
Info-Fuzzy Algorithms for Mining Dynamic Data Streams♥

Lior Cohen, Gil Avrahami, Mark Last♣

Ben-Gurion University of the Negev
Department of Information Systems Engineering

Beer-Sheva 84105, Israel
 Phone: +972-8-6461397
 Fax: +972-8-6477527

Email:{clior, gilav, mlast}@ bgu.ac.il

Abraham Kandel

Dept. of Computer Science and Engineering, University of South-Florida, Tampa, Florida
33620, USA

Email: kandel@csee.usf.edu

Abstract. Most data mining algorithms assume static behavior of the incoming
data. In the real world, the situation is different and most continuously collected
data streams are generated by dynamic processes, which may change over time, in
some cases even drastically. The change in the underlying concept, also known as
concept drift, causes the data mining model generated from past examples to
become less accurate and relevant for classifying the current data. Most online
learning algorithms deal with concept drift by generating a new model every time
a concept drift is detected. On one hand, this solution ensures accurate and
relevant models at all times, thus implying an increase in the classification
accuracy. On the other hand, this approach suffers from a major drawback, which
is the high computational cost of generating new models. The problem is getting
worse when a concept drift is detected more frequently and, hence, a compromise
in terms of computational effort and accuracy is needed. This work describes a
series of incremental algorithms that are shown empirically to produce more
accurate classification models than the batch algorithms in the presence of a
concept drift while being computationally cheaper than existing incremental
methods. The proposed incremental algorithms are based on an advanced
decision-tree learning methodology called "info-fuzzy network" (IFN), which is
capable to induce compact and accurate classification models. The algorithms are
evaluated on real-world streams of traffic and intrusion detection data.

Keywords
Real-time data mining, data streams, incremental learning, online learning, concept drift,

info-fuzzy networks.

♥ This paper is partially based on the following non-archival publication: L. Cohen, G. Avrahami, M. Last, A. Kandel, and O.

Kipersztok, "Incremental Classification of Nonstationary Data Streams", Proceedings of the Second International
Workshop on Knowledge Discovery in Data Streams, pp. 117-124, October 7, 2005, Porto, Portugal.

♣ Corresponding author

2

1. Introduction

Data mining is known as the core stage of Knowledge Discovery in Databases (KDD),
which is defined by Fayyad et al [12] as: “the nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data”. In recent years, there is an
ongoing demand for systems, which are capable to mine massive and continuous streams of
real-world data. The use of such systems can be in the fields of temperature monitoring,
precision agriculture, urban traffic control, stock market analysis, network security, etc. The
complex nature of real world data has increased the difficulties and the challenges of data
mining in terms of data processing, data storage, and model storage requirements [20]. One of
the main difficulties in mining dynamic continuous data streams is to cope with the changing
data concept. The fundamental processes generating most real-world data streams may change
over years, months and even seconds, at times drastically. In case of the classification task,
this change, also known as concept drift [15], causes the data-mining model generated from
past data to become less accurate in the classification of new records. Therefore, the most
important characteristic of such a system is to deal with noise, uncertainty, and asynchrony of
the real-world data [8].

Batch classification algorithms like CART [2], ID3 [28], C4.5 [29], and IFN [25] are not
suitable for mining continuous data streams. The main problem of these algorithms is their
tendency to store and process the entire set of training data. The continuous arrival of training
data increases their storage and processing effort, which eventually results in insufficient
memory or prohibitively long computation times. In addition, when a certain data mining
algorithm considers all past training examples, the induced patterns may not be valid and
relevant to the new data because of changes in the dynamic process, which generates the data.
In practical terms, this means an increasing error rate in classifying new records with the
existing model.

Algorithms and methods, which extract patterns from continuous and potentially dynamic
data streams, are known as incremental (online) learning. According to [14], a learning task
is defined as incremental if the training examples used to solve it become available over time,
usually one at a time. The basic approach of pure incremental algorithms is to induce patterns
in an incremental manner based on every new incoming instance. This means that instead of
building a new model, an incremental learning algorithm updates the current model. This
approach saves a significant amount of computer resources such as processing time and
memory. In the area of incremental learning with decision-tree classification algorithms, there
are several methods such as VFDT [9], CVFDT [17], and OLIN [22], which in general are
able to process continuous data streams.

In this paper, we present a series of novel incremental algorithms that produce more
accurate classification models than the batch algorithms in the presence of a concept drift and
are computationally cheaper than existing incremental methods (OLIN and CVFDT). In our
work, we use classification models, which are “oblivious” decision trees generated by the IFN
(Info-Fuzzy Network) algorithm introduced by Maimon & Last in [25]. The proposed
incremental algorithms are evaluated on real-world streams of traffic and intrusion-detection
data. The algorithms are also compared to a leading incremental approach to mining dynamic
data streams called CVFDT (Concept adapting Very Fast Decision Tree) of [17] and the
results show that our incremental methods outperform the CVFDT performance in terms of
run time while maintaining nearly the same level of predictive accuracy.

3

The rest of this paper is organized as follows. Section 2 presents the related work in the
areas of incremental learning and real-time data mining. Section 3 presents a brief overview
of IFN and OLIN algorithms, which are the basis for this work. Section 4 presents the
proposed incremental algorithms, and Section 5 is the evaluation part. In Section 6, we
conclude our paper with a discussion of experimental results and propositions for future work.

2. Related work

2.1 Incremental Learning

Pratt & Tschapek [27] claim that the change in outcome distribution (concept drift) may occur
in two ways. First, an existing predictive rule may keep its accuracy level, but the rule may be
invoked more or less often due to a change in the frequency of occurrence of its feature
values. Second, the accuracy of a certain rule may decrease because its underlying features
have become irrelevant. In this case, those rules should be discarded and replaced with new
rules that depend on newly relevant features. They also propose a visualization technique that
uses brushed, parallel histograms to help in identifying a concept drift in multidimensional
problem spaces.

In order to overcome the concept drift issue, the optimal situation is to have data mining
systems, which operate continuously, constantly processing data received so that potentially
valuable information is never lost. To achieve this goal, many methods were developed, all
under the general title of incremental (online) learning, which is aimed at extracting patterns
from continuous data streams. The main concept behind the incremental learning methods is
that upon receiving a new example, it is cheaper to update an existing model than to build a
new one. The pure incremental learning methods take into account every new instance that
arrives. Widmer & Kubat [32] have described a series of pure incremental learning algorithms
called FLORA that flexibly react to concept drift and can take advantage of situations where a
context repeats itself. The main idea behind all their algorithms is to:

1. Keep a window of current examples and a hypothesis.
2. Keep concept descriptions and use them again when they reappear.
3. Monitor the window of examples and the concept descriptions (the system behavior).
The FLORA family includes a number of incremental algorithms; the first one is FLORA2,

which maintains a dynamically adjustable window during the learning process (the latest
training examples). The heuristic for adjusting the size of the window is known as WAH
(window adjustment heuristic). WAH shrinks the window and forgets old instances when a
concept drift seems to occur (a drop in predictive accuracy) and keeps the window size fixed
as long as the concept seems to be stable. Otherwise, the window keeps growing until the
concept seems to be stable. FLORA3 stores concepts in stable situations and reuses them
whenever a similar context re-appears. In environments with small number of contexts, the
process of relearning speeds up due to storage of past concepts. FLORA4 is designed to be
exceptionally robust with respect to noise in the training data as it is very difficult in
incremental learning to distinguish between slight irregularities due to noise and a real
concept drift.

