability of obtained models, and robustness to noisy and
incomplete data.

Section 2 of this Chapter describes the information-theoretic fuzzy
approach to knowledge discovery in databases. The process of rule
fuzzification and reduction is presented in Section 3. In Section 4, we
proceed with a detailed case study of knowledge discovery in manufacturing
data. The Chapter is concluded by Section 5, which evaluates the potential of
the information-fuzzy approach for data mining in semiconductor industry.

THE IFN METHODOLOGY FOR KNOWLEDGE
DISCOVERY AND DATA MINING

The Info-Fuzzy Network (IFN) methodology, presented by us in (Maimon and
Last, 2000), is a novel and unified approach to automating the process of
Knowledge Discovery in Databases (KDD). The main stages of the KDD
process handled by IFN include discretization of continuous attributes, feature
selection, prediction and classification, extraction of association rules, and
data cleaning. The method is aimed at maximizing the mutual information
(see Cover 1991) between input (predicting) and target (dependent) attributes.
The following sub-sections describe the data model used by IFN, the general
structure of an info-fuzzy network, the network construction algorithm, and
the procedure for extracting association rules from the network structure.

The Data Model

The IFN method distinguishes between the following types of attributes in a

database:

1) O-a subset of rarget (“output”) attributes (O < R, |O| =1). The
information-theoretic network is constructed to predict the values of target
attributes, based on the values of input attributes (see below).

2) C - asubset of candidate input attributes (C < R, |C| = 1). This is a subset
of attributes, which can be used to predict the values of target attributes.

3) [,- a subset of input attributes selected by the network construction
procedure for predicting the value of the target attribute i (Vi: I, < C).

A database is assumed to satisty the following conditions:
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1) 40 Vi:l,nO =< (An attribute cannot be both input and a target).

This means that no cyclic relationships between attributes may be revealed
by the method.

2) Vi:l, O c R (Some attributes may be neither input, nor target).

Usually, the key attributes are not used in the knowledge discovery
process, since they have no practical meaning, except for the purpose of
identifying individual records.

The Info-Fuzzy Network Structure

An Info-Fuzzy Network (see Figure 1 below) has the following components:

1) || - total number of hidden (internal) layers in a network of a target
attribute /. The network in Figure 1 has two internal layers (No. 1 and No.
2). Each internal layer is uniquely associated with an input attribute by
representing the interaction of that attribute and the input attributes of the
previous layers. Layer No. 0 includes only the root node and is not
associated with any input attribute. The layers of the network differ from
the decision-tree structure used by CART (Breiman et al., 1984) and C4.5
(Quinlan, 1993) in the following aspects: only one input attribute is used
to split the nodes of the same layer, multiple splits of continuous attributes
are allowed, and the partitioning of continuous attributes is identical at all
the split nodes.

2) L;- asubset of nodes z in a hidden layer No. /. Each node represents a
conjunction of values of the first / input attributes, which is similar to the
definition of an internal node in a standard decision tree. In Figure 1, the
first input attribute has three values, represented by nodes no. 1,2, and 3 in
the first layer, but only nodes no. 1 and 3 are split due to the statistical
significance testing (see next sub-section). The second layer has four
nodes standing for the combinations of two values of the second input
attribute with two split nodes of the first layer.

3) K, - asubset of distinct target nodes V; in a network of the target attribute
i (the target layer). |K;| = M, Each target node is associated with a value
in the domain of the target attribute i. This layer is missing in the
standard decision-tree structure. In our example, the target attribute has
three values, represented by three nodes in the target layer.

w. ’- an information-theoretic weight of the connection between a
terminal (unsplit) node z and a target node V. Each connection represents an
association between a conjunction of input attribute-values and a value of the
target attribute. In Figure 1, there are 15 connections between the five
terminal (unsplit) nodes and the three target nodes. The calculation of the
weights is explained in the next sub-sections.
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The connectionist nature of our system (each terminal node may be
connected to every target node) resembles the structure of multi-layer Neural
Networks (see Mitchell, 1997). Consequently, we define our system as a
network and not as a tree.

Layer No. 0 -
(the root node) =
Layer No. 1 Connection Target
(Firstinput  LAYer No- 2 yyeiops Layer
attribute) (Second input
attribute)

Figure | IFN: An Example
Network Construction Procedure

Without loss of generality, we present here an algorithm for constructing an
information-theoretic network of a single target attribute 4,. In a general case,
the network should be re-built for every target attribute defined in a database.
The pseudocode of the network construction procedure is shown in Table 1
below.
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Table 1 The IFN Construction Algorithm

Inputs
A, is the target attribute
C is a subset of candidate input attributes
S is a subset of training examples
ais the significance level used by the algorithm
Procedure IFN (4,, C, S, ¢
1, = O // initialize the set of input attributes to an empty set.
|Lo| = 1// Initialize layer 0 to the root node
Define the layer of target nodes
For [ = 1 to |C| // repeat for the maximum number of layers (number of candidate input
attributes)
Fori’ = 1to |C| // repeat for every candidate input attribute
If4; &I, //if an attribute is not an input attribute
MI (A, A;)) = 0 // Initialize the mutual information between the
attribute A, and the attribute A; to zero.
Forz =1 to |L.,| // repeat for every node of the final hidden layer
Calculate MI (4, ; A; / z) // calculate conditional mutual
information of a candidate input attribute i’ and a target
attribute i, given a node z (see below)
If MI (4;:; A,/ z) is greater than zero at the significance level
o (see below), MI (4;; A;) = MI (A;; Ai) + MI (4, ; A/ z)
If max MI (4,;4,) =0, Stop and return the set of input attributes (/)

i"*=arg max MI (4,;4,) // find the best input attribute

I, =1, N A+ // update the set of input attributes

Update the network structure with a new layer of hidden nodes
Calculate the information-theoretic weights of the input-target connections (see below)
Return the set of input attributes (/)

