
 

A Feature-Based Serial Approach to Classifier Combination 

A Feature-Based Serial Approach to Classifier Combination  
 

Mark Last1  

Department of Information Systems Engineering, Ben-Gurion University of the Negev, Beer-
Sheva 84105, ISRAEL 

 mlast@bgumail.bgu.ac.il 

Horst Bunke 

Institut fur Informatik and angewandte Mathematik, University of Bern, Neubrückstrasse 10, 
CH-3012, Bern, Switzerland 

bunke@iam.unibe.ch 

Abraham Kandel 

Department of Computer Science and Engineering, University of South Florida, 4202 E. Fowler 
Avenue, ENB 118, Tampa, FL  33620 USA 

kandel@csee.usf.edu 

                                                 

1 Corresponding author 



Last, Bunke, Kandel 

A Feature-Based Serial Approach to Classifier Combination 2

A Feature-Based Serial Approach to Classifier Combination  

 

Abstract 

A new approach to serial multi-stage combination of classifiers is proposed.  Each classifier in the 

sequence uses a smaller subset of features than the subsequent classifier.  The classification 

provided by a classifier is rejected only if its decision is below a pre-defined confidence level. The 

approach is tested on a two-stage combination of k-Nearest Neighbor classifiers. The features to be 

used by the first classifier in the combination are selected by two stand-alone algorithms (Relief 

and Info-Fuzzy Network, or IFN) and a hybrid method, called “IFN + Relief.”  The feature-based 

approach is shown empirically to provide a substantial decrease in the computational complexity, 

while maintaining the accuracy level of a single-stage classifier or even improving it. 

 

Keywords: classifier combination, sequential combination, feature selection, nearest neighbor 

classifier, decision-tree classifier, Info-Fuzzy Network (IFN) 

Originality and Contribution 

The main motivation behind existing methods of classifier combination is improvement of 

classification accuracy.  In this paper we are concerned with a different problem, which is 

improvement of computational efficiency.  Reducing computational effort is extremely important in 

data-intensive applications of pattern recognition such as clickstream analysis on the web. The 

classification rate of “lazy” learning methods, like k-NN Classifier, is especially sensitive to the 

dimensionality of the training set.  The computational complexity of a k-NN Classifier depends on 

two main factors: the number of distance computations (proportional to the number of training 

examples considered for finding the nearest neighbor of a new instance) and the effort associated 

with calculating a distance to each training example (proportional to the number of features). 

Several algorithms have been suggested to reduce the number of distance computations.  To the 

best of our knowledge, this work presents the first attempt to reduce the computational complexity 
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of each distance calculation by decreasing the number of features used in the process.  Our 

approach is motivated by the observation that in many applications the majority of classified 

instances are 'well-behaved'. This means they can be classified using a relatively small portion of 

available features, while just for a few 'hard' cases a more sophisticated classifier requiring more 

features is needed.  Consequently, we are introducing here a novel, feature-based approach to serial 

combination of two k-NN classifiers.  To the best of our knowledge, no serial combination of k-NN 

classifiers (feature-based or other) has even been proposed. 

The features sufficient for classifying “well-behaved” instances can be identified by automated 

methods of feature selection such as IFN (Info-Fuzzy Network) and Relief.  We also present here a 

novel feature selection method, termed “IFN + Relief.” In this method, the number of the selected 

features is determined by IFN, while the selection of features is based on the relevance level 

calculated by Relief.   

To sum-up, this work is original in at least the following aspects: it uses a feature-based approach 

to reducing the computational burden of an instance-based classifier; it proposes a serial 

combination of two k-NN classifiers; and it presents a new feature selection method (“IFN + 

Relief”).  Evaluation results demonstrate the broad practical implications of the proposed 

methodology. 

  

1 Introduction 

Classifier combination has become a very active area of research  [21]. The driving force behind 

these activities is the expectation that classification errors can be corrected if an ensemble of 

classifiers rather than a single classifier is used for a given task. It has been proved, in fact, that for 

the case of independent classifiers the error rate of the overall system monotonically decreases as 

more classifiers are added to a system, provided each individual classifier has an error rate that is 

better than random guessing  [13]  [30]. Hence, in theory, a combination of weak classifiers can 

achieve any desired degree of classification accuracy.  

A number of different architectures for classifier combination have been proposed. The one that is 

most frequently used is a parallel combination. Here a number of classifiers C1,...,Cn individually 

make a decision about the class of an unknown input pattern. All these decisions are fed into a 
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combiner. The combination rules employed by the combiner include functions such as product, 

sum, mean, median, maximum and minimum of a posteriori probabilities and related quantities 

 [20]. More sophisticated approaches use trainable classifiers as combiners  [7]. If each classifier 

does not return any a posteriori probabilities, but just a single class, or the n best ranked classes, 

combination strategies based on voting or Borda count are commonly used  [22].   

Rather than combining the outputs of multiple classifiers, the Dynamic Classifier Selection (DCS) 

approach (see  [11] [12]) suggests to select the best single classifier for each test pattern.  A common 

objective function for the dynamic selection of a classifier is the so-called Classifier Local 

Accuracy (CLA), which can be estimated in a local region of the feature space  [11].  The underlying 

assumption of the DCS approach is that given a test pattern, there is at least one classifier that can 

classify it correctly. 

Another architecture that can be employed for classifier combination is hierarchical concatenation. 

This approach is particularly useful if many pattern classes are to be distinguished (e.g., in the 

recognition of Chinese characters). Here classification is achieved by routing an unknown pattern 

through a chain of classifiers where each classifier reduces the number of feasible classes. Decision 

tree classifiers are a special case of this architecture. They correspond to the case where each 

classifier in the hierarchical chain uses only a single feature of the input pattern or a pre-defined 

function of selected features (see  [4]  [14]  [28]). 

Serial combination is an alternative strategy for combining decisions of multiple classifiers  [29].  

The principal feature of this strategy is that the individual classifiers are applied sequentially. 