A recent paper [21] presents a methodology for adaptive modeling and discovery of
dynamic relationship rules from continuous data streams using Evolving Fuzzy Neural
Networks (EFuNN). After each consecutive chunk of data is entered into the system,
extracted rules are compared in order to discover new patterns of interaction between input
and output variables. The approach of [21] is demonstrated on two simple case studies.

4

2.2 Real Time Data Mining

The main characteristic of a real-time data mining algorithm is its ability to cope with
dynamic and high-speed data streams. As mentioned above, dynamic data streams contain
concept drifts resulting from changes in the underlying process. In addition, the arrival rate of
the data may be very high.

Domingos & Hulten [9] proposed the VFDT (Very Fast Decision Trees learner) algorithm
in order to overcome the long training times issue. The VFDT algorithm is based on a
decision-tree learning method combined with sub-sampling of the entire data stream. The size
of the sub-sample is calculated using distribution-free bounds called Hoeffding bounds under
the assumption that the data is generated by a stationary distribution. For this reason, the
method can process each example in constant time and memory and is able to incorporate tens
of thousands of examples per second using off-the-shelf hardware. In addition, the VFDT
algorithm is an anytime algorithm in the sense that at any time (after the first few examples
are seen) there is a ready-to-use model of gradually increasing quality. The main drawback of
the VFDT algorithm is its inability to cope with concept drifts. The ideas initially proposed in
the VFDT algorithm are generalized in [18], where the authors describe the VFBN (Very Fast
Bayesian Networks), which also use the concept of Hoeffding bounds in order to calculate the
size of the sub-sample.

Hulten, et al. [17] have proposed an improved version of the VFDT algorithm called the
CVFDT (Concept-adapting Very Fast Decision Trees learner) algorithm. The CVFDT
algorithm utilizes VFDT advantages of speed and accuracy and in addition has the ability to
discover and react to dynamic changes in the data. It works with a fixed sliding window of
examples and builds a model in an incremental manner. Every time a new example arrives,
CVFDT updates the sufficient statistics at its nodes by incrementing the counts corresponding
to the new example and decrementing the counts corresponding to the oldest example in the
window (which now needs to be forgotten). If there is no concept drift, the updates will have
no effect on the current model. However, if a concept drift has been discovered, some splits
that previously passed the Hoeffding test will no longer do so, because an alternative attribute
now has a higher gain value. In that case, the algorithm begins to grow an alternative sub-tree
with the new best attribute at its root. If the alternative sub-tree appears to be more accurate
on new data than the old one, the new sub-tree replaces the old one. The advantages of
CVFDT are its high accuracy and low time complexity. CVFDT develops a model which is
almost as accurate as the one that would be developed by applying VFDT to a sliding window
of examples every time a new example arrives, but with O(1) complexity per example, as
opposed to O(w), where w is the size of the window.

Gama, Rocha & Medas [13] have proposed the VFDTc algorithm, which is an extension to
the VFDT algorithm in two aspects: the ability to cope with continuous data and the use of
more powerful classification techniques at the tree leaves. For the first issue, the information
gain of a continuous attribute is calculated by an exhaustive method, which evaluates the
quality of all possible discretization points. For the second issue, Naïve Bayes Classifiers are
implemented at the tree leaves.

The CVFDT algorithm [17] mines high-speed data streams under the approach of one-pass
mining. C. Aggarwal, et al. [1] claim in their paper that the problem with the one-pass mining
approach is that it disables the recognition of changes in the mining model during the data
arrival process. Although the CVFDT algorithm seems to be an effective method for
incremental updating of a classification model induced from a dynamic data stream, the claim
is that the accuracy of such an incremental model cannot be greater than a model, which was
created, based on the best sliding window model for the current time. The empirical results in

5

 [1] show that the true behavior of a data stream is best represented in a temporal model, which
is sensitive to the level of evolution of a data stream.

The challenge of mining concept drifting data streams was also studied by Wang et al. [30].
The authors proposed to use weighted classifier ensembles to mine data streams that contain
concept drifts. While most incremental algorithms continuously revise a single model, the
authors propose to train an ensemble of classifiers from sequential data chunks in the stream.
This approach helps in avoiding overfitting and the problem of conflicting concepts by giving
each classifier a weight based on its expected predictive accuracy on the current test
examples.

W. Fan [11] presents the StreamMiner, which is a random decision-tree ensemble based
engine for mining a data stream. The StreamMiner's choice of the optimal model depends on
the amount of data needed and the detection of a concept drift. The results of the experiments
show the potential of the StreamMiner in classifying streams with changing concept. An
interesting question is how the algorithm deals with high-speed streams. This issue is not
discussed by [11].

Domingos & Hulten [10] proposed a general framework for mining massive data streams.
Their framework consists of three steps:

1. Derive an upper bound for the time complexity of the chosen data mining algorithm,
depending on the number of training examples required at each step.

2. Derive an upper bound for the accuracy loss between the finite-data and the infinite-
data models, as a function of the number of examples required at each step of the finite-data
algorithm.

3. Minimize the time complexity by decreasing the number of examples required at each
step, subject to pre-specified limitation on the accuracy loss.

This general framework assists in two main issues related to mining of high-speed data
streams. The first one is how much data is enough for producing a model, which is almost as
accurate as the one produced from infinite-data. The second one is how to keep the existing
model updated when the data stream is dynamic and concept drifts are discovered.

To deal with dynamic data streams, Last [22] developed the OLIN (On Line Information
Network) classification algorithm that induces an oblivious decision-tree model called Info-
Fuzzy Network (IFN). As shown in [24] and [25], IFN is characterized by almost the same
accuracy level as CART and C4.5 but has a much more compact structure. Its anytime
properties, shown in [23], make IFN particularly appropriate for the task of real-time data
mining in high-speed data streams. OLIN gets a continuous stream of data and builds an info-
fuzzy network based on a sliding window of latest examples. Unlike the CVFDT algorithm
having a fixed window size, OLIN dynamically adjusts the size of the training window and
the rate of the model reconstruction to the current rate of the concept drift measured by
fluctuations in the classification error rate.

In [3] [4] [5] [6], we have extended the ideas suggested by Last [22] in order to enhance the
performance of the OLIN system. We have suggested a series of incremental algorithms also
dealing with continuous dynamic data streams, but this time instead of creating a new
classification model for each new sliding window of examples, the algorithms update or
replace a current model according to the new data unless a major concept drift is detected.
This paper summarizes the above work by presenting, for the first time, a comprehensive
evaluation of these incremental methods in comparison to the regenerative (OLIN) approach
and the state-of-the-art algorithm for mining dynamic data streams (CVFDT). The evaluation
results presented in this paper also include, for the first time, the experiments with the
Intrusion Detection Dataset [16], which is much larger than the traffic data streams used in

6

our previous publications. A full description of the methods and the experiments is provided
in the subsequent sections.