The network construction procedure starts with a single-node network
representing an empty set of input attributes. A node in the network is split if
it provides a statistically significant decrease in the conditional entropy of the
target attribute. As indicated in (Cover, 1991), conditional entropy measures
the uncertainty of a random variable Y, given the values of other variables X,
..., X,. A decrease in the conditional entropy of a random variable is termed
“conditional mutual information.” The conditional mutual information of a
candidate input attribute i’ and a target attribute 7, given a node z (MI (4, ; A;/
z)), is estimated by the following formula (based on Cover, 1991):
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M1V P(V,7./z)

MI (A, ;A,]z) = P(V,:V,, 1z)e log

~ v’ PV, lz)yeP(V,/z)

where

M; / M; - number of values of the target attribute i /candidate input
attribute i°. This formula assumes that all continuous attributes are discretized
to a finite number of intervals.

P (V;;/ z) - an estimated conditional (a posteriori) probability of a value
j’ of the candidate input attribute i’, given the node z.

P (Vy/ z) - an estimated conditional (a posteriori) probability of a value j
of the target attribute i, given the node z.

P (V,;"/ z) - an estimated conditional (a posteriori) probability of a value
j’ of the candidate input attribute i’ and a value j of the target attribute 7, given
the node z.

P (Vy; Viyy z) - an estimated joint probability of a value j of the target
attribute 7, a value j’ of the candidate input attribute i” and the node z.

The statistical significance of the estimated conditional mutual
information, is evaluated by using the likelihood-ratio statistic (based on
Attneave, 1959):

G’ (A;; A;/z) = 2e(In2)e E'(z) e MI (4;:; A;/z)

Where E(z) is the number of tuples associated with the node z.

The null hypothesis (H)) of the likelihood-ratio test is that the conditional
mutual information is zero (which means that the attributes are conditionally
independent, given the node). If H, holds, then the likelihood-ratio statistic
G’ (4;; 4,/ z) is distributed as chi-square with (NI ;- (z) - 1)o( NT ; (z) - 1)
degrees of freedom, where NI, (z) is the number of values of a candidate
input attribute i’ at node z and NT'; (z) is the number of values of a target
attribute / at node z (based on Rao and Toutenburg, 1995). The default
significance level (p-value), used by the information-theoretic algorithm, is
0.1%. We have found empirically that the higher values of the p-value tend to
decrease the generalization performance of the network.

A new input attribute is selected to maximize the total significant
decrease in the conditional entropy as a result of splitting the nodes of the last
layer. The nodes of a new hidden layer are defined for a Cartesian product of
split nodes of the previous hidden layer and the values of the new input
attribute.  According to the chain rule (see Cover, 1991), the mutual
information between a set of input attributes and the target (defined as the
overall decrease in the conditional entropy) is equal to the sum of drops in
conditional entropy at all the hidden layers.  If a candidate input attribute
significantly decreasing the conditional entropy of the target attribute cannot
be found, the network construction stops.
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The conditional entropy of the target attribute can only be calculated with
respect to attributes taking a finite number of values. The algorithm performs
discretization of continuous attributes “on-the-fly” by using an approach,
which is similar to the information-theoretic heuristic of Fayyad and Irani
(1993): recursively finding a binary partition of an input attribute that
minimizes the conditional entropy of the target attribute. However, the
stopping criterion we are using is different. Rather than searching for a
minimum description length (minimum number of bits for encoding the
training data), we make use of a standard statistical likelihood-ratio test (see
above). The search for the best partition of a continuous attribute is dynamic:
it is performed each time a candidate input attribute is considered for
selection. Detailed descriptions of the algorithm steps, including the dynamic
discretization procedure, are provided in (Maimon and Last, 2000).

The IFN construction procedure is a highly scalable algorithm. As shown
in (Maimon and Last, 2000), its run time is quadratic in the number of
candidate input attributes. It is also linear in the number of records and the
number of values taken by each candidate input / target attribute. The
dynamic discretization procedure increases the run time per each continuous
attribute by the factor of m log m, where m is the total number of distinct
attribute values (bounded by the number of data records).

Rule Extraction and Prediction

Each connection between a terminal node and a node of the target layer
represents an association rule of the form if conjunction of input values, then
the target value is likely / unlikely to be... These are not prediction rules, like
the rules extracted by the C4.5 algorithm (Quinlan, 1993), since multiple rules
may be associated with the same terminal node. An information-theoretic
weight of an association rule between a terminal node z and a target value V;
is given by:
PV, /z)

P(V})
Where P (V},z) is an estimated joint probability of the value V; and the node z,
P (V/z) is an estimated conditional (a posteriori) probability of the value V,
given the node z, and P (V) is an estimated unconditional (a priori)
probability of the value V.

According to the information theory (see Cover, 1991), the above weight
represents a contribution of a node-pair to the total mutual information
between the input attributes and the target attribute. The weight is positive if
the conditional probability of a target attribute value, given the node, is higher
than its unconditional probability and negative otherwise. A zero weight
means that the target attribute value is independent of the node value. Thus,

w! = P(V,;z)elog
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each positive connection weight can be interpreted as the information content
of an appropriate rule of the form if node, then target value is....
Accordingly, a negative weight refers to a rule of the form if node, then target
value is not... .

Since IFN represents a disjunction of conjunctions of the input attribute
values, each record in a relational data table having the same schema like the
training data set can be associated with a single terminal node in the network.
The target attribute in that record can be assigned a predicted value j* by the
following maximum a posteriori (MAP) rule:

J¥=argmax P(V,/z)
J

For discrete target attributes, V; stands for an actual attribute value. If a
target attribute is continuous, V; represents a discretized interval, which is
converted by IFN into a continuous predicted value by using the mean of the
corresponding interval.