Hence, at each stage (layer) there is only one classifier classifying the patterns.  There are two basic 

approaches to the serial combination of classifiers: class set reduction approach and reevaluation 

approach.  Under the first approach, the number of possible classes is reduced continuously, while 

the second approach requires reevaluation of the patterns, which are rejected at the preceding stage.  

The decision of a classifier in a serial combination is rejected if its confidence level falls below a 

pre-defined threshold. Usually, the initial layers represent coarser decisions than the final layer. As 

indicated by  [29], the overall classification performance of such a system can exceed the 

performance of any of its individual layers only if classifiers appearing at the different layers use 

different feature spaces and different discriminant functions. 
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The main motivation behind parallel and serial combination architectures is improvement of 

classification accuracy. In this paper we are concerned with a different issue, namely, improvement 

of computational efficiency through classifier combination. We use a serial classifier combination 

scheme that follows the reevaluation approach (see  [29] and Chapter 11 of  [31]). Our system is 

motivated by the observation that in many applications the majority of the patterns to be classified 

are 'well-behaved'. This means they can be classified using a relatively small portion of available 

features, while just for a few 'hard' cases a more sophisticated classifier requiring more features is 

needed. But if the sophisticated classifier is applied to all patterns, including the easy ones, more 

resources than necessary are spent. The feature-based approach to classifier combination is based 

on a common observation that the classification accuracy of most classifiers is a non-decreasing 

function of the number of input features (see  [24]). 

The architecture of our system is shown in Figure 1. There is a sequential chain of classifiers C1,..., 

Cn of growing complexity, i.e., classifier C1 is the simplest and Cn the most sophisticated in the 

ensemble. First, C1 is activated on an input pattern. Whenever classifier Ci-1 rejects the input, the 

next classifier in the chain, Ci, is called, 2 ≤  i  ≤  n.   

The architecture shown in Figure 1 allows many different implementations. In the approach 

proposed in this paper we consider only two stages, i.e., two different classifiers, C1 and C2. The 

first classifier uses just a subset of the available features. Whenever the decision reached by C1 is 

below a given level of confidence, C1 rejects the input and activates C2. For the purpose of 

simplicity, we assume that C2 is a classifier of the same type as C1, but uses the full set of available 

features. For most classifiers the computation time grows with the dimensionality of the feature 

space. Therefore, C1 will be faster than C2. If a sufficiently large portion of all patterns will be 

classified by C1, and not passed onto C2, substantial savings in computation time can be expected. 

Of course, variation of the confidence threshold in C1 allows trading computation time for 

classification accuracy.  

The architecture shown in Fig. 1 requires for each classifier Ci to select a subset of features Fi out 

of all available features F, such that F1⊆ Fi⊆ Fn = F. Many different approaches to feature selection 

have been proposed in the literature.  For an overview see, for example, Chapter 8 of  [33]. There 

are optimal and sub-optimal procedures for feature selection. Optimal methods are typically based 

on search procedures with heuristic pruning strategies. These procedures are prone to combinatorial 
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explosion and restricted to low-dimensional problems. Sub-optimal methods trade optimality for 

computational efficiency. The two basic strategies are top-down (also called sequential backward 

elimination) and bottom-up (also known as sequential forward selection). Under the first strategy, 

one starts with the full set of features and sequentially eliminates the weakest feature, while 

bottom-up methods first chooses the single best feature and iteratively add the best out of the 

remaining features. More advanced methods consider sets rather than single features at a time and 

combine forward and backward search with each other  [27]  [32]. 

A number of linear dimension reducers have been developed over years.  The linear methods of 

dimensionality reduction include projection pursuit  [10], factor analysis  [18], and principal 

components analysis  [8].  These methods are not aimed directly at eliminating irrelevant and 

redundant variables, but are rather concerned with transforming the observed variables into a small 

number of “projections”, or “dimensions”.  Thus, the linear methods cannot reduce directly the 

number of features used by a classifier as long as all the variables have non-zero weights in the 

linear combination, though the features with low weights are often ignored.   

In order to measure the quality of features, two basic procedures have been proposed in the 

literature. The first, which is known as feature filter  [16], evaluates a feature, or a set of features, 

based on some performance criterion. Examples of such performance criteria are divergence, 

Chernoff, Battacharrya, Patrick-Fisher, or Mahalanobis distance, which measure the separability of 

class distributions (see Chapter 8 in  [33]). The second procedure, called the wrapper model in  [16], 

directly uses a classifier to measure the quality of a set of features.  In this paper, we limit our 

discussion to the filter approach, which usually requires less computational effort than the wrapper 

model  [24], though a wrapper model based on a serial classifier system itself may be considered in 

the future. 

Kira and Rendell  [19] have suggested a feature filter algorithm, called Relief, which evaluates each 

feature by its ability to distinguish among instances that are near each other.  Their selection 

criterion, the feature relevance, is applicable to numeric and nominal features.  The threshold of 

relevancy is determined statistically by using Chebyshev’s inequality, which may be not sharp 

enough for making a clear distinction between relevant and non-relevant features.  Another 

shortcoming of the Relief algorithm is its inability to identify redundant features within the set of 
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relevant features.  Consequently, the set of features selected by Relief may be non-optimal for a 

given classifier.  Nevertheless, Relief was used in this work as one of the feature selection methods. 

In  [23], we have introduced a novel, information-theoretic method of feature selection, based on the 

information-theoretic fuzzy approach to knowledge discovery  [25].  The method integrates feature 

selection with a highly scalable data mining algorithm, leading to elimination of both irrelevant and 

redundant features.  The relevant features are clearly identified by including only a subset of 

available features in the resulting model, called Info-Fuzzy Network (IFN).  The efficiency of the 

information-theoretic method for feature selection has been demonstrated in  [23] on a single-stage 

decision-tree classifier (C4.5).  In this paper, the method is integrated, for the first time, with a k-

Nearest Neighbors Classifier and multiple classifier combination. 