3. Information Networks: An Overview

3.1 The Batch Learning Algorithm (IN)

Many batch and online learning methods use the information theory to induce classification
models. One of the batch information-theoretic methods, developed by Last & Maimon [24]
 [25], is the Info-Fuzzy Network algorithm (also known as Information Network - IN). IN is
an oblivious decision-tree classification model designed to minimize the total number of
predicting attributes. The underlying principle of the IN-based methodology is to construct a
multi-layered network in order to maximize the Mutual Information (MI) between the input
and the target attributes. Each hidden layer is uniquely associated with a specific predictive
attribute (feature) and represents an interaction between that feature and features represented
by preceding layers. Unlike such popular decision-tree algorithms as CART [2] and C4.5
 [29], the IN algorithm is using a pre-pruning strategy: a node is split if the split leads to a
statistically significant decrease in the conditional entropy of the target attribute (equal to an
increase in the conditional mutual information1). If none of the remaining candidate input
attributes provides a statistically significant increase in the mutual information, the network
construction stops. The output of the IFN algorithm is a classification network, which can be
used as a decision tree to predict the value (class) of the target attribute. For continuous target
attributes, each prediction refers to a discretization interval rather than a specific class.

Figure 1 illustrates a sample structure of a 3-layer information network for the well-known
Credit Approval Dataset [26]. The IFN algorithm has selected only three predictive features
to be included in the network: Other Investments, Balance, and Bank Account.

Credit Dataset

0

1

3

4

5

6
2

Accept (0)

Reject (1)

Target layer

(Class)

Other
investments = 0

Other
investments = 1

Balance
between $1
and $401

Balance>
$401

Bank
account=1

Bank
account=0

Layer 1
(Other investments)

Layer 2
(Balance)

Layer 3
(Bank Account)

Figure 1 Sample Info-Fuzzy Network - Credit Approval Dataset

The network construction algorithm can be summarized as follows (based on [24]):

1 The conditional mutual information [7], or information gain [28], is an information-theoretic measure of association

between two random variables X and Y , which is defined as a decrease in the entropy (uncertainty) of Y as a result of
knowing X (and vice versa).

7

Input: the set of n training instances; the set CI of m candidate input attributes (discrete and
continuous); the target (classification) attribute T; the minimum significance level sign for splitting a
network node (default: sign = 0.1%).
Output: a set I of selected input attributes and an information-theoretic network IN. Each input
attribute has a corresponding hidden layer in the network.
Step 1 - Initialize the information-theoretic network: a single root node representing all training
instances, no hidden layers (I = ∅, l = 0), and a target layer for the values of the target attribute.
Step 2 - While the number of layers l < m (number of candidate input attributes) do
Step 2.1 – for each candidate input attribute Ai ∉ I do
if Ai is discrete then
Return the statistically significant conditional mutual information cond_MIi between Ai and T.
Else return the best threshold splits of Ai and the statistically significant conditional mutual
information cond_MIi between Ai and the target attribute T.

Step 2.2 – find the candidate input attribute Ai* maximizing cond_MIi

Step 2.3 – If cond_MIi* = 0, then
End do.

Else
Step 2.3.1 – expand the network by a new hidden layer associated with the attribute Ai* and
increment the number of layers l.
 Step 2.3.2 – Update the set I of selected input attributes I = I ∪ Ai*

Step 3 – Return the set I of selected input attributes and the network structure
The network predictions can be used to compute the reliability degrees of the actual values

of a target attribute in each training instance. In [25], data reliability is defined as a fuzzy
measure representing the degree of certainty that the value of a target attribute A in a specific
instance k is correct from the user’s point of view. The calculation of reliability degrees in
 [25] is based on the difference between estimated probabilities of the actual target value
(class) and the value (class) predicted by the info-fuzzy network. It is also based on the user-
specified coefficient β, which represents the subjective attitude of a particular user to
reliability of “unexpected” data. Low values of β (around 1) provide a continuous range of
reliability degrees between 0 and 1 for different values of a target attribute. Higher values of
β (like 10 or 20) assign a reliability degree of zero to nearly any value, which is different from
the predicted one.

Low data reliability cannot be used as an indication of low model accuracy. To clarify this
issue, we are providing two extreme examples of binary (two-class) classification problems.
If a model is close to a random guess, its accuracy is very low (e.g., 51.1% only). However,
according to the reliability function defined in [25], the reliability degree of minority class
instances is very close to 1, since they have almost the same probability as the instances of the
majority class. On the other hand, in a very accurate model of 99.9% accuracy, the minority
class instances are considered extremely unreliable. In general, data reliability, unlike model
accuracy, is determined by the difference between class probabilities rather than by the
probability of any specific class.

3.2 The Online Learning Algorithm (OLIN)

The OLIN algorithm [22] extends the IN algorithm for mining continuous and dynamic
data streams. The system repeatedly applies the IN algorithm to a sliding window of training
examples and changes the size of the training window (and thus the re-construction
frequency) according to the current rate of concept drift. The purpose of the system is to
predict at any given time the correct class for the next arriving example.

The architecture of the OLIN-based system is presented in Figure 2.

8

Data Stream
Current Window (T0 examples)

Next Window (T1 examples)

Learning
Module

Classification
Module

Training
Data

Validation
Data

Meta-learning
Module

Window size

Update cycle Training
accuracy

Validation
accuracy

Classification
Model (IN)

t0 t1 t2 t3 t4

V0 examples
V1 examples

Figure 2 OLIN-based System Architecture (from [22])

The online learning system contains three main parts: the Learning Module is responsible
for applying the IN algorithm to the current sliding window of examples; the Classification
Module is responsible for classifying the incoming examples using the current network; and
the Meta Learning Module controls the operation of the Learning Module. As shown in
Figure 2, the system builds a network from T0 training examples; afterwards, the next V0
examples are classified according to the induced network. According to the regenerative
approach of OLIN, when more examples arrive, a completely new network is built from the
most recent T1 examples, where the last example belonging to T1 is also the last example of
V0. In order to ensure that each example in the data stream will be classified only once, the
validation intervals have to be disjoint and consecutive. After constructing a new network, the
set V1 is classified using that network. This regenerative process continues indefinitely if the
data stream never stops.

The Meta Learning module gets as input the error rates of the training and the validation
examples classified by the current IN model. Those error rates are denoted as Etr and Eval
respectively. In addition, it gets the description of the model itself (selected attributes, entropy
information, etc.). Using all these inputs, the module re-calculates the size of the next training
window (interval) and the number of validation examples to be classified by the next model.

The OLIN system is based on the assumption that if the concept is stable, the training and
the validation examples, should conform to the same distribution. Thus, the error rates in
classifying those examples using the current model should not be significantly different. On
the other hand, a statistically significant difference may indicate a possible concept drift. The
variance of the differences between the error rates is calculated by the following formula
based on a Normal Approximation to the Binominal distribution (Eq. 9 in [22]):

CountAdd
EE

W
EE

DiffVar valvaltrtr

_
)1()1(

_
−

+
−

= (1)

Where W is the size of the training window and Add_Count is the number of validation
examples.

9

The algorithm tests the null hypothesis that the concept is stable, in which case the
maximum difference between the training and validation error rates, at the 99% confidence
level is:

DiffVarDiffVarZDiffMax _326.2__ 99.0 == (2)

A concept drift is detected by the algorithm when the difference between the error rates is
greater than Max_Diff implying that the null hypothesis can be rejected. In that case, the
algorithm re-calculates the size of the next training window using the following formula
(based on Eq. 8 in [22]):

))1(log)()((2ln2
))1()1((

2

2

−−−
−⋅−

=
NTEEHTH

NTNIW
trtr

iαχ (3)

Where α is the significance level sign used by the network construction algorithm (default:
α = 0.1%), NIi is the number of values (or discretized intervals) for the first input attribute Ai
in the info-fuzzy network, NT is the number of target values, H (T) is the entropy of the target,
and Etr is the training error of the current model.