The IFN method of prediction and classification is based on the Bayesian
approach to learning from data (see Mitchell, 1997). According to the
Bayesian reasoning, a consistent learning algorithm (i.e., an algorithm that
outputs an error-free model over noiseless training data) has to use a MAP
hypothesis for prediction.

Fuzzification and Reduction of Association Rules

The number of rules extracted from IFN may be quite large. It is bounded by
the product of the number of terminal nodes and the number of target nodes
and the previous applications of the algorithm show that this bound is
relatively sharp. Although every rule is important for the predictive accuracy
of the network, the user may find it difficult to comprehend the entire set of
rules and to interpret it in natural and actionable language. As we have shown
in (Last and Kandel, 2001 and Last, Klein, and Kandel, 2001), the
fuzzification of the information-theoretic rules provides an efficient way for
reducing the dimensionality of the rule set, without losing its actionable
meaning. The process of rule reduction includes the following stages:

Stage 1 - Fuzzifying the information-theoretic rules

Stage 2 — Reducing the set of fuzzified rules by conflict resolution

Stage 3 — Merging rules from the reduced set

Fuzzifying Association Rules

Although the boundaries of the discretized intervals, determined in the
process of network construction (see sub-section O above), are aimed at
minimizing the uncertainty of the target attribute, the user may be more
interested in the linguistic descriptions of these intervals, rather in their
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precise numeric boundaries. For example, the user is more interested in the
rules of the form "If current is high, then the yield is low", which is closer to
the human way of reasoning, rather than “If current is between 4 and B then
the yield is between X and Y. People tend to "compute with words" rather
than with precise numbers. In addition, the total number of rules, extracted
from a typical dataset may be much larger than the number of rules generally
used by people in their decisions.

As indicated by (Klir and Yuan, 1995), the "linguistic ranges" of
continuous attributes may be expressed as lists of terms that the attributes can
take (“high”, “low”, etc.). The user perception of each term may be
represented by fuzzy membership functions. According to (Zadeh 1999), this
is the first stage in an automated reasoning process, based on the
Computational Theory of Perception (CTP), which can directly operate on
perception-based, rather than measurement-based, information. Subsequent
CTP stages include constructing the initial constraint set (ICS), goal-directed
propagation of constraints, and creating a terminal constraint set, which is the
end result of the reasoning process.

Sometimes the “crisp” rules cannot be presented to outsiders, because
they contain some sensitive information. This may be an obstacle to open
exchange of technological information in forums like professional
conferences, multi-company consortia, etc. According to (Shenoi 1993),
fuzzification of numeric attributes in a real-world database may be used for an
additional purpose: information clouding. The user may be unwilling to
disclose the actual values of some critical performance indicators associated
with manufacturing, marketing, sales, and other areas of business activity. In
many cases, data security considerations prevent results of successful data
mining projects from being ever published. The application part of this
chapter deals with highly sensible data obtained from a semiconductor
company. Direct presentation of rules extracted from this data could provide
valuable information to the company competitors. However, we are going to
“hide” the confidential context of the rules by presenting them in their
fuzzified form only.

The terms assigned to each simple condition and to the target
(consequence) of the association rule are chosen to maximize the membership
function at the middle point of the condition / consequence interval. Thus, we
convert a crisp rule into a fuzzy relation (Klir and Yuan, 1995). Since a
complex condition is a conjunction of simple conditions, an algebraic product
is used to find the fuzzy intersection of the simple conditions. Fuzzy
implication of Mamdani type (see below) is applied to each rule. Mamdani
implication is more appropriate for the fuzzification of the information-
theoretic rules due to the local nature of these rules. The informativeness of
each fuzzified rule is represented by weighting the implication grade by the
information-theoretic weight of the original crisp rule (see sub-section 0
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above). If the weight is positive, the rule is stated as “If <comjunction of
terms assigned to rule conditions™>, then <term assigned to the rule target >".
If the weight is negative, the rule will be of the form “If <conjunction of terms
assigned to rule conditions>, then not <term assigned to the rule target >".
The expression for calculating the weighted membership grade of an
association rule is given below.

p, =well[max{u, (V)}]e max{u, (0)}

Where

w — information-theoretic weight of the crisp rule

N —number of simple conditions in the crisp rule

V; — crisp value of the simple condition 7 in the crisp rule (middle point of
the condition interval)

O — crisp value of the rule target (middle point of the target interval)

U, (V) - membership function of the simple condition i w.r.t. term j

M, (O) - membership function of the target value O w.r.t. term &

Conflict Resolution

Since an information-theoretic ruleset includes association rules between
conjunctions of input values and all possible target values, several rules may
have the same IF parts, but different THEN parts. Moreover, the rule
consequents may differ in their numeric values, but be identical in their
linguistic values. This means that the set of fuzzy rules, produced above, may
be inconmsistent. To resolve this conflict, we calculate the grade of each
distinct fuzzy rule by summing up the grades of all identical fuzzified rules
and choose from each conflict group the target value that has a maximum
grade. A similar approach is used by (Wang and Mendel, 1992) for resolving
conflicts in fuzzy rules generated directly from data.

In our procedure, there is no explicit distinction between positive and
negative rule grades. For example, the fuzzified rules of the form “If A then
B” and “If A then not B” are associated with the same consequent in the
same distinct rule. However, their combined grade will be equal to the
difference of their absolute grades, giving a preference to one of possible
conclusions (B or not B). Eventually, the target value with the maximum
positive grade will be chosen by the above procedure. This closely agrees
with the interests of the database users, who need to estimate positively the
value of the target attribute.



