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Abstract. Most data mining algorithms assume static behavior of the incoming 
data. In the real world, the situation is different and most continuously collected 
data streams are generated by dynamic processes, which may change over time, in 
some cases even drastically. The change in the underlying concept, also known as 
concept drift, causes the data mining model generated from past examples to 
become less accurate and relevant for classifying the current data. Most online 
learning algorithms deal with concept drift by generating a new model every time 
a concept drift is detected. On one hand, this solution ensures accurate and 
relevant models at all times, thus implying an increase in the classification 
accuracy. On the other hand, this approach suffers from a major drawback, which 
is the high computational cost of generating new models. The problem is getting 
worse when a concept drift is detected more frequently and, hence, a compromise 
in terms of computational effort and accuracy is needed.  This work describes a 
series of incremental algorithms that are shown empirically to produce more 
accurate classification models than the batch algorithms in the presence of a 
concept drift while being computationally cheaper than existing incremental 
methods. The proposed incremental algorithms are based on an advanced 
decision-tree learning methodology called "info-fuzzy network" (IFN), which is 
capable to induce compact and accurate classification models. The algorithms are 
evaluated on real-world streams of traffic and intrusion detection data. 
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1. Introduction 

Data mining is known as the core stage of Knowledge Discovery in Databases (KDD), 
which is defined by Fayyad et al  [12] as: “the nontrivial process of identifying valid, novel, 
potentially useful, and ultimately understandable patterns in data”. In recent years, there is an 
ongoing demand for systems, which are capable to mine massive and continuous streams of 
real-world data. The use of such systems can be in the fields of temperature monitoring, 
precision agriculture, urban traffic control, stock market analysis, network security, etc. The 
complex nature of real world data has increased the difficulties and the challenges of data 
mining in terms of data processing, data storage, and model storage requirements  [20]. One of 
the main difficulties in mining dynamic continuous data streams is to cope with the changing 
data concept. The fundamental processes generating most real-world data streams may change 
over years, months and even seconds, at times drastically. In case of the classification task, 
this change, also known as concept drift  [15], causes the data-mining model generated from 
past data to become less accurate in the classification of new records. Therefore, the most 
important characteristic of such a system is to deal with noise, uncertainty, and asynchrony of 
the real-world data  [8]. 

Batch classification algorithms like CART  [2], ID3  [28], C4.5  [29], and IFN  [25] are not 
suitable for mining continuous data streams. The main problem of these algorithms is their 
tendency to store and process the entire set of training data. The continuous arrival of training 
data increases their storage and processing effort, which eventually results in insufficient 
memory or prohibitively long computation times. In addition, when a certain data mining 
algorithm considers all past training examples, the induced patterns may not be valid and 
relevant to the new data because of changes in the dynamic process, which generates the data. 
In practical terms, this means an increasing error rate in classifying new records with the 
existing model. 

Algorithms and methods, which extract patterns from continuous and potentially dynamic 
data streams, are known as incremental (online) learning.  According to  [14], a learning task 
is defined as incremental if the training examples used to solve it become available over time, 
usually one at a time. The basic approach of pure incremental algorithms is to induce patterns 
in an incremental manner based on every new incoming instance. This means that instead of 
building a new model, an incremental learning algorithm updates the current model. This 
approach saves a significant amount of computer resources such as processing time and 
memory. In the area of incremental learning with decision-tree classification algorithms, there 
are several methods such as VFDT  [9], CVFDT  [17], and OLIN  [22], which in general are 
able to process continuous data streams.  