In addition, the number of examples in the next validation interval is reduced by
Red_Add_Count. Otherwise, the concept is considered stable and both the training window
and the validation interval are increased by Add_Count examples up to their maximum sizes
of Max_Add_Count and Max_Win, respectively.

4. Incremental Information Network Algorithms

The OLIN online classification algorithm [22] deals with the potential concept drift in a
non-stationary data stream by simply generating a new model for every new sliding window.
On one hand, this regenerative approach ensures accurate and relevant models over time and
therefore an increase in the classification accuracy. On the other hand, OLIN's major
shortcoming is the high computational cost of generating new models. In this section, we
present four incremental learning algorithms, which are aimed at reducing the high
computational cost of the regenerative approach. As shown in the evaluation section of this
paper, the incremental methods achieve almost the same and sometimes even higher accuracy
rates than OLIN and are significantly cheaper, since there is no need of producing a new
model for every new window of examples.

4.1 Basic Incremental Approach

We start this section with a detailed description of the Basic IOLIN algorithm initially
introduced by us in [3]. In general, the basic incremental method updates a current model as
long as the concept is stable. If a concept drift has been detected, the algorithm creates a
completely new network. The operations of the Update_Current_Network procedure include
checking split validity, examining the replacement of the last layer, and adding new layers as
necessary. Each of the update operations is aimed at reducing the error rate of the existing
model, when using it for classifying new instances. The first update procedure
Check_Split_Validity should eliminate nodes, which are not relevant for the model according
to the current training window. The split validity checking starts from the root and goes
downwards the network. The general idea is to ensure that the current split of a specific node
actually contributes to the mutual information calculated from the current training set.

10

Elimination of non-relevant splits should decrease the error rate. From experiments conducted
with the regenerative OLIN [22], we discovered that when there is no major concept drift
between two adjacent windows, the main differences between the newly constructed model
and the current one are in the last hidden layer of the information network. For this reason, the
second procedure Check_Replacement_of_Last_Layer is applied in order to determine which
attribute is most appropriate to correspond to the last (final) hidden layer. The attributes under
consideration include the attribute that is already associated with the last layer or the second
best attribute for the last layer of the previous model. The attribute selected for the last layer
of the new model will be the one with the highest conditional mutual information based on the
current training window. The last procedure New_Split_Process attempts to split the nodes of
the last layer on attributes, which are not yet participating in the updated network.

The basic intuition behind the incremental approach is to update the current classification
model with the current training window concept as long as no major concept drift has been
detected by a statistically significant drop in predictive accuracy and to build a new model
only in case of a major concept drift. Actually, the regenerative approach can be viewed as a
special case of the incremental approach. If a major concept drift is detected at each arrival of
new data, the incremental approach is identical to the regenerative one. So the incremental
approach becomes useful only when the concept stays stable between at least one pair of
adjacent windows. This condition can be expected in most data streams, especially those
where the size of the training window is relatively small. The pseudo-code outline of the
Basic Incremental OLIN (Basic IOLIN) algorithm and its main procedures is presented
below.

 IN_Control

Input: continuous stream of examples (S)

Output: Updated / New network model

Calculate the initial size of the training window Winit

Set W = Winit

Obtain IN model by applying the IN algorithm to the sliding window (W)

While S is not finished

 IN model = Incremental_IN (W, IN model)

 Return IN model

Figure 3 IN_Control Procedure
The IN_Control procedure (see Figure 3) is responsible for managing the application. It

gets as input a continuous stream of examples (S). The initial size of the training window Winit
is calculated using the following expression [22]:

))1(log)()((log2ln2
)1(

22

2

−−−
−

=
NTPPHNT

NTW
ee

init
αχ (4)

Where α is the significance level sign used by the network construction algorithm (default:
α = 0.1%), NT is the number of target values (classes), Pe is the maximum allowable
prediction error of the model (default = 0.50), H is Shannon’s entropy [7], and χ2

α (n) is the

11

inverse of the chi-squared distribution with probability α and n degrees of freedom. The
general idea behind the formula (4) is to find the minimum number of training examples
required to construct an information network for predicting an NT-valued target attribute,
while preserving the prediction error below Pe. As explained in [22], the nominator of (4)
refers to the critical value of the chi-square distribution required to confirm the statistical
significance α of splitting the root node on an input attribute while the denominator represents
the mutual information between the input and the target attributes. Figure 4 shows the initial
size of the training window Winit as a function of the number of classes NT while the
maximum allowable prediction error Pe is kept at the fixed level of 20%. As one can see, the
number of required examples is decreasing as the target attribute takes more values, since
preserving the same error rate for more classes implies a higher decrease in error vs. the
default (majority rule) model for uniform priors. Furthermore, a higher decrease in the error
rate of the classification model indicates a smaller amount of uncertainty (noisiness)
presenting in the data, which means that the mutual information (the denominator of Eq. 4) is
higher. In other words, we need less training examples to induce a model of the same
accuracy from less noisy data.

Error Rate = 20%

28

15

12
11 11 10 10 10 10

30.0%

46.7%

55.0%

60.0%

63.3%

65.7%
67.5%

68.9%
70.0%

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10

NT

W
_i

ni
t

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

W_init Error decrease vs. majority rule
Figure 4 Winit and Error Decrease as a Function of NT

Afterwards, the initial network model is produced by applying the IN algorithm to the
initial window of examples. The algorithm will run until the end of the data stream. As long
as a data stream continues, the algorithm will keep running and producing up-to-date IN
classification models.

The Incremental_IN procedure (see Figure 5) is responsible for calculating both error rates
of the training and validation examples after running the current model on those data sets. The
maximum expected difference between those errors Max_Diff is calculated at the 99%
confidence level using a Normal Approximation to the Binominal distribution (see Eq. 2
above). It is important to mention our basic assumption that the correct classifications for the
window of validation examples are immediately available. This is a reasonable assumption in
process monitoring, traffic control, web usage mining, video stream monitoring, and other
real-time data mining domains. The correct classifications are used for calculating the
validation error rate and determine whether a major concept drift has occurred.

12

A concept is considered stable if the actual difference between the validation and the
training errors (Eval - Etr) is smaller than the maximum expected difference Max_Diff. This
means that the examples in the training window and in the subsequent validation interval
conform to the same distribution and there is no statistically significant difference between
the model’s training and validation error rates. In this case, operations for updating the
network are applied. However, if there is a statistically significant increase in the error rate, it
indicates that a major concept drift occurs and the basic incremental approach creates a new
network. The size of the calculated training window is based on the concept stability (see
 [22]). In general, the size of the training window increases if the concept appears to be stable
and shrinks if a concept drift has been detected.

 Incremental_IN

Input: training window (W), current information network model (IN

model)

Output: Updated / New network model

Calculate the training error rate Etr of IN model

Calculate the validation error rate Eval of IN model

Find the maximum expected difference between the last training and the

validation errors Max_Diff

If (Eval - Etr) < Max_Diff //concept is stable

IN_Model = Update_Current_Network (IN_Model, W)

Else

IN_Model = IN (W)

Calculate New_Training_Window_Size W

R t IN M d l
Figure 5 Incremental_IN Procedure

The Update_Current_Network procedure gets as inputs the current network structure and a

sliding window. This procedure activates another procedure (Check_Split_Validity) for
checking the split validity of the current network. Afterwards, it replaces the last layer of the
network if needed. Finally, it activates the New_Split_Process procedure attempting to split
the last layer (whether it was replaced or not) and add a new hidden layer to the network, if
necessary.