Merging Reduced Rules

In the previous sub-section, we have shown a method for handling rules
having identical antecedents and distinct consequents. However, the resulting
set of conflict-free rules may be further reduced by merging the rules having
distinct antecedents and identical consequents. Thus, any two rules (I) and (IT)
having the form:

1. IfaisAandbis Bandcis C, thentis T
2. IfdisDandeis Eandfis F, thentis T

can be merged into a single rule of the following form:

3. IfaisAandbisBandcis Cordis Dandeis Eandfis F, thentis T

Using the above approach, we can create a rule base of a minimal size,
limited only by the number of distinct target values. However, this approach
may produce a small number of long and hardly useable rules (like the rule 3
above). Therefore, we perform the merging of disjunctive values for the last
rule condition only. The procedure of merging fuzzy conjunctive rules (see
Last and Kandel, 2001) is based on the assumption that each fuzzy rule has
the same partial ordering of input attributes, which is true for any rule
extracted from a given IFN (see sub-sections 0 and 0 above ). The grade of
the merged rule is calculated by using a fuzzy union (“max” operation). The
resulting rule base can be considered a terminal constraint set in a CTP
process (Zadeh 1999).

KNOWLEDGE DISCOVERY IN SEMICONDUCTOR
DATA

In this section, we are applying the information-theoretic fuzzy approach to a
real-world data set provided by a semiconductor company. The
semiconductor industry is a highly competitive sector, and the original data
used in our analysis, as well as any conclusions made from that data are
considered highly sensitive proprietary information. Consequently, we were
forced to omit or change many details in the description of the target data and
the obtained results. As indicated in sub-section 0 above, fuzzification of
continuous attributes has helped us to “hide” the proprietary information from
the unauthorized (though, probably, curious) reader. As part of the
“information clouding” effort, we also refrain here from mentioning the name
of the company that has provided the data.

Data Description

The company has provided us with the data on the manufacturing batches that
completed their production in the beginning of 1998. The data was derived



- 14 -

from the company database in the form of a single table (“view” in the
database terminology), which is shown schematically in Figure 2 below.

Record_ID |Batch71D | Spec ID |Priority | Oper_ID |Date7Fin | Qty Trans | Qty Scrap

Figure 2 The Original Data Table

The obtained table includes about 110,000 records. A short explanation
about each attribute in the table and its relationships with other attributes is
given below.

e Record ID. This is the primary key attribute of the table, which
uniquely identifies a specific manufacturing operation applied to a
given batch.

e Batch ID. This is the identification number of each manufacturing
batch.

e Spec ID. This is a specification (part) number of a batch No.
Batch_ID. It specifies the manufacturing parameters of the batch,
like current, voltage, frequency, chip size, etc.

e Priority. This is the priority rank of a batch, assigned by the
marketing department.

o Oper ID. The ID number of a specific operation applied to the batch
No. Batch ID. To preserve the confidentiality of the data, we have
converted the actual operation codes into meaningless serial numbers.

o Date Fin. The date when the operation Oper ID was completed.
After completion of an operation, the batch is transferred to the next
fabrication step on its routing list.

o Oty Trans. The quantity of good chips transferred to the next step. If
a batch consists of wafers (before they are cut into individual chips),
the number of good chips is calculated automatically from the number
of wafers.

o Oty Scrap. This is the number of chips scraped at the operation
Oper ID. Tt is equal to the difference between the number of chips
transferred from the previous operation and the number of chips
transferred to the next step. If an entire wafer is scraped, the number
of scraped chips is calculated automatically by the maximum number
of good chips, which can be obtained from a wafer.

By directly applying a data mining algorithm to the above records, one
can easily obtain some basic statistical results like the distribution of the
number of scraped chips at each operation as a function of the Spec _ID. This
type of analysis is performed routinely by process and quality engineers.
However, much more important and less obvious information may be hidden
between the records. To discover those “nuggets” of knowledge, some pre-



-15 -

processing of data is required. The process of data preparation is described in
the next sub-section.

Data Preparation

The original dataset included batches from a variety of microelectronic
products, each having a different set of functional parameters and requiring a
different sequence of operations (“routing”). Rather than trying to build a
single data mining model from all the records, we have decided to focus our
analysis on a group of 1,635 batches related to a single product family. The
batches of this family have three main parameters (chip size, capacitance, and
tolerance) and their manufacturing process requires about 50 operations. The
selected batches were represented by 58,076 records in the original dataset.

As indicated by (Pyle, 1999), the process of data preparation strongly
depends on the specific objectives of knowledge discovery. Here, we are
interested to predict the following two parameters: the yield and the flow time
of each manufacturing batch. The process of preparing the selected dataset
for the data mining included the following steps:

o Data normalization. The original data table does not comply with the
third normal form of relational tables (see Korth and Silberschatz, 1991),
since the attributes Spec ID and Priority are fully functionally dependent
on the attribute Batch ID, which is a non-key attribute. Consequently, we
have moved Spec ID and Priority from the original table (which was
named Batch Flow) to a new table Batches, where Batch ID was defined
as the primary key attribute.

o Calculating batch parameters. The product parameters (chip size,
capacitance, and tolerance) were extracted from the attribute Spec_ID by
using the available metadata on the attribute’s encoding schema and
stored in the Batches table. Chip size (Size) and tolerance (I' Code) are
nominal attributes, which take a limited number of values, while
capacitance is a continuous attribute. In our presentation or results (see
below), we have replaced the actual size and tolerance codes with
meaningless letters and numbers.