In this paper, we present a series of novel incremental algorithms that produce more 
accurate classification models than the batch algorithms in the presence of a concept drift and 
are computationally cheaper than existing incremental methods (OLIN and CVFDT). In our 
work, we use classification models, which are “oblivious” decision trees generated by the IFN 
(Info-Fuzzy Network) algorithm introduced by Maimon & Last in  [25].  The proposed 
incremental algorithms are evaluated on real-world streams of traffic and intrusion-detection 
data. The algorithms are also compared to a leading incremental approach to mining dynamic 
data streams called CVFDT (Concept adapting Very Fast Decision Tree) of  [17] and the 
results show that our incremental methods outperform the CVFDT performance in terms of 
run time while maintaining nearly the same level of predictive accuracy. 
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The rest of this paper is organized as follows. Section 2 presents the related work in the 
areas of incremental learning and real-time data mining. Section 3 presents a brief overview 
of IFN and OLIN algorithms, which are the basis for this work. Section 4 presents the 
proposed incremental algorithms, and Section 5 is the evaluation part. In Section 6, we 
conclude our paper with a discussion of experimental results and propositions for future work. 

2. Related work 

2.1 Incremental Learning 

Pratt & Tschapek  [27] claim that the change in outcome distribution (concept drift) may occur 
in two ways. First, an existing predictive rule may keep its accuracy level, but the rule may be 
invoked more or less often due to a change in the frequency of occurrence of its feature 
values. Second, the accuracy of a certain rule may decrease because its underlying features 
have become irrelevant. In this case, those rules should be discarded and replaced with new 
rules that depend on newly relevant features. They also propose a visualization technique that 
uses brushed, parallel histograms to help in identifying a concept drift in multidimensional 
problem spaces. 

In order to overcome the concept drift issue, the optimal situation is to have data mining 
systems, which operate continuously, constantly processing data received so that potentially 
valuable information is never lost. To achieve this goal, many methods were developed, all 
under the general title of incremental (online) learning, which is aimed at extracting patterns 
from continuous data streams. The main concept behind the incremental learning methods is 
that upon receiving a new example, it is cheaper to update an existing model than to build a 
new one.  The pure incremental learning methods take into account every new instance that 
arrives. Widmer & Kubat  [32] have described a series of pure incremental learning algorithms 
called FLORA that flexibly react to concept drift and can take advantage of situations where a 
context repeats itself. The main idea behind all their algorithms is to: 

1. Keep a window of current examples and a hypothesis. 
2. Keep concept descriptions and use them again when they reappear. 
3. Monitor the window of examples and the concept descriptions (the system behavior). 
The FLORA family includes a number of incremental algorithms; the first one is FLORA2, 

which maintains a dynamically adjustable window during the learning process (the latest 
training examples). The heuristic for adjusting the size of the window is known as WAH 
(window adjustment heuristic). WAH shrinks the window and forgets old instances when a 
concept drift seems to occur (a drop in predictive accuracy) and keeps the window size fixed 
as long as the concept seems to be stable. Otherwise, the window keeps growing until the 
concept seems to be stable. FLORA3 stores concepts in stable situations and reuses them 
whenever a similar context re-appears. In environments with small number of contexts, the 
process of relearning speeds up due to storage of past concepts. FLORA4 is designed to be 
exceptionally robust with respect to noise in the training data as it is very difficult in 
incremental learning to distinguish between slight irregularities due to noise and a real 
concept drift.  

A recent paper  [21] presents a methodology for adaptive modeling and discovery of 
dynamic relationship rules from continuous data streams using Evolving Fuzzy Neural 
Networks (EFuNN).  After each consecutive chunk of data is entered into the system, 
extracted rules are compared in order to discover new patterns of interaction between input 
and output variables.  The approach of  [21] is demonstrated on two simple case studies. 
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2.2 Real Time Data Mining 

The main characteristic of a real-time data mining algorithm is its ability to cope with 
dynamic and high-speed data streams. As mentioned above, dynamic data streams contain 
concept drifts resulting from changes in the underlying process. In addition, the arrival rate of 
the data may be very high. 