The rest of our paper is organized as follows. In Section  2, we describe the feature selection 

algorithms used in this work.  A two-stage serial combination of k-Nearest Neighbor Classifiers is 

presented in Section  3.   Empirical evaluation of the system is carried out in Section  4 and a 

comparative study with similar approaches aimed at increasing classifier efficiency is presented in 

Section  5. Conclusions regarding possible extensions of our approach are drawn in Section  6.  

2 Feature Selection Algorithms 

As indicated in Section  1 above, the first classifier in our two-stage combination schema uses a 

subset of available features selected by a feature selection algorithm.  The necessary properties of 

such an algorithm include applicability to both discrete and continuous features and computational 

efficiency. As indicated above, only the filter model algorithms were considered.  Out of a large 

number of possible choices, we have adopted two existing algorithms, Relief  [19] and IFN  [23] [25] 

and developed a new hybrid algorithm called “IFN + Relief”.  The three algorithms are described in 

the next sub-sections. 

2.1 The Relief Algorithm 

The Relief algorithm, proposed by Kira and Rendell in  [19], selects features by their relevance to 

the target concept (function).  The basic idea of Relief is similar to the guiding principle of the k-

Nearest Neighbors algorithm: instances that are closer to a given instance are more likely to belong 

to the same class.  If a dimension (feature) is relevant, the closest instances of the same class are 
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expected to be closer to a given instance along that dimension than the closest instances of all the 

other classes.  Consequently, the relevance level of a given feature i is calculated in  [19] by: 

mmissnearxdiffhitnearxdiff ijijijij
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where m is the sample size (a randomly selected subset of the training set) and  diff (xij, near_hitij) 

is the difference between the value of the feature i in a randomly picked instance j and the value of 

the feature i in the nearest training example having the same class (near_hitij). Correspondingly, 

near_missij is defined as the value of i in the nearest training example having a different class.  For 

relevant features, the values of xij and near_hitij are expected to be very close, while the values of xij  

and near_missij are expected to be different.  If a feature is irrelevant, both differences are expected 

to have nearly the same distribution. 

Since Relief normalizes the values of diff to the [0, 1] range, the average relevance level of a 

relevant feature should be close to one, but it cannot be higher than one.  On the other hand, the 

relevance levels of irrelevant features should be close to zero, though, as indicated by  [19], they 

tend to take slightly negative values.  The threshold τ used to select or discard a given feature 

depends on the required significance level α and the sample size m. The maximum value of τ is 

computed as follows (based on Chebyshev’s inequality): 

m 
1
α

τ =  (2) 

According to  [19], the distinction between relevant and irrelevant features can also be determined 

by manual inspection, which requires running Relief in a “semi-automatic” mode.  We solve this 

problem by a novel method called “IFN + Relief” (see sub-section  2.3 below). 

If the sample size (the number of training instances used for the calculation of the relevance level) 

is kept constant, the run time of Relief is linear in the number of features and the total number of 

training instances  [19].  In a general case, one would like to use the entire training set for 

calculating the relevance levels, which makes the complexity of Relief quadratic in the number of 

instances. The complexity is increased because finding the nearest hit and the nearest miss requires 

calculating the distance between every two instances in the training set. 
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2.2 The Info-Fuzzy Network (IFN) Algorithm 

An Info-Fuzzy Network (IFN)  [25] is a classification model, which has a root node, a changeable 

number of hidden layers (one layer for each selected feature), and a target layer representing the 

possible classes. Each hidden layer consists of nodes representing different values of an input 

feature. The network differs from the structure of a standard decision tree (see  [4] [28]) in two 

aspects: it is restricted to the same feature at all nodes of the same hidden layer and it has 

interconnections between the terminal (leaf) nodes and the final nodes, which represent the classes 

under consideration. The connectionist nature of the model resembles the structure of a multi-layer 

neural network (see  [26]).  Consequently, we define this model as a network and not as a tree. 

An example of a two-layered network (based on two selected features) is shown in Figure 2. The 

first selected feature has three values, represented by nodes 1,2, and 3 in the first layer, but the 

network construction algorithm split only nodes 1 and 3.  The second layer has four nodes standing 

for the combinations of two values of the second selected feature with two split nodes of the first 

layer. The three classes to be distinguished are represented by three nodes in the target layer.  Also, 

there exist 15 connections, denoted by dashed lines, between the five terminal (unsplit) nodes and 

the three target nodes. 

The network construction procedure starts with a single-node network representing an empty set of 

selected features. In the original version of the information-theoretic algorithm  [25], a node in the 

network is split only if it provides a statistically significant decrease in the conditional entropy  [5], 

which measures the uncertainty of the target class Y, given the values of the features X1, …, Xn.  In 

this paper, we are using a less restrictive requirement that the conditional entropy should be greater 

than zero, since the statistical significance testing proved to be less favorable for the performance 

of the selected features in the k-Nearest Neighbor Classifier.   

A decrease in the conditional entropy of a random variable is termed conditional mutual 

information  [5]. The conditional mutual information (MI (Ai’ ; Ai / z)) of an original feature i’ and a 

target attribute i, given a node z is estimated by the following expression (based on  [5]): 
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where 
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• Mi and Mi’ denote the number of values of the target attribute i and the original 

feature i’ respectively.  The algorithm discretizes continuous features to a finite 

number of intervals by a dynamic discretization procedure, which is based on  [9].  

• P (Vi’j’/ z) is the estimated conditional (a posteriori) probability of a value j’ of the 

original feature i’, given the node z. 

• P (Vij/ z) is the estimated conditional (a posteriori) probability of a value j of the 

target attribute i, given the node z. 

• P (Vi’j’
ij/ z) is the estimated conditional (a posteriori) probability of a value j’ of the 

original feature i’ and a value j of the target attribute i, given the node z. 