o Calculating the yield. The line yield of each batch can be found from
dividing the value of the attribute Oty Trans in the last operation of the
batch manufacturing process by its value in the first operation. However,
the line yield is difficult to analyze, since during the first part of the
manufacturing process, the batches are transferred and scraped as wafers
rather than individual chips. Consequently, the overall line yield is a
combination of two yields: the so-called wafer yield and the pieces yield.
A loss in the pieces yield is more expensive than a loss in the wafer yield,
since it means that the defects are discovered in one of the final tests, after
the manufacturing costs have already been incurred. Our objective here is
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to predict the pieces yield (Yield P), which is calculated as the ratio
between Oty Trans in the last operation and its value immediately after
the wafers are cut (“died”) into chips. The attribute Yield P is stored in
the Batches table.

o Calculating the flow times. Another target attribute, the flow time of a
batch, was derived as the difference between the values of the attribute
Date_Fin in the last and the first operation.

o Discretization of target attributes. Since the information-theoretic
algorithm of sub-section 0 above cannot be applied directly to continuous
targets, the attributes Yield P and Flow Time were discretized into ten
intervals of approximately equal frequency.

o Storing completion dates. The completion dates of all the operations
applied to each batch were retrieved from the Batch Flow table and
stored in the Batches table. This required defining a new attribute for
each operation occurring at least once in the routings of the selected
batches. This step has created certain amount of redundancy in the
database, but it was necessary to eliminate the need of accessing the
relatively large Batch Flow table by the data mining algorithm. The
Batch_Flow table has about 58,000 records vs. 1,635 records only in the
Batches table.

Constructing the Info-Fuzzy Networks

The information-fuzzy networks related to the target attributes Yield P and
Flow Time were constructed by using the algorithm of sub-section 0 above.
To predict Yield P, the network construction algorithm was trained only on
the records of 1,378 batches, where the number of pieces immediately after
the wafers were cut into chips was reported into the system. In Table 2 below,
we show the four input attributes included in the network of Yield P. The
selected attributes are chip size, product capacitance, and the completion dates
of two operations (No. 32 and 38). The column “Mutual Information” shows
the cumulative association between a subset of input attributes, selected up to
a given iteration inclusively, and the target attribute. Since the mutual
information is defined as the difference between unconditional and
conditional entropy (Cover 1991), it is bounded by the unconditional entropy
of Yield P, which is 3.32 (log, 10). The estimated net increase in the mutual
information, due to adding each input attribute, is presented in the column
“Conditional MI”. The last column “Conditional Entropy” shows the
difference between the unconditional entropy (3.32) and the estimated mutual
information.
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Table 2 Selected Attributes (Target: Yield P)

Attribute = Mutual Conditional Conditional
Iteration Name Information MI Entropy
0 Size 0.111 0.111 3.212
1 Date 32 0.237 0.126 3.086
2 Capacitance 0.286 0.05 3.036
3 Date 38 0.306 0.02 3.017

From the engineering point of view, it is not surprising that the product
parameters Size and Capacitance are related to the yield value. A more
interesting and potentially useful result is the selection of completion dates for
two operations (32 and 38) as additional factors that affect the yield. This
finding may be interpreted as an indication of process instability: batches that
went through these operations during certain periods of time had lower quality
than batches manufactured in other periods. The boundaries of each period
were determined automatically by the dynamic discretization procedure of the
algorithm. To find the real causes of yield excursion, the process engineers
should compare between the tool conditions in these operations during the
“good and the “bad” periods. Other time-dependent factors (e.g., staffing)
may be examined as well.

The attributes included in the network of Flow Time are shown in Table 3
below. The selected attributes represent the three main parameters of the
product in question: capacitance, chip size, and tolerance. This means that
different products experience different kinds of delays in the production line.
Some of these delays are probably caused by product-specific manufacturing
problems, which may be revealed from the routing documentation of the
relevant batches.

One attribute is conspicuous by its absence in Table 3. This attribute is
Priority, which represents the priority rank assigned to every batch in the
beginning of the manufacturing process. Surprisingly enough, the data
mining algorithm showed that the batch flow time is nor affected by its
priority. This strange result can be partially understood from a close look at
the data: about 95% of all batches in the dataset have the same priority rank,
which, of course, undermines the basic idea of prioritizing. Anyway, it
indicates a failure to impose a pre-defined schedule on the order of batch
production.
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Table 3 Selected Attributes (Target: Flow Time)

Attribute Mutual Conditional Conditional
Iteration Name Information MI Entropy
0 Capacitance  0.107 0.107 3.204
1 Size 0.266 0.159 3.045
2 T Code 0.354 0.088 2.958

Rule Extraction and Prediction
The Yield Network

The information-fuzzy network built for the Yield P target attribute has four
layers (corresponding to four input attributes), total of 23 hidden nodes, 16
terminal (unsplit) nodes, and ten target nodes representing the ten intervals of
the discretized target attribute. Thus, the network can have up to 16*10=160
connections between its 16 terminal nodes and the ten nodes of the target
layer. The actual number of connections having non-zero information-
theoretic weights is 125. Each connection represents an association rule of the
form

If Size = V [and Date 32 is between A and B],[and Capacitance is
between C and D ], [and Date 38 is between E and F], then Yield P is [not]
between G and H

where V represents a valid value from the domain of the corresponding
nominal attributes (Size) and 4, ..., H stand for the boundaries of intervals in
discretized continuous attributes (Capacitance, Date *, and Yield P). The
rules having the highest positive and the smallest negative connection weights
are given below (confidential information was replaced by meaningless
letters).
¢ Rule No. 77: If Size is Z and Date_32 is between 02-Dec-97 and 10-Feb-

98, then Yield P is more than C (weight =0.0671).

e Rule No. 27: If Size is W and Date_32 is between 02-Dec-97 and 10-Feb-

98, then Yield P is not more than C (weight =-0.0163).