13

 Update_Current_Network

Input: training window (W), current information network model (IN model)

Output: Updated network model

Check_Split_Validity (IN_Model, W) on the last layer of the current model

Calculate the conditional MI of Sec_Best_Attr based on the current training set (W)

IF (conditional MI of the current last layer < conditional MI of Sec_Best_Attr)

Replace last layer with Sec_Best_Attr

New_Split_Process (IN) on the last layer of the current model

Return IN_Model

Figure 6 Update_Current_Network Procedure

Check_Split_Validity is responsible to verify that the current split of each node actually
contributes to the conditional mutual information calculated from the current training set.

 Check_Split_Validity

Input: training window W, current information network model (IN model)

Output: Updated network model

For i = 1 to i = total_number_of_layers-1

For j = 1 to j = number of nodes in hidden layer i

If node j is split

Calculate the estimated conditional MI of j and the target attribute

Calculate the Likelihood-ratio* statistic of j

If the Likelihood-ratio statistic of j is significant

 Leave the node split

Else

 Remove the splitting and make j a terminal node

Figure 7 Check_Split_Validity Procedure
*The likelihood-ratio statistic is discussed in [22].

14

New_Split_Process is responsible for splitting the nodes of the last layer on attributes,
which are not yet included in the updated network. From the candidate attributes, which are
not yet participating in the network structure, this procedure finds the best one for splitting the
current last hidden layer according to the MI value. The split by the new input attribute is
made on the relevant nodes of the last hidden layer and a new hidden layer is added to the
network.

 New_Split_Process (IN model)

Input: current network model

Output: Updated network model

Repeat for every candidate input attribute i’ which is still not an input attribute

Repeat for every node z of the final hidden layer

Calculate the estimated conditional MI of i’ and the target attribute given z

Calculate the Likelihood-ratio statistic of i’ and the target attribute given z

If the Likelihood-ratio statistic of i’ is significant

 Make i’ the best input attribute and define a new layer for i’

Figure 8 New_Split_Process Procedure

The Basic IOLIN creates an information network based on a certain number of past

examples. When the network construction completes, the algorithm applies it to online data in
order to predict the target value of each new record. This means that the algorithm gets two
windows as inputs: the first one is a sliding window of past examples and their actual
classification, which is used for the construction of the network. The second one is a window
of new records, which need to be classified.

As mentioned above, the assumption is that the true classification of the incoming records
becomes available after a short while. The true classification can then be used to start the
construction of a new network for future classification. As long as the true classification is not
available from the monitored system, we can keep the current network. Another alternative is
to use unsupervised learning methods in order to detect changes in the distribution of
unlabelled data and update the current network accordingly. Zeira et al. [33] present a
methodology for change detection and segmentation based on a set of statistical estimators.
This methodology can be used for detecting statistically significant changes in incrementally
built classification models of data mining.

The time complexity of the suggested incremental algorithm depends on the number of
detected concept drifts. As long as no concept drift has been detected, the major
computational cost is to add a new layer to the existing network. Checking the split validity of
the nodes in the network is relatively cheap (O(n) where n is the number of nodes in the
network). In case of concept drift, a new network should be constructed from scratch, and the
cost of the network construction procedure is linear in the number of records, linear in the

15

number of distinct attribute values, and quadratic in the number of candidate input attributes
 [24]. When a candidate input attribute is continuous, the number of distinct attribute values is
equal to the number of potential splits, which is bounded by the size of the training set. Thus,
as shown in [23], the time complexity of discretizing each continuous attribute in a given
layer of the network is quadratic in the number of training records. Discretization also
requires identification and sorting of distinct values for each continuous attribute before
construction of a new network. The computational complexity of these operations is at most
quadratic in the number of records.

4.2 Multiple-Model IOLIN

The second incremental approach introduced in [6] also updates a current model as long as
the concept is stable. However, if a concept drift has been detected for the first time, the
algorithm searches for the best model representing the current data from all previous
networks. The idea is to utilize potential periodicity in the data by re-using previously created
models rather than generating a new model with every concept drift as suggested by the Basic
IOLIN approach. The search is made as follows: when a concept drift is being detected, the
algorithm calculates the target attribute’s entropy and compares it to the target’s entropy
values of each previous training window, where a completely new network was constructed.
The previous network to be chosen is the one, which was built from the training window
having the closest target entropy to the current target’s entropy. The chosen network is used
for classification of the examples arriving in the next validation session. In the case of
recurrence of a concept drift, a new network is created like under the Basic IOLIN approach.
Following is the pseudo-code outline of the Multiple-Model IOLIN algorithm:

Multiple Model IOLIN
Input: Training window T, current network model, previous network models
Output: Updated / Former / New network model

For each new training window

If concept drift is detected
Search for the best network from the past by:

1. Comparing the value of the target entropy (based on the current window data) to
entropy values in all windows where a completely new network was built.

2. Choose Network with Min |Ecurrent(T)- Eformer(T)|.
3. Add new layers if possible.

 If concept drift is detected again with the chosen network
Create completely new network using the Info-Fuzzy algorithm

Else update the existing network (see below)
Else

Update the existing network as follows:
1. Eliminate non-relevant nodes.
2. Replace the last layer with a better one.
3. Add new layers if possible.

16

4.3 Pure Multiple-Model IOLIN

In addition to the use of former models in the presence of concept drift, we also proposed in
 [6] another variation of the multiple model approach, which includes the use of former
models even in the case when the concept is stable. This means that when the concept is
stable, we will use a former model instead of updating the current model. This approach
should save additional run time because an appropriate model is likely to be found in the
adjacent former windows. This approach is called the Pure Multiple Model IOLIN and its
pseudo-code is given below:
Pure Multiple Model IOLIN
Input: Training window T, current network model, past network models
Output: Former / New network model

For each new training window

Search for the best network from the past by:
1. Comparing the value of the target entropy (based on the current

window data) to entropy values in all windows where a totally new
network was built.

2. Choose Network with Min |Ecurrent(T)- Eformer(T)|.
3. Add new layers if possible.

 If a concept drift is detected again with the chosen network
Create totally new network using the Info-Fuzzy algorithm

4.4 Advanced IOLIN

In the fourth proposed incremental algorithm, initially introduced by us in [5] [6], we
enhance the update operations of the incremental algorithms by maintaining the information-
theoretic quality of the current model disregarding its predictive accuracy on the new data.
We re-calculate the conditional mutual information of each layer using the top-down
approach: we start with the first layer, and replace the input attributes in that layer and all
subsequent layers in case of a significant decrease in the layer’s conditional mutual
information with the target attribute. A decrease in the mutual information of the first layer
will trigger a complete re-construction of the model. The current model will be retained only
if there is no significant decrease in mutual information in any layer. In that case, we will try
to add new layers representing attributes, which are not yet participating in the network.