• P (Vij; Vi’j’; z) is the estimated joint probability of a value j of the target attribute i , a 

value j’ of  the original feature i’, and the node z. 

The network is built by a greedy stepwise procedure: at each step, a new feature is selected to 

maximize the total decrease in the conditional entropy, as a result of splitting the nodes of the last 

layer. The nodes of a new hidden layer are defined for a Cartesian product of split nodes of the 

previous hidden layer and the values of the new selected feature.  If there is no feature decreasing 

the conditional entropy of the target attribute, the network construction stops.   

The information-theoretic method of feature selection is highly scalable.  It is shown in  [25] that, 

for discretely valued features, the run time of the network construction procedure is linear in the 

number of training examples and quadratic in the number of original features.  Moreover, it is 

reduced by a factor of p (2-p), where p is the proportion of features selected by the algorithm out of 

the total number of features. For continuous features, the algorithm uses a dynamic discretization 

procedure, which is quadratic-logarithmic in the number of training examples. Thus, in large 

discrete datasets, IFN is expected to run faster than Relief, which is quadratic in the number of 

examples and linear in the number of features.  However, with an increase in the number of 

continuous features, Relief should become the faster algorithm. The actual run times of the 

algorithms on datasets of variable size and feature type are compared in sub-section  4.4 below. 
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2.3 IFN + Relief 

As mentioned in sub-section  2.1 above, the Relief algorithm does not provide a clear threshold for 

distinguishing between relevant and irrelevant features.  Consequently, Relief cannot be used in a 

fully automatic mode.  On the other hand, the output of the IFN algorithm specifies a “crisp” 

number of selected features.  Thus we apply here a novel feature selection method, which we call 

“IFN + Relief.” According to the new method, the number of the selected features is determined by 

IFN, while the selection of features is based on the relevance level calculated by Relief.  As shown 

empirically in Section  4 below, the performance of IFN + Relief is significantly better than the 

performance of the stand-alone Relief method.  It is also comparable with the performance of  the 

stand-alone IFN. 

3 Two-Stage Combination of k-Nearest Neighbor 
Classifiers 

In this section, we summarize the properties of a single-stage k-Nearest Neighbor (k-NN) Classifier 

and describe the implementation and the main settings of the two-stage classifier, based on the k-

NN algorithm.  We also suggest a new measure for the computational complexity of a multi-stage 

classification process. 

3.1 K-Nearest Neighbor Algorithm 

The k-Nearest Neighbor (k-NN) Classifier is a “lazy” learning algorithm: rather than estimating the 

target function for the entire instance space, it estimates it locally for each new instance to be 

classified  [26].  Thus, the k-NN Classifier is characterized by a negligible training cost vs. a 

relatively high cost of classifying every new instance.  Once all the training examples have been 

stored in the computer memory, the process of instance classification includes the following three 

steps: 

1) Calculate the distance between the new instance and every example in the training 

set by using a standard Euclidean measure or any other distance measure available. 

2) Find the k training examples, which are the nearest neighbors of the instance to be 

classified.  The number of nearest neighbors k is a user-defined parameter. 
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3) Classify the instance by the most common class in the set of k training examples.  If 

k is equal to one, the predicted class of a new example will be identical to the class 

of its nearest neighbor.   

The reasoning behind the algorithm is straightforward: since most target functions are likely to 

change gradually rather than abruptly in the feature space, the nearest (most similar) examples 

should have the same label as the new instance.  The main disadvantage of the k-NN approach is 

the high computational cost of computing the distance between the input and the training patterns, 

based on the values of all available features. Moreover, if the target concept depends on only few 

of the many available features, the distance between similar instances may be quite large, causing a 

decrease in the classification performance of the algorithm  [26]. 

3.2 Two-Stage Classifier 

In this paper, we propose a two-stage k-NN Classifier, which is implemented as follows (see Figure 

1 below).  The input to the system includes the training set and the subset of features selected by a 

feature selection algorithm.  The first classifier C1 attempts to classify a new instance by using the 

selected features only.  The number of the nearest neighbors in the majority class is then compared 

to a user-defined threshold, which represents a minimum percentage of the total number of nearest 

neighbors (k).  If the percentage of examples in the majority class is greater than the threshold, the 

system outputs the classification made by C1.  Otherwise (if the majority is less than or equal to the 

threshold), the second, more expensive, classifier C2 is applied by using the full set of the available 

features.  In the second case, the system outputs the classification made by C2. 

The system implementation involves the choice of the following parameters: 

• Number of nearest neighbors (k). This parameter has to be chosen for any k-NN 

algorithm.  While k can significantly affect the classification performance for a 

given dataset, its impact on the computational complexity of the k-NN Classifier is 

relatively small, since the bottleneck of the algorithm is calculating the distances 

between the input and all training examples rather than choosing a subset of the 

nearest examples.  To simplify the choice of other parameters for our experiments 

(see below), we have set the number of nearest neighbors to the constant value of 
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10.  This number seems large enough to study the effect of the majority threshold on 

the system performance. 

• Performance measure. The traditional criterion of maximum classification accuracy 

would usually cause us to prefer a single-stage classifier, disregarding its 

computational cost.  However, we are interested to reduce the computational 

complexity of the classification process without a significant decrease in the 

resulting accuracy.  A new measure of computational complexity, called 

“complexity ratio”, is suggested in the next sub-section. The trade-off between 

accuracy and complexity is analyzed in Section  4 by using Receiver-Operating 

Curves (ROC). 

• Feature selection algorithm.  We need an algorithm, which can identify the most 

relevant features that provide nearly the same classification performance as the full 

set of features.  The number of selected features should be minimal, since smaller 

subsets of selected features improve the efficiency of the first classifier (C1).  In 

addition to the two existing feature selection algorithms (Relief and IFN), we have 

introduced here a novel combination of these algorithms called “IFN + Relief.”  All 

three algorithms are described in Section  2 above. 