The predictive accuracy of the above information-fuzzy network was
estimated by holding out one third of the data as a validation set. Thus, we
chose randomly 433 validation records and used the other 945 records for
constructing the network. The IFN classification accuracy (the probability of
identifying the correct interval out of ten) is 23.4% on the training set and
17.3% on the validation set. The 95% confidence interval for the validation
accuracy is between 13.8% and 20.9%. The low accuracy of the
information-fuzzy network results from the large number of target classes
(10) and the inherent noisiness of the manufacturing data. Still, it appears to
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be higher than the validation accuracy of the C4.5 algorithm (15.9% only),
which was applied to the same data, though the difference between the
accuracy of the two algorithms is not statistically significant. At the same
time the classification model produced by C4.5 is much more complex than
the IFN model: after pruning, the C4.5 tree includes 399 nodes vs. only 23
nodes in IFN. C4.5 uses 37 attributes for prediction, while IFN is satisfied
with four input attributes only. Default settings were used for both C4.5 (see
Quinlan, 1993) and IFN (see Maimon and Last, 2000).

The Flow Time Network

The information-fuzzy network of the Flow Time target attribute consists of
three layers (corresponding to three input attributes), total of 37 hidden nodes
(including 28 terminal nodes), and ten target nodes representing the ten
intervals of the discretized target attribute. The network can have up to
28%10=280 connections between its 28 terminal nodes and the ten nodes of
the target layer, but the actual number of connections having non-zero
information-theoretic weights is only 191. Each connection represents an
association rule of the form

If Capacitance is between A and B [and Size is Vi], [and T Code is V,]
then Flow Time is [not] between C and D

where V; represents a valid value from the domain of the corresponding
nominal attributes (Size or T Code) and 4, ..., D stand for the boundaries of
intervals in discretized continuous attributes (Capacitance, and Flow Time).
The rules having the highest positive and the smallest negative connection
weights are given below (confidential information was replaced by
meaningless letters).

o Rule No. 135: If Capacitance is between A and B and Size is W and

T Code is 2 then Flow_Time is between C and D (weight = 0.0282).

o Rule No. 25: If Capacitance is between A and B and Size is V then

Flow_Time is not between E and F (weight = -0.0057).

The predictive accuracy of the above information-fuzzy network was
estimated by holding out one third of the data as a validation set. Thus, we
chose randomly 533 validation records and used the other 1,102 records for
constructing the network. The IFN classification accuracy (the probability of
identifying the correct interval out of ten) is 23.9% on the training set and
18.6% on the validation set. The 95% confidence interval for the validation
accuracy is between 15.3% and 21.9%. The low validation accuracy of the
information-fuzzy network results again from the inherent noisiness of the
manufacturing data. It is lower than the validation accuracy of the C4.5
algorithm (22%), which was applied to the same data, though the difference
between the accuracy of the two algorithms is statistically significant at the
5% level only (not at the 1% level). Like in the previous case, the
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classification model produced by C4.5 is much more complex than the IFN
model: after pruning, the C4.5 tree includes 168 nodes vs. 37 nodes only in
IFN. C4.5 uses four attributes for prediction, while IFN is satisfied with three
input attributes only.

Rule Fuzzification and Reduction
The Yield Rules

The “crisp” rules extracted from the information-fuzzy network that was
described in sub-section 0 above cannot be presented here in their explicit
form due to confidentiality of the information they contain. However, their
explicit presentation to the users (process engineers) could be hardly useful
either, since it is very difficult to generalize and interpret manually a set of
more than 100 numeric rules. To make the rule set more compact,
interpretable, and less explicit, we have fuzzified two numeric attributes
included in the extracted rules: Capacitance and Yield P. The following terms
(words in natural language) were chosen by us for each fuzzified attribute:

e Capacitance: low, high.

e Yield P:low, normal, high.

To convert the above attributes into linguistic variables, we have defined
triangular membership functions associated with each term by using the
frequency histograms of attribute values. Triangular functions are frequently
used in the design of fuzzy systems (Wang 1997). The membership functions
are shown in Figures 3 and 4 below without the values of the X-axis, to
protect the confidentiality of the original data.



-21 -

Capacitance

0.8
06 —low
04 o high
0.2 4

0

Figure 3 Membership Functions of Capacitance
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Figure 4 Membership Functions of Yield P

Fuzzification of the “crisp” rules having the highest and the lowest
connection weights (see sub-section 0 above), results in the following
linguistic rules:
¢ Rule No. 77: If Size is Z and Date_32 is between 02-Dec-97 and 10-Feb-

98, then Yield P is normal (grade = 0.0387).

e Rule No. 27: If Size is W and Date_32 is between 02-Dec-97 and 10-Feb-

98, then Yield P is not normal (grade = - 0.0094).

In Table 4 below, we present the consistent set of fuzzy rules, extracted
from the set of fuzzified rules by using the conflict resolution procedure of
sub-section 0 above. The last column represents the number of original rules
(crisp / fuzzified), associated with a given fuzzy rule. As one can see, the size
of the fuzzy rule base has been significantly reduced from 125 original rules
to 16 rules only (a decrease of almost 90%).
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All the rules in shown in Table 4 are conjunctions of fuzzy and “crisp”
conditions. However, some rules, like rules No. 2, 3, and 4, can be merged
into a disjunction, since they have the same consequent (Yield is normal).
The formal algorithm for merging fuzzy rules was described in sub-section 0
above. The resulting set of nine merged fuzzy rules is shown in Table 5
below.