This approach does not deal directly with the issue of concept drift detection. The
information network is constantly updated and the occurrence of a concept drift can be
concluded if all network layers have been replaced. For each window, the conditional mutual
information (MI) value of every layer is saved. In the model update process, a comparison is
made between the former MI value of the ith layer and the current MI value. If the current
value is nearly as high as the former one (up to 5% difference), the ith layer is kept as is. If the
current MI value is significantly lower, the ith layer is replaced with a new one. Following is
the pseudo-code outline of the advanced IOLIN algorithm:

Advanced IOLIN
Input: Training window, current network model, conditional mutual information of each
network layer i (Former_Conditional_MI(i))
Output: Updated network model

17

For each new training window
For each Layer i in existing network
 Calculate Cond_MI(i)
 If Cond_MI(i)≥Former_Conditional_MI(i)*95%

Keep ith layer as is and move to the next layer
 Else

Continue the network construction by adding new layers
 Save value: Former_Conditional_MI(i) = Conditional_MI(i)
 If reached the last layer

Try adding new layers to the network

The time complexity of the advanced approach depends on the number of layers that have

been replaced. In the case of a layer replacement, the algorithm searches for the best input
attribute from the candidate inputs. This search costs O (n) where n is the number of
candidate input attributes. In the replacement of all layers, which is actually the construction
of a totally new network, the cost will be O(n*l) where l is the number of the network layers.

5. Evaluation

In this section, the proposed incremental algorithms are evaluated vs. the original
Regenerative OLIN algorithm [22] on several real-world streams of dynamic data. In
addition, the IN-based methods are compared to the CVFDT incremental decision-tree learner
 [17] available as part of the VFML toolkit [19]. We have examined two aspects of all
incremental algorithms: first, we have evaluated their predictive accuracy on incoming
examples and secondly we have compared their processing time per the same number of
arriving records. All IN-based algorithms were implemented with the single-pass approach
used by CVFDT [17], which implies that the algorithm will process each incoming record
only once – either for training, or for testing. The real-world data streams were obtained from
two different domains: urban traffic control and network intrusion detection.

5.1. Traffic Data Streams

5.1.1 Data Acquisition and Preparation
The data acquisition and preprocessing of this dataset are extensively discussed in [3] and

 [4], so here we describe this data only in brief. The data streams we used include traffic flow
information from under-road sensors at a signaled three-way junction of Tahon and Uruguay
streets in Jerusalem, Israel. The vehicles can cross the intersection in five different directions.
The resulting five data streams related to these directions have included the incoming traffic
volumes for 24 hours a day, seven days a week during the period of more than 3 years (1999-
2002). Traffic count records have been saved to the Traffic Sensors Database every 15
minutes, for every lane in the intersection.

In the data cleaning stage, duplicate records have been removed and missing volume
quantities have been filled in with the average of their preceding and successive traffic
volumes. Cases with missing successive traffic volumes were completely ignored. In order to
represent the traffic volumes per hour and per direction, the traffic volume records of all lanes
in the same direction were combined and then the 15-minute records were summed up to one-
hour records for each direction. Eventually, each original data stream has been converted into
a data set, where a record contains twelve candidate attributes representing the exact time

18

(date, hour, day in week, etc.) when the traffic volume was measured and traffic volumes at
earlier points of time (the previous hour, the same hour of the previous day, etc.). The
resulting relational dataset is described in Table 1.

The target attribute Current Hourly Volume represents the volume of traffic during a given
hour. Since the target attribute is continuous, we have manually discretized it to four equal-
frequency intervals of traffic volume. The traffic data was partitioned into five separate data
tables for the five traffic directions. Each table corresponding to a given direction contained
about 30,000 hourly records.

Table 1 Traffic Attributes

Attribute Source Values Attribute
Type

Date Sensor none

Hour Sensor 0 to 23, as the beginning hour of
the interval

Input

Year Derived 1999 to 2002 Input
Month of Year Derived 1-12 Input
Week of Year Derived 1 to 52 Input
Day of Week Derived 1 to 7 Input
Day of Year Derived 1 to 365 Input
Day of Month Derived 1-31 Input

Day Type Derived 0 = regular day, 1 = a holiday eve,
2 = holiday

Input

Previous Hour
Volume Sensor Input

Previous Day
Hourly Volume Sensor Input

Previous Week
Hourly Volume Sensor Input

Current Hourly
Volume Sensor Target

5.1.2 Results
The runs of the algorithms were carried out on a Pentium IV processor with 256 MB of

RAM. In the experiments, the online learning of the traffic data starts after inducing the initial
model from the first 500 records, which leaves the system to work with about 30,000 records
for each direction in every year. Table 2 presents the results of applying the IN-based single-
pass algorithms and the CVFDT algorithm to the traffic data sets. The testing error rates and
the processing times are shown graphically in Figure 9 and Figure 10, respectively

19

Table 2 Traffic Data Results

Testing
Error Rate
(%)

Run Time
(sec)

Data Source Algorithm

28.63 50.76 Direction1
23 49.79 Direction2
23.7 55.76 Direction3
23.23 50.48 Direction4
22.43 49.55 Direction5

CVFDT

18.7 22.11 Direction1
14.1 11.63 Direction2
6.5 16.07 Direction3
4.8 11.89 Direction4
23.5 14.2 Direction5

Regenerative IFN

26.4 8.78 Direction1
13.2 4.54 Direction2
8.7 3.62 Direction3
6.2 3.83 Direction4
25.3 4.67 Direction5

Basic Incremental IFN

26.1 9.59 Direction1
13.2 6.77 Direction2
8.7 4.32 Direction3
6.2 4.46 Direction4
25.3 6.56 Direction5

Multi Model IFN

27.4 19.99 Direction1
12.9 6.62 Direction2
8.6 4.73 Direction3
5.4 4.09 Direction4
25.6 4.63 Direction5

Pure Multi Model IFN

19.5 8.86 Direction1
12.9 10.47 Direction2
6.4 16.09 Direction3
4.5 9.05 Direction4
22.2 12.94 Direction5

Advanced Incremental
IFN

Table 2 and Figure 9 show that, in most cases, the IOLIN-based algorithms outperform the

accuracy rate of the CVFDT algorithm, with Advanced IOLIN being the most accurate
algorithm in all five data streams. The differences in the error rates across traffic directions
imply that Directions 2-4 are less noisy than Directions 1 and 5. In practical terms, this
means that the temporal behavior of car drivers crossing the intersection in Directions 1 and 5
is less predictable than of those crossing in all other directions.

20

Testing Error Rate

0

5

10

15

20

25

30

35

Direction1 Direction2 Direction3 Direction4 Direction5
Data Source

Er
ro

r R
at

e
(%

)CVFDT

Basic Incremental

Multi Modal

Pure Multi Modal

Advanced Incremental

Regenerative

Figure 9 Testing Error Rates (Traffic Data)

Run Time

0

10

20

30

40

50

60

Direction1 Direction2 Direction3 Direction4 Direction5
Data Source

R
un

 T
im

e
(s

ec
.)CVFDT

Basic Incremental

Multi Modal

Pure Multi Modal

Advanced
Incremental
Regenerative

Figure 10 Run Time (Traffic Data)

Figure 10 presents the run time results. CVFDT is clearly inferior to all IN-based

approaches, while the Basic IOLIN and the Multi-Model algorithms consume the least run
time for processing the incoming examples. One can also notice that the Advanced IOLIN
requires considerably longer run times than the other incremental approaches. The reason for
that is the update procedure, which checks if changes should be made in each layer. On one
hand, this process makes the model more accurate with respect to the testing window but on
the other hand, it consumes longer processing times.