• Majority threshold.  This is the highest percentage of the training instances 

belonging to the most common class, which makes C1 to reject its result. If the value 

of the threshold is less than 1/m, where m is the number of classes, C2 will never be 

activated, since the majority percentage cannot be less than 1/m.  On the other hand, 

the threshold of 1.0 will always cause the result of C1 to be rejected.   As the 

threshold gets higher, we expect the run time of the system to increase, since more 

and more instances are classified by the second classifier (C2).  At the same time, the 

classification performance of the system is expected to improve and to get closer to 

the accuracy of C2. 

3.3 Evaluating Computational Complexity  

The computational complexity of a multi-stage classifier on a given dataset can be evaluated 

directly by its actual run time.  However, the run time is not a reliable performance measure, since 
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it depends on several factors, including the computational power of a specific CPU, the size of 

computer memory, and the amount of available resources on a given computer.  In the case of an n-

stage k-NN Classifier, a more objective measure of the required computational effort is the total 

number of feature-values, TFV, accessed for classifying X instances, which is given by the 

following formula: 

∑
=

=
n

i
iin xmTFV

1
 (4) 

where n is the total number of classifiers, mi is the number of features (out of M) used by classifier i 

(∀i: 0 ≤ mi ≤ mi+1 ≤  M),  and xi is the number of instances classified by classifier i (Σxi =  X) .   

The number of feature-values accessed by a single-stage k-NN Classifier is TFV1 = M*X.  

Consequently, the number of feature-values used by different classifiers can be normalized by 

calculating the Complexity Ratio Rc as follows: 

Rc = TFVn  / TFV1  = 
XM

xm
n

i
ii

∗

∑
=1  (5) 

4 Experimental Evaluation of the System 

To evaluate the performance of the proposed system, we have applied the two-stage k-NN 

Classifier to seven benchmark datasets, available from the UCI Machine Learning Repository  [3].  

According to  [3], all these datasets are based on real-world data. The datasets chosen for the system 

evaluation vary both in feature type (purely discrete, purely continuous and mixed) and in 

dimensionality of the data.  The datasets include between eight and 1,024 available features, while 

the number of instances varies from 178 to 3,196.  The maximum number of classes is ten. 

Approximately two thirds of each set have been chosen randomly as a training set, while the 

remaining instances were held out for testing the classifier. The characteristics of the datasets are 

summarized in Table 1. 

4.1 Overview 

The experiments with the system included the following issues: 
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• Classification performance of selected features. Only the training instances of each 

dataset were used in the feature selection process.  The three feature selection 

methods (Relief, IFN, and IFN + Relief) were evaluated by comparing the 

classification accuracy of C1 on the testing sets of instances.  At this stage, no 

majority threshold was applied, to eliminate the activation of the second classifier 

(C2) for any instance. The accuracy of the full feature set classifier C2 on the same 

testing set was used as a reference. 

• Classification accuracy vs. computational complexity. A given set of selected 

features can be used by the two-stage classifier with different values of the majority 

threshold, which varies between 1/m, where m is the number of classes and 1.0. In 

each dataset, we used two types of charts to represent graphically the trade-off 

between accuracy and complexity.  The first chart was the Receiver-Operating 

Curve (ROC), which showed complexity vs. accuracy for the sets of features 

selected by each method.  The ROC charts were used to identify the best feature 

selection method for each dataset.  For the best method, we built another chart 

showing complexity and accuracy as a function of the majority threshold.   

• Computation times.  The ultimate goal of the two-stage classifier is to reduce 

classification time without a significant loss of the classification accuracy.  Thus, we 

conclude our work with studying the actual run times of the two-stage classifier as a 

function of the complexity ratio. We also compare the training times of the feature 

selection algorithms (Relief and IFN).  All runs were performed on the same 

computer with approximately the same amount of available resources.  As indicated 

in sub-section  3.3 above, the run time alone cannot be considered an objective 

performance measure due to various reasons.  However, it provides an important 

indication regarding the overall contribution of the proposed approach to the 

efficiency of the classification process. 

The detailed results of the experiments are presented and analyzed in the next sub-sections. 
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4.2 Classification Performance of Selected Features 

In Table 2 below, we show the classification accuracy of single-stage k-NN Classifiers, which use 

the following sets of features: 

• A full set of features (equivalent to the second classifier C2 in the two-stage 

combination) 

• Features selected by Relief 

• Features selected by IFN 

• Features selected by IFN + Relief 

The second column in the table shows the relevancy threshold τ applied to the output of the Relief 

algorithm.  The value of τ was determined by manual inspection of bar charts showing the 

relevance levels of all the features sorted in descending order of relevance.  An example of such bar 

chart, obtained for the Wine dataset, is shown in Figure 3 below.  In the next two columns of Table 

2, we show the number of features selected by using Relief and IFN as stand-alone methods.  As 

explained above, the number of features used by the hybrid IFN  + Relief method is equal to the 

number of features selected by IFN.  The number of selected feature is also presented as the 

percentage of the total number of available features. We proceed with presenting the testing error of 

a single-stage k-NN Classifier using all the available features.  The testing error rates for the three 

methods of feature selection are shown in the next three columns.  As previously indicated, all 

classifiers were run with the number of nearest neighbors k = 10.  An asterisk is shown next to an 

error rate, if it is significantly higher than the error rate with the full set of features (at the 95% 

confidence level). 

If we compare the “stand-alone” feature selection methods (Relief and IFN), IFN seems to produce 

a more accurate classifier than Relief:  the average error rate of IFN-based classifier (0.242) is 

lower than the average error rate as a result of applying Relief (0.316). However, with Relief, the 

error rate is significantly higher than with the full set of features in four datasets only vs. five 

datasets with IFN. The performance of the hybrid approach (IFN + Relief) is slightly worse than 

IFN (the average error rate is 0.279), though in one dataset (Chess), the classification accuracy with 

the hybrid method is even higher than with the full set of features.  Like in the case of IFN, the 
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classifier based on the hybrid approach was significantly worse than the full set classifier in five 

datasets out of seven.   