The users (process engineers) would be particularly interested in the rules
describing problematic situations, i.e., rules predicting the yield to be low.
Thus, Rule 1 indicates that batches of size W, which passed the operation 32
before December 2, 1997, tend to have a low yield. This means that the
engineers should look carefully both at the routing records of all batches that
meet these criteria and at the condition of tools and machines used by
operation 32 before the above date. Rules 6 and 7 intensify the suspicion that
something went wrong with the equipment of operation 32 before Dec. 2,
1997, since two other groups of batches processed at the same time had yield
problems. These groups include batches of size X, which have either high or
low capacitance, given that the low capacitance batches were processed at
operation 38 after Dec. 22, 1997. The inspection of the tool conditions and
routing records related to the problematic period at operation 32 may lead to
changes in maintenance guidelines, process control limits, and other working
procedures.
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Table 4 Yield: The Set of Consistent Fuzzy Rules

Rule Number  of

No Rule Text Grade Crisp Rules

0 If Size is Y then Yield P is normal 0.0084 7
If Size is W and Date 32 is between 21-Dec-95 and 02-

1 Dec-97 then Yield P is low 0.0237 10
If Size is W and Date 32 is between 02-Dec-97 and 10-

2 Feb-98 then Yield P is normal 0.0097 10
If Size is W and Date 32 is between 10-Feb-98 and 12-

3 Mar-98 then Yield P is normal 0.021 10
If Size is W and Date 32 is after 12-Mar-98 then Yield P

4 is normal 0.0087 10
If Size is X and Date 32 is between 10-Feb-98 and 12-

5 Mar-98 then Yield P is normal 0.0324 9
If Size is X and Date 32 is after 12-Mar-98 then Yield P

6 is normal 0.0096 10
If Size is Z and Date 32 is between 21-Dec-95 and 02-

7 Dec-97 then Yield P is normal 0.0051 4
If Size is Z and Date 32 is between 02-Dec-97 and 10-

8 Feb-98 then Yield P is normal 0.0338 7
If Size is Z and Date 32 is between 10-Feb-98 and 12-

9 Mar-98 then Yield P is normal 0.0073 5
If Size is Z and Date 32 is after 12-Mar-98 then Yield P

10 is normal 0.001 2
If Size is X and Date 32 is between 21-Dec-95 and 02-

11 Dec-97 and Capacitance is high then Yield P is low 0.0065 7
If Size is X and Date 32 is between 02-Dec-97 and 10-

12 Feb-98 and Capacitance is low then Yield P is normal 0.0185 10
If Size is X and Date 32 is between 02-Dec-97 and 10-

13 Feb-98 and Capacitance is high then Yield P isnormal  0.0036 9
If Size is X and Date 32 is between 21-Dec-95 and 02-
Dec-97 and Capacitance is low and Date 38 is between

14 18-Aug-97 and 22-Dec-97 then Yield P is low 0.0094 10
If Size is X and Date 32 is between 21-Dec-95 and 02-
Dec-97 and Capacitance is low and Date 38 is after 22-

15 Dec-97 then Yield P is normal 0.0055 5
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Table 5 Yield: The Set of Merged Fuzzy Rules

Rule No Rule Text Target Grade
0 If Size is Y then Yield P is normal 0.0084
If Size is W and Date 32 is between 21-Dec-95 and 02-Dec-
1 97 then Yield P is low 0.0237
2 If Size is W and Date 32 is after 02-Dec-97 then Yield P is normal 0.0097
3 If Size is X and Date 32 is after 10-Feb-98 then Yield Pis normal 0.021
4 If Size is Z and Date 32 is after 21-Dec-95 then Yield Pis normal 0.0087
If Size is X and Date 32 is between 02-Dec-97 and 10-Feb-
5 98 then Yield Pis normal 0.0096
If Size is X and Date_32 is between 21-Dec-95 and 02-Dec-
6 97 and Capacitance is high then Yield P is low 0.0324
If Size is X and Date 32 is between 21-Dec-95 and 02-Dec-
97 and Capacitance is low and Date 38 is between 18-Aug-
7 97 and 22-Dec-97 then Yield P is low 0.0051
If Size is X and Date 32 is between 21-Dec-95 and 02-Dec-
97 and Capacitance is low and Date 38 is after 22-Dec-97
8 then Yield P is normal 0.0338
The Flow Time Rules

In addition to fuzzifying the attribute Capacitance (see sub-section 0 above),
we have defined the following terms for the attribute Flow Time (to avoid
disclosing its real values): short, medium, and long. The triangular functions
for these terms are shown in Figure 5 below.
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Figure 5 Membership Functions of Flow Time

Fuzzification of the “crisp” rules having the highest and the lowest
connection weights (see sub-section 0 above), results in the following
linguistic rules:
¢ Rule No. 135: If Capacitance is low and Size is W and T_Code is 2 then

Flow_Time is medium (grade = 0.0129).

e Rule No. 25: If Capacitance is low and Size is V then Flow_Time is not

long (weight = -0.0057).

In Table 6 below, we present the consistent set of fuzzy rules, extracted
from the set of fuzzified rules by using the conflict resolution procedure of
sub-section 0 above. The last column represents the number of original rules
(crisp / fuzzified), associated with a given fuzzy rule. As one can see, the size
of the fuzzy rule base has been significantly reduced from 191 original rules
to 12 rules only (a decrease of more than 90%).