5.2 The Intrusion Detection (ID) Data Set

5.2.1 Data Acquisition
The data set used for the experiments, was originally used for the Third International

Knowledge Discovery and Data Mining Tools Competition, which was held in conjunction
with KDD-99 (The Fifth International Conference on Knowledge Discovery and Data
Mining). The competition task was to build a network intrusion detector, which is actually a
predictive model capable of distinguishing between “bad” connections, called intrusions or
attacks, and “good” normal connections. The database contains a standard set of data to be

21

audited, which includes a wide variety of intrusions simulated in a military network
environment. The data is available from the UCI KDD Archive [16].

The raw TCP data was accumulated for nine weeks from a local-area network (LAN)
simulating a typical U.S. Air Force LAN. The simulated LAN was operated as if it was a true
Air Force environment suffering from multiple attacks. The raw training data was about four
gigabytes of compressed binary TCP dump data from network traffic. It was processed into
about five million connection records. A connection is defined as a sequence of TCP packets
running from source IP to target IP, starting and ending at defined times. Each connection is
labeled as either normal or an attack with exactly one specific attack type. The main attack
categories are:

• DOS: denial-of-service
• R2L: unauthorized access from a remote machine
• U2R: unauthorized access to local super user (root) privileges
• Probing: surveillance and other probing (for example, port scanning)

The classification task in our experiments was also to determine the type of the connection
according to given past and present values of the data attributes.

5.2.2 Preprocessing the Intrusion Detection Data
The ID data set contains 41 candidate attributes and one class attribute. These 41 attributes

can be partitioned into three distinct categories: basic features of individual TCP connections,
content features within a connection representing domain knowledge, and traffic features
computed using a two-second time window.

For the purpose of the experiments, we used only a portion of the data (about 500,000
records). For each discrete attribute, rare and uncommon values were eliminated. The basic
rule for value elimination was as follows: if a value of an attribute appears in less than 1% of
the entire data set (less than 5,000 records), the value should be removed. The domain of the
target attribute was also reduced from 22 values to seven using the same rule. Initial
experiments have supported the elimination of non-relevant values by producing almost the
same mining models in less run time and with almost the same accuracy rates. For
continuous attributes, missing values were completed using a simple moving average with a
lag equal to 5.

Using the Weka software [31], a feature selection procedure was applied, based on the
information gain measure of each candidate input attribute X with respect to the target
attribute:

)(
||
||

)()(
1

j

p

j

j DH
D
D

DHXIG ∑
=

−= (5)

Where D is the data set before splitting on the values of X, p is the number of values of X,
Dj is the data subset satisfying X = j, H (D) is the entropy of the target attribute given the
entire dataset D, and H (Dj) is the target attribute entropy given the subset Dj.

The obtained information gain values were between 1.52 and 0. Attributes with an
information gain of less than 0.5 were eliminated. The remaining attributes were: Duration,
Protocol_Type, Service, Src_Bytes, Dst_Bytes, Count, Srv_Count, Dst_Host_Count,
Dst_Host_Srv_Count, Dst_Host_Same_Srv_Rate, Dst_Host_Diff_Srv_Rate,
Dst_Host_Same_Src_Port_Rate, Dst_Host_Serror_Rate, Dst_Host_Srv_Serror_Rate,
Dst_Host_Rerror_Rate, Dst_Host_Srv_Rerror_Rate.

22

5.2.3 Results
The runs of the algorithms were again carried out on a Pentium IV processor with 256 MB of
RAM. In the experiments, the online learning on the ID data starts after inducing the initial
model from the first 500 records, which leaves the system to work with about 499,500
records. Table 3 presents the results of applying the IN-based single-pass algorithms and the
CVFDT algorithm to the ID data set.

Table 3: Intrusion Detection Data Results

Testing
Error Rate
(%)

Run Time
(sec)

Algorithm

2.35 1001.15 CVFDT
3.9 1079.67 Regenerative IFN
3 322.48 Basic Incremental IFN
3.5 222.47 Multi Model IFN
4 169.07 Pure Multi Model IFN
3.3 228.88 Advanced Incremental IFN

The testing error rates are shown graphically in Figure 11. Though in this data stream,

CVFDT has provided the lowest error rates, the error rates of the most accurate IN-based
online algorithms (Basic and Advanced IOLIN) were higher by less than 1%.

C
V

FD
T R
eg

en
er

at
iv

e

B
as

ic
 In

cr
em

en
ta

l

M
ul

ti
M

od
el

P
ur

e
M

ul
ti

M
od

el

A
dv

an
ce

d
In

cr
em

en
ta

l

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Algorithm

Er
ro

r
Ra

te
 (%

)

Figure 11 Testing Error Rates (ID Data)

Figure 12 presents the run time results. The incremental algorithms clearly outperform the
performance of the CVFDT algorithm and the regenerative approach (OLIN) in terms of the
run time.

23

C
V

FD
T

R
eg

en
er

at
iv

e

B
as

ic
 In

cr
em

en
ta

l

M
ul

ti
M

od
el

P
ur

e
M

ul
ti

M
od

el

A
dv

an
ce

d
In

cr
em

en
ta

l

0

200

400

600

800

1000

1200

Algorithm
Ru

n
Ti

m
e

(s
ec

.)

Figure 12 Run Time (ID Data)

6. Conclusions and Future Work

This paper has performed a comprehensive evaluation of a series of novel real-time data
mining algorithms, aimed at optimizing the classification performance under arrival of
dynamic data. Unlike existing techniques for mining continuous data streams, the real-time
algorithms adapt themselves automatically to the rate of data change (“concept drift”). The
learning module of the proposed real-time data mining methods is based on an advanced
decision-graph induction algorithm called Info-Fuzzy Network (IFN).

The first algorithm is the basic incremental IN. The intuition behind the basic incremental
approach is to update the current classification model with the current training window
concept as long as no major concept drift has been detected by a statistically significant drop
in predictive accuracy and to build a new model in case of a major concept drift. The second,
multi-model approach also updates a current model as long as the concept is stable. In
addition, if a concept drift has been detected, the algorithm searches for the best model for the
current data from all the past networks. The third algorithm uses the pure multi-model
approach – it searches for the best model from the past even if the concept is stable. The
fourth approach is the advanced incremental IFN. In this approach, we have enhanced the
update operations of the incremental IFN algorithm by maintaining the information-theoretic
quality of the current model disregarding its predictive accuracy on the new data.

The proposed real-time algorithms were implemented and then compared to the
regenerative approach, which applies the batch IFN algorithm to every new training window
and the CVFDT algorithm that constructs Hoeffding decision trees from dynamic data
streams. From the results it can be clearly stated that the IN-based incremental algorithms
achieve reasonably high predictive accuracy in the classification tasks while significantly
decreasing the processing time of the training data when scanning the data only once (using
the single-pass approach). Among the incremental approaches, the advanced IOLIN was
found to be the most accurate one but also the most expensive in terms of the processing time.
The reason for that is the update process in each layer of the network.

The two features of high accuracy and short processing time are very important when the
task is to classify high-speed data streams in real time. The information-theoretic incremental
algorithms seem to be quite accurate and at the same time cheaper in terms of the processing
time than the CVFDT algorithm based on Hoeffding bounds.