To sum-up, none of the feature selection methods under consideration proves to be consistently 

better or consistently worse than the other two.   Using a single-stage classifier with a selected set 

of features, we can save, on average, between 79% and 89% of the computational effort related to 

the number of features, at the cost of a significant decrease in the classification accuracy vs. a 

classifier based on the full set of features.  In the next sub-section, we show how the two-stage 

classifier combination can maintain or even improve the accuracy without using a full set of 

features for classifying most instances. 

4.3 Accuracy vs. Complexity 

As indicated in sub-section  3.2 above, majority threshold is the highest percentage of the 

neighboring training instances in the majority (most common) class, which is needed to reject the 

output of the first classifier C1.  As long as the majority class is not larger than this threshold, an 

instance is classified by the second (full feature set) classifier C2.  In a given dataset, the threshold 

may vary from the inverse of the number of classes to one. With an increase in the threshold value, 

more and more instances are classified by C2.  Consequently, the complexity ratio RC goes up, 

accompanied by a possible decrease in the testing error rate E.  Both complexity ratio and the 

corresponding error rate are affected by the set of selected features used by C1.  A set of features 

can be considered superior to another set of features, if it provides a lower error rate with the same 

complexity or, alternatively, a lower complexity with the same error rate for any majority 

threshold. To evaluate the feature selection methods included in our experiment, we have built the 

Receiver-Operating Curves (ROC), which show the error rate as a function of complexity ratio.  

For the best sets of features, we have also presented the error rate and the complexity ratio as a 

function of the majority threshold.  A summary of the obtained results is provided below. 

Chess Dataset.  The ROC chart of the results is given in Figure 4. The “IFN+Relief” method for 

feature selection shows here a clear advantage over the stand-alone IFN and Relief methods.  

Moreover, the two-stage system proves to be more accurate than the single-stage classifier, along 

with having a lower computational complexity.  According to Figure 5, for any majority threshold 

of 0.9 and lower, the error rate is smaller than the error of a single-stage classifier, while the 

complexity ratio does not exceed 40%.  
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Credit Dataset. According to the ROC chart in Figure 6, Relief and IFN+Relief are the best feature 

selection methods for this dataset.  Although in this case, the two-stage system cannot reach the 

accuracy of the full feature set classifier, the trade-off between accuracy and complexity is clearly 

demonstrated in Figure 7 for the features selected by the Relief algorithm.  Particularly, we can get 

close to the accuracy of the single-stage classifier by less than 0.5% while using only about 40% of 

its complexity. 

Diabetes Dataset. Here the Relief algorithm seems to provide the best performance, though the 

distinction between the curves is not so clear (see Figure 8).  Figure 9 shows an important result 

that with the majority threshold of 0.7 we can decrease the error rate below the single-stage level, 

while higher thresholds move it back to that level, but not higher. In either case, the complexity 

ratio may be kept below 70%. 

Glass Dataset. Figure 10 clearly shows that the features of this dataset selected by IFN provide a 

significantly better performance than the features selected by the two other methods.  As shown by 

Figure 11, the majority threshold of 0.6 causes the error rate to drop slightly below the single-stage 

level.  If the threshold is increased beyond 0.6, the error rate goes up again, but still stays in the 

same range 

Heart Dataset. Here, IFN+Relief has a clear advantage (see Figure 12).  Similar to the Chess 

Dataset, the accuracy of the two-stage system surpasses the accuracy of the single-stage classifier 

for several values of the majority threshold (see Figure 13).  At the same time, the complexity ratio 

can be kept below 50%. 

Opt_Orig Dataset. As shown by Figure 14, IFN is the best feature selector for this dataset.  Though 

the two-stage system cannot improve the accuracy of the single-stage classifier, we can get within 

0.2% of its accuracy by using less than 50% of the single-stage computational complexity.  The 

trade-off between accuracy and complexity is demonstrated in Figure 15. 

Wine Dataset.  According to Figure 16, Relief and IFN are very close to each other in this dataset, 

though the behavior of the former method seems less consistent. The trade-off between the 

complexity and the error rate of IFN is shown in Figure 17.  The accuracy of the single-stage 

classifier can be reached with the complexity ratio of nearly 50% which corresponds to the majority 

threshold of 0.9  
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The main conclusion from the results, presented in this sub-section, is that the proposed approach 

to classifier combination provides an efficient way of trading recognition accuracy for 

computational complexity.  As shown above, the complexity can be reduced by 50% and more 

without sacrificing any significant recognition accuracy.   Moreover, in some datasets, the two-

stage classifier combination even improved the recognition rate of a single-stage classifier, along 

with a lower complexity. Unfortunately, no feature selection algorithm has been found consistently 

better or consistently worse than the other two, which means that each dataset requires some “fine-

tuning” in terms of finding the best set of features by one of the algorithms and the best value of the 

majority threshold. In the next sub-section, we study the effect of the reduced complexity on the 

actual classification time of the system. 

4.4 Computation Times 

The computation times of the stand-alone feature selection algorithms used (Relief and IFN) are 

shown in the two rightmost columns of Table 3 below.  The hybrid method (IFN + Relief) does not 

require re-running of either algorithm.  Hence, its run time can be calculated as the sum of times of 

both methods.  Table 3 also presents again the size of the training set, used by the algorithms and 

the number of candidate (original) features of each type (discrete / continuous).  All the run times 

were obtained on a Pentium III computer with a 500 MHz processor and 128 MB RAM. 

The results presented in Table 3 confirm the theoretical analysis of the computational complexity 

made in Section  2.  In purely discrete datasets (Chess and Optdigits-Orig), IFN, which is only 

linear in the number of training instances, runs much faster than Relief, which is quadratic in the 

number of instances.  The difference goes up with an increase in the size of the training set.  