The seven rules merged by the procedure of sub-section 0 above are
shown in Table 7 below. It appears from the table that the company has more
delays in the low capacitance batches than in the high capacitance ones.
Special problems with flow times were experienced for sizes V and Y (see
Rule 1) and for tolerance 1 of size W (see Rule 5). The engineers should
study the routing records of the relevant products to find out, what were the
leading delay factors of the batches in question.
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Table 6 Flow Time: the Set of Consistent Fuzzy Rules

Number

Rule of Crisp
No Rule Text Grade Rules
0 If Capacitance is high then Flow_Time is short 0.0082 16
1 If Capacitance is low and Size is V then Flow_Time is long 0.0176 25
2 If Capacitance is low and Size is X then Flow _Time is short 0.0056 18
3 If Capacitance is low and Size is Y then Flow_Time is long 0.0019 10
4 If Capacitance is low and Size is Z then Flow_Time is medium 0.0056 20
5 If Capacitance is low and Size is W then Flow_Time is medium 0.0149 20

If Capacitance is low and Size is W and T Code is O then
6 Flow_Time is medium 0.0075 10

If Capacitance is low and Size is W and T Code is 1 then
7 Flow_Time is long 0.009 14

If Capacitance is low and Size is W and T Code is 2 then
8 Flow_Time is medium 0.019 15

If Capacitance is low and Size is X and T Code is 0 then
9 Flow_Time is medium 0.0011 13

If Capacitance is low and Size is X and T Code is 1 then
10 Flow_Time is medium 0.0053 11

If Capacitance is low and Size is X and T Code is 2 then
11 Flow Time is medium 0.004 19
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Table 7 Flow Time: The Set of Merged Fuzzy Rules

Rule

No Rule Text Target Grade

0 If Capacitance is high then Flow_Time is short 0.0082

1 If Capacitance is low and Size is V or Y then Flow_Time is long 0.0176

2 If Capacitance is low and Size is X then Flow_Time is short 0.0056

3 If Capacitance is low and Size is Z or W then Flow_Time is medium  0.0019
If Capacitance is low and Size is W and T _Code is 0 or 2 then

4 Flow Time is medium  0.0056
If Capacitance is low and Size is W and T Code is 1 then

5 Flow Time is long 0.0149
If Capacitance is low and Size is X and T Code is Oor 1 or 2

6 then Flow Time is medium  0.0075

CONCLUSIONS

In this chapter, we have presented a systematic approach to mining the
process and quality data in semiconductor industry. The construction of the
data mining model is based on the Information-Fuzzy Network (IFN)
methodology introduced in (Maimon and Last, 2000). Post-processing of the
IFN output follows the Computational Theory of Perception (CTP) approach
and it includes information-theoretic fuzzification of numeric association
rules, removal of conflicting rules and merging of consistent rules. As
demonstrated by the case study of an actual semiconductor database, the
method results in a compact and reasonably accurate prediction model, which
can be transferred into a small set of interpretable rules. The fuzzification of
the rules can also be used for hiding confidential information from external
users.

The sound theoretical basis of the information-fuzzy approach and the
promising results obtained so far encourage us to further develop this
methodology in several directions. These include mining very large and non-
stationary datasets, using IFN as a feature selector in the knowledge discovery
process, and combining multiple IFN models (see chapter by Maimon and
Rokach in this volume).

ACKNOWLEDGMENTS

This work was partially supported by the USF Center for Software Testing under grant no.
2108-004-00.



-8 -
REFERENCES

Agrawal, R., Mehta, M., Shafer, J., and Srikant, R., “The Quest Data Mining System,” in
Proceedings of KDD-96, pp. 244-249, 1996.

Attneave, F., Applications of Information Theory to Psychology, Holt, Rinchart, and Winston,
1959.

Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, P.J., Classification and Regression Trees,
Wadsworth, 1984.

Cover, T. M., Elements of Information Theory, Wiley, 1991.

Fayyad, U. and Irani, K., “Multi-Interval Discretization of Continuous-Valued Attributes for
Classification Learning,” in Proceedings of the 13th International Joint Conference on Artificial
Intelligence, pp. 1022-1027, 1993.

Korth, H.F. and Silberschatz, A., Database System Concepts, McGraw-Hill, Inc., 1991.

Last, M. and Kandel, A., “Fuzzification and Reduction of Information-Theoretic Rule Sets,” in
Data Mining and Computational Intelligence, pp. 63-93, Physica-Verlag, 2001.

Last, M., Klein, Y., and Kandel, A., “Knowledge Discovery in Time Series Databases,” IEEE
Transactions on Systems, Man, and Cybernetics, 31 (1), 160-169, 2001.

Maimon, O. and Last, M., Knowledge Discovery and Data Mining, The Info-Fuzzy Network
(TFN) Methodology, Boston: Kluwer Academic Publishers, 2000.

Mitchell, T.M., Machine Learning, McGraw-Hill, 1997.
Pyle, D., Data Preparation for Data Mining, Morgan Kaufmann, 1999.
Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.

Rao, C.R. and Toutenburg, H., Linear Models: Least Squares and Alternatives, Springer-
Verlag, 1995.

Shenoi, S., “Multilevel Database Security Using Information Clouding,” in Proceedings of
IEEE International Conference on Fuzzy Systems, pp. 483-488. 1993.

Tobin, K. W., Karnowski, T.P., and Lakhani, F., “A Survey of Semiconductor Data
Management Systems Technology,” in Proceedings of SPIE’s 25" Annual International

Symposium on Microlithography, Santa Clara, CA, February 2000.

Wang, L.-X. and Mendel, J.M., “Generating Fuzzy Rules by Learning from Examples,” IEEE
Transactions on Systems, Man, and Cybernetics, 22 (6), 1414-1427, 1992.

Wang, L.-X., A Course in Fuzzy Systems and Control, Prentice-Hall, 1997.



-29 -

Zadeh, L. A., “A New Direction in System Analysis: From Computation with Measurements to
Computation with Perceptions,” in New Directions in Rough Sets, Data Mining, and Granular-
Soft Computing, pp. 10-11, Springer-Verlag, 1999.