The future research can examine multi-thread implementations of incremental algorithms
aimed at further reduction of the processing times per record. Another important issue for

24

future research can be the calculation of the training window size. Currently, the size of the
training window depends on the accuracy rates achieved on the training and the testing
samples. The problem is how to calculate the size of the window if the accuracy rate of the
testing sample is not available. In addition, the incremental algorithms can be evaluated using
more real-world data streams from the fields of meteorology, agriculture, image processing,
etc.

Acknowledgements. We would like to thank the Traffic Control Center of Jerusalem for

granting us the permission to use their traffic database. This work was partially supported
under a research contract from the Israel Ministry of Defense and by the National Institute for
Systems Test and Productivity at University of South Florida under the USA Space and Naval
Warfare Systems Command Grant No. N00039-01-1-2248.

References

[1] C. Aggarwal, J. Han, J. Wang, and P. S. Yu, On Demand Classification of Data

Streams, in: Proc. KDD '04 (ACM Press, New York, NY, 2004) 503 - 508.
[2] L. Breiman, J.H. Friedman, R.A. Olshen, and P.J. Stone, Classification and Regression

Trees (CRC Press, Boca Raton, FL, 1984).
[3] L. Cohen, M. Last, G. Avrahami, “Incremental Info-Fuzzy Algorithm for Real Time

Data Mining of Non-Stationary Data Streams”, in: Proc. TDM 2004 - ICDM 2004
Workshop on Temporal Data Mining: Algorithms, Theory and Applications (Brighton
UK, 2004).

[4] L. Cohen, G. Avrahami, M. Last, A. Kandel, and O. Kipersztok “Real-Time Data
Mining of Non-Stationary Data Streams from Sensor Networks”, Information Fusion
Journal, Special Issue on Information Fusion in Distributed Sensor Networks, in press.
doi:10.1016/j.inffus.2005.05.005.

[5] L. Cohen, G. Avrahami, M. Last, A. Kandel, and O. Kipersztok “Incremental
Knowledge Discovery in Traffic Sensors Data”, in: Proc. SENSORFUSION 2005,
Workshop on Information Fusion and Dissemination in Wireless Sensor Networks
(Budapest, Hungary, 2005).

[6] L. Cohen, G. Avrahami, M. Last, A. Kandel, and O. Kipersztok, "Incremental
Classification of Nonstationary Data Streams", in: Proc. Second International
Workshop on Knowledge Discovery in Data Streams, (Porto, Portugal, 2005) 117-
124.

[7] T. M. Cover and J.A. Thomas, Elements of Information Theory, Second Edition
(Wiley-Interscience, New York, NY, 2006).

[8] D. E. Culler and W. Hong, Wireless sensor networks: Introduction, Communications
of the ACM 47 (6) (2004) 30-33.

[9] P. Domingos and G. Hulten, Mining High-Speed Data Streams, in: Proc. KDD 2000
(ACM Press, New York, NY, USA, 2000) 71-80.

[10] P. Domingos and G. Hulten, A General Framework for Mining Massive Data
Streams, Journal of Computational and Graphical Statistics 12 (4) (2003) 945-949.

[11] W. Fan, StreamMiner: A Classifier Ensemble-based Engine to Mine Concept
Drifting Data Streams, in: Proc. VLDB'2004 (Toronto, 2004) 1257-1260.

[12] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, From Data Mining to Knowledge
Discovery: An Overview, in: U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R.
Uthurusamy eds., Advances in Knowledge Discovery and Data Mining (AAAI/MIT
Press, Menlo Park, CA, 1996) 1-36.

25

[13] J. Gama, R. Rocha, and P. Medas, Accurate Decision Trees for mining high-speed
Data Streams, In: Proc. of the 9th ACM SIGKDD International Conference in
Knowledge Discovery and Data Mining (ACM Press, New York, NY, 2003) 523 -
528.

[14] C. Giraud-Carrier, A Note on the Utility of Incremental Learning, AI
Communications 13 (4) (2000) 215—223.

[15] D.P Helmbold and P.M. Long, Tracking Drifting Concepts by Minimizing
Disagreements, Machine Learning 14 (1994) 27-45.

[16] S. Hettich and S. D. Bay, The UCI KDD Archive [http://kdd.ics.uci.edu] (Irvine,
CA, University of California, Department of Information and Computer Science,
1999).

[17] G. Hulten, L, Spencer, and P. Domingos, Mining Time-Changing Data Streams, in:
Proc. KDD 2001 (ACM Press, New York, NY, 2001) 97-106.

[18] G. Hulten, and P. Domingos, Mining Complex Models from Arbitrarily Large
Databases in Constant Time, in: Proc. of the Eighth International Conference on
Knowledge Discovery and Data Mining (ACM Press, New York, NY, 2002) 525-531.

[19] G. Hulten, and P. Domingos, VFML -- A toolkit for mining high-speed time-
changing data streams, [http://www.cs.washington.edu/dm/vfml/] (University of
Washington, 2003).

[20] H. Kargupta, Distributed Data Mining for Sensor Networks, Tutorial (ECML /
PKDD, Pisa, 2004).

[21] N. Kasabov, Adaptation and Interaction in Dynamical Systems: Modeling and Rule
Discovery Through Evolving Connectionist Systems, Applied Soft Computing 6, (3)
2006, 307-322.

[22] M. Last, Online Classification of Nonstationary Data Streams, Intelligent Data
Analysis 6, (2) (2002) 129-147.

[23] M. Last, A. Kandel, O. Maimon, E. Eberbach, Anytime Algorithm for Feature
Selection, in: Proc. RSCTC 2000, Lecture Notes in Computer Science , Vol. 2005
(Springer-Verlag, Berlin, 2001) 532-539.

[24] M. Last and O. Maimon, A Compact and Accurate Model for Classification, IEEE
Transactions on Knowledge and Data Engineering 16 (2) (2004) 203-215.

[25] O. Maimon and M. Last, Knowledge Discovery and Data Mining - The Info-Fuzzy
Network (IFN) Methodology (Kluwer Academic Publishers, Boston, 2000).

[26] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz, UCI Repository of machine
learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html] (Irvine, CA:
University of California, Department of Information and Computer Science, 1998).

[27] K. B. Pratt and G. Tschapek, Visualizing Concept Drift, in: Proc. of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining, (ACM
Press, New York, NY, 2003) 24-27.

[28] J.R. Quinlan, Induction of Decision Trees, Machine Learning 1 (1) (1986) 81-106.
[29] J. R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann, San

Mateo, CA, 1993).
[30] H. Wang, W. Fan, P. Yu, and J. Han, Mining Concept-Drifting Data Streams using

Ensemble Classifiers, in: Proc. of the 9th ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD) (ACM Press, New York, NY,
2003) 226 - 235.

[31] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, 2nd ed. (Morgan Kaufmann, San Francisco, CA, 2005).

26

[32] G. Widmer and M. Kubat, Learning in the Presence of Concept Drift and Hidden
Contexts, Machine Learning (23) (1) (1996) 69-101.

[33] G. Zeira, O. Maimon, M. Last, L. Rokach, Change Detection in Classification
Models Induced from Time Series Data, in M. Last, A. Kandel, and H. Bunke eds.,
Data Mining in Time Series Databases, Series in Machine Perception and Artificial
Intelligence, Vol. 57 (World Scientific, Singapore, 2004) 101 – 125.