However, the presence of continuous features slows down the IFN algorithm with respect to Relief, 

which is linear in the number of features of any type.  The examples include Credit, Diabetes, 

Glass, Heart, and Wine datasets.  

Figure 18 and Figure 19 below show the time ratio of a two-stage classifier as a function of the 

complexity ratio.  The time ratio is calculated as the ratio between classification times of a two-

stage classifier and a single-stage classifier (C2), which uses a full set of features.  The 

classification time of a single-stage classifier was 363.06 seconds for the Opt_Orig Dataset and 

14.00 seconds for the Chess Dataset.  The first classifier (C1) was based on the features selected by 

the “IFN + Relief” method.  All the times refer to classifying the “testing examples” (about 1/3 of 
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each dataset).  The classification times cannot be directly combined with the training times of the 

feature selection algorithms (see Table 3 below), since in a real-world pattern recognition task (like 

character or digit recognition), the dataset to be classified is expected to be much larger than the set 

of training examples.  As demonstrated by Figure 18 and 19 below, there is a strong linear 

relationship (R2 ≈ 0.999) between the complexity ratio of a two-stage system and its actual 

classification time. 

4.5 Discussion of Results 

The underlying assumption of the feature-based approach to serial classifier combination is that 

using a full set of features is likely to improve the classification accuracy vs. using only a subset of 

relevant features.  The definition of relevancy depends on the feature selection algorithm in use.  In 

sub-section  4.2 above, we have tested our assumption on three different feature selection 

algorithms (Relief, IFN, and IFN+Relief) and seven benchmark datasets.  On average, any one of 

the algorithms under consideration has lead to a decrease in the classification accuracy.  Relief was 

the worst one: the features selected by Relief have doubled the average error rate. In contrast, IFN 

has raised the average error rate by 57% only (from 0.155 to 0.242).  It is also worth noting that 

Relief has selected fewer features than IFN in most datasets.   

The main purpose of our system is trading accuracy for complexity.  The system can only be useful 

if a considerable reduction in its complexity can be reached at an “affordable” cost in terms of 

classification accuracy.  The ROC curves in sub-section  4.3 above show us that in most datasets, a 

minimal error rate, which is either close to or even below the single-stage error, can be achieved 

with the complexity ratios of 70%, 60%, and even 40%.  In other words, our method can save up to 

60% of the computational effort without sacrificing any accuracy at all!  A downside of our results 

is that obtaining the best trade-off between accuracy and complexity requires both selecting the best 

feature selection algorithm for a given dataset and finding the optimal value of the majority 

threshold.  On the other hand, any efforts for improving the efficiency of a k-NN classifier (like 

selecting an optimal subset of prototypes in  [34]) can only be justified if the classifier is about to 

classify a sufficiently large number of patterns.  Thus, optimizing the design parameters of our 

system before applying it to a large set or stream of patterns may well be carried out on a 

representative subset of the data in question. 
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The computational complexity of the system has been evaluated in sub-section  4.3 by a theoretical 

parameter called “total number of feature-values” (TFV), which we have defined in sub-section  3.3.  

However, the actual measure of computational complexity of a k-NN classifier is the total 

classification time.  In sub-section  4.4 above, we have shown that our theoretical measure of 

computational complexity is strongly correlated with the actual classification time of the system.  

Thus, TFV can be reliably used as a criterion for optimizing the overall performance of a multi-

stage serial classifier. 

5 Comparative Study 

Reducing the amount of computation associated with classifying new instances is very important 

for “lazy” learning methods, like k-nearest neighbors, which defer the processing of training 

examples until each new instance becomes available.  Thus, the efficiency of the k-Nearest 

Neighbor classifier has been a subject of many works in pattern recognition literature.  To the best 

of our knowledge, no serial combination of k-NN classifiers (feature-based or other) has ever been 

proposed. However, as we show below, some other useful ideas for decreasing the computational 

burden have been discussed in literature. 

An efficient technique for reducing the number of distance computations in a k-NN classifier is 

proposed in  [1].  According to this approach, the data points are clustered into several subsets of 

equal size.  In the classification stage, all subsets that are too far from a test pattern are eliminated 

from the search for the nearest neighbor.  A similar approach of partitioning the feature space into 

cells is presented in  [6], where the distance computations are reduced to calculating the distance 

between a test sample and the center of gravity of each cell.  Unlike the algorithms of  [1] and  [6], 

our method reduces the effort associated with each distance computation (by decreasing the number 

of features involved in the calculation) without changing the total number of distance computations.   

The idea of reducing the computational effort by reducing the number of training samples is known 

as the prototype approach (for example, see  [2] [15],  [17], and  [34]).  According to  [34], the training 

samples used as prototypes may not only be selected but also modified to optimize the classification 

performance.  In addition, the training examples may be replaced by multiple prototypes  [2].  The 

methods for prototype generation include competitive learning  [2], genetic algorithms  [17], and 

generalized delta rules  [15].  The algorithm of  [15] derives the weight of each feature in addition to 
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a set of prototypes.  The calculated feature weights improve the classification accuracy, but they do 

not have any effect on the computational complexity.  Thus, the prototype-based methods do not 

attempt to further reduce the computational effort by eliminating irrelevant and redundant features. 

Consequently, the complexity ratio of a prototype-based classifier (see sub-section  3.3 above), can 

be simply calculated as a ratio between the number of prototypes J and the total number of training 

samples X:  

Rc = J / X (6) 

  In our approach, we use each training sample as a prototype (which may be modified in the 

future), but the distance computation by the first-stage classifier is based on a subset of selected 

features only.  

All the above-mentioned methods for improving the efficiency of the k-NN classifier do not use 

any classifier combination.   The serial combination approaches discussed in  [29] involve at least 

two different types of classifiers within the same system (decision trees, fuzzy rules, etc.).  At each 

stage, the corresponding classifier is usually applied to a different set of extracted features.  No 

automated selection of features to be used by one of the classifiers is mentioned by  [29], which 

confirms the novelty of the approach proposed in this paper. 

The idea of classifying different instances by different classifiers (the first or the second classifier 

in our serial combination) is similar to the Dynamic Classifier Selection (DCS) approach ( [11] [12]). 

However, the authors of  [11] suggest that the best classifier for a given test pattern is the one 

maximizing the so-called Classifier Local Accuracy (CLA), disregarding its computational 

complexity. If both classifiers were of the same type (e.g., k-NN), the DCS approach would choose 

the full feature-set classifier in almost all cases, because its accuracy tends to be higher (see sub-

section  4.5 above).  Our system, on the other hand, allows sacrificing a certain amount of accuracy 

for the sake of reducing the computational effort. 

6 Conclusions  

In this paper, we have presented a novel method of serial classifier combination, which is aimed at 

speeding up the classification process for the majority of “well-behaved” instances by using only a 

small subset of relevant features.  Whenever a classifier is not confident enough of its decision, the 

next classifier, which requires more features, is activated. The method is applied to a two-stage 
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serial combination of k-Nearest Neighbor Classifiers.  The features used by the first classifier are 

selected by three alternative methods: Relief, IFN, and IFN + Relief.  The decision of the first 

classifier is accepted only if the number of nearest neighbors in the majority class is above a pre-

defined threshold. The results of experiments on benchmark datasets have shown that the 

computational complexity can be reduced by 50% and more, while maintaining the accuracy level 

of a single-stage classifier or even improving it. The last result confirms the claim of  [29] that the 

overall classification performance of a multi-stage system can exceed the performance of any of its 

individual layers only if classifiers appearing at the different layers use different feature spaces.  

The computational efficiency of the two-stage system vs. a single-stage classifier has been 

confirmed by the actual classification times on the testing sets of instances. 

In our view, the proposed sequential approach to classifier combination is still far from being fully 

explored and exploited.  The overall computational effort can be further reduced by selecting an 

optimal set of prototypes out of the training set. The majority threshold used by a two-stage system 

can be selected automatically, based on a user-defined and problem-specific function relating the 

importance of maximum recognition accuracy to the importance of minimum computational 

complexity.  A simple extension of the two-stage architecture would be adding more stages in the 

classifier combination, each based on a larger set of features.  The approach is definitely not limited 

to a k-NN Classifier and it can be applied to other classification methods, e.g., Bayes Classifier, 

neural networks, and decision trees.  The method and its extensions can be applied to classifying 

online streams of instances, like clickstream data on the web. 
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Figure 1 Proposed Classifier Combination Schema 
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Figure 3 Relevance Levels: Wine Dataset 
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Figure 4 Chess Dataset: ROC 
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Figure 5 Chess Dataset: IFN + Relief 
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Figure 6 Credit Dataset: ROC 
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Figure 7 Credit Dataset: Relief 
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Figure 9 Diabetes Dataset: Relief 
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Figure 10 Glass Dataset: ROC 

35.0%

37.0%

39.0%

41.0%

43.0%

45.0%

47.0%

49.0%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Majority Threshold

E
rr

or
 R

at
e

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Error Rate IFN Error Rate One-Stage Complexity Ratio IFN  

Figure 11 Glass Dataset: IFN 
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Figure 12 Heart Dataset: ROC 
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Figure 13 Heart Dataset: IFN + Relief 
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Figure 14 Opt_Orig Dataset: ROC 
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Figure 15 Opt_Orig Dataset: IFN 
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Figure 16 Wine Dataset: ROC 
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Figure 17 Wine Dataset: IFN 
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R2 = 0.9991
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Figure 18 Opt_Orig Dataset: Time vs. Complexity Ratio 
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Figure 19 Chess Dataset: Time vs. Complexity Ratio 
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Tables 

Table 1 Description of Datasets 

     Number of Features  

Dataset Size Training set Testing set Classes Continuous Nominal Total

Chess 3196 2155 1041 2 0 36 36

Credit 690 451 239 2 6 8 14

Diabetes 768 530 238 2 8 0 8

Glass 214 143 71 6 9 0 9

Heart 270 185 85 2 6 7 13

Optdigits-Orig 2880 1934 946 10 0 1024 1024

Wine 178 118 60 3 13 0 13
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Table 2 Comparison of Feature Selection Methods 

 

Relevancy 

Threshold 

Selected 

Features  

 Perc. 

of all  

 

Testing Error Rate 

Dataset Relief Relief IFN Relief IFN

All 

features

After 

Relief

After 

IFN

After 

IFN+Relief 

Chess 0.1 3 10 8.3% 27.8% 0.094 0.262* 0.160* 0.082 

Credit 0.1 2 3 14.3% 21.4% 0.113 0.163* 0.305* 0.151*

Diabetes 0.003 1 3 12.5% 37.5% 0.227 0.269 0.252 0.286*

Glass 0.1 1 2 11.1% 22.2% 0.380 0.620* 0.465 0.535*

Heart 0.2 1 3 7.7% 23.1% 0.212 0.247 0.306* 0.235 

Optdigits-Orig 0.544 5 13 0.5% 1.3% 0.024 0.599* 0.123* 0.513*

Wine 0.07 3 2 23.1% 15.4% 0.033 0.050 0.083* 0.150*

Mean   2.3 5.1 11.1% 21.2% 0.155 0.316 0.242 0.279 
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Table 3 Comparison of Feature Selection Times 

   Candidate Features  

Feature Selection 

Time (sec.) 

Dataset Training set Continuous Nominal Total Relief IFN 

Chess 2155 0 36 36 149.90 2.03 

Credit 451 6 8 14 1.87 26.31 

Diabetes 530 8 0 8 3.24 19.72 

Glass 143 9 0 9 0.32 1.43 

Heart 185 6 7 13 0.33 1.26 

Optdigits-Orig 1934 0 1024 1024 339.16 115.02 

Wine 118 13 0 13 0.17 0.88 

Mean  693 6 10 159.6 70.71 23.81

 