Domingos & Hulten  [9] proposed the VFDT (Very Fast Decision Trees learner) algorithm 
in order to overcome the long training times issue. The VFDT algorithm is based on a 
decision-tree learning method combined with sub-sampling of the entire data stream. The size 
of the sub-sample is calculated using distribution-free bounds called Hoeffding bounds under 
the assumption that the data is generated by a stationary distribution. For this reason, the 
method can process each example in constant time and memory and is able to incorporate tens 
of thousands of examples per second using off-the-shelf hardware. In addition, the VFDT 
algorithm is an anytime algorithm in the sense that at any time (after the first few examples 
are seen) there is a ready-to-use model of gradually increasing quality. The main drawback of 
the VFDT algorithm is its inability to cope with concept drifts. The ideas initially proposed in 
the VFDT algorithm are generalized in  [18], where the authors describe the VFBN (Very Fast 
Bayesian Networks), which also use the concept of Hoeffding bounds in order to calculate the 
size of the sub-sample. 

Hulten, et al.  [17] have proposed an improved version of the VFDT algorithm called the 
CVFDT (Concept-adapting Very Fast Decision Trees learner) algorithm. The CVFDT 
algorithm utilizes VFDT advantages of speed and accuracy and in addition has the ability to 
discover and react to dynamic changes in the data. It works with a fixed sliding window of 
examples and builds a model in an incremental manner. Every time a new example arrives, 
CVFDT updates the sufficient statistics at its nodes by incrementing the counts corresponding 
to the new example and decrementing the counts corresponding to the oldest example in the 
window (which now needs to be forgotten). If there is no concept drift, the updates will have 
no effect on the current model. However, if a concept drift has been discovered, some splits 
that previously passed the Hoeffding test will no longer do so, because an alternative attribute 
now has a higher gain value. In that case, the algorithm begins to grow an alternative sub-tree 
with the new best attribute at its root. If the alternative sub-tree appears to be more accurate 
on new data than the old one, the new sub-tree replaces the old one. The advantages of 
CVFDT are its high accuracy and low time complexity. CVFDT develops a model which is 
almost as accurate as the one that would be developed by applying VFDT to a sliding window 
of examples every time a new example arrives, but with O(1) complexity per example, as 
opposed to O(w), where w is the size of the window. 

Gama, Rocha & Medas  [13] have proposed the VFDTc algorithm, which is an extension to 
the VFDT algorithm in two aspects: the ability to cope with continuous data and the use of 
more powerful classification techniques at the tree leaves. For the first issue, the information 
gain of a continuous attribute is calculated by an exhaustive method, which evaluates the 
quality of all possible discretization points. For the second issue, Naïve Bayes Classifiers are 
implemented at the tree leaves.  

The CVFDT algorithm  [17] mines high-speed data streams under the approach of one-pass 
mining. C. Aggarwal, et al.  [1] claim in their paper that the problem with the one-pass mining 
approach is that it disables the recognition of changes in the mining model during the data 
arrival process. Although the CVFDT algorithm seems to be an effective method for 
incremental updating of a classification model induced from a dynamic data stream, the claim 
is that the accuracy of such an incremental model cannot be greater than a model, which was 
created, based on the best sliding window model for the current time. The empirical results in 
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 [1] show that the true behavior of a data stream is best represented in a temporal model, which 
is sensitive to the level of evolution of a data stream. 

The challenge of mining concept drifting data streams was also studied by Wang et al.  [30]. 
The authors proposed to use weighted classifier ensembles to mine data streams that contain 
concept drifts. While most incremental algorithms continuously revise a single model, the 
authors propose to train an ensemble of classifiers from sequential data chunks in the stream. 
This approach helps in avoiding overfitting and the problem of conflicting concepts by giving 
each classifier a weight based on its expected predictive accuracy on the current test 
examples. 

W. Fan  [11] presents the StreamMiner, which is a random decision-tree ensemble based 
engine for mining a data stream. The StreamMiner's choice of the optimal model depends on 
the amount of data needed and the detection of a concept drift. The results of the experiments 
show the potential of the StreamMiner in classifying streams with changing concept. An 
interesting question is how the algorithm deals with high-speed streams. This issue is not 
discussed by  [11]. 

Domingos & Hulten  [10] proposed a general framework for mining massive data streams. 
Their framework consists of three steps: 

1. Derive an upper bound for the time complexity of the chosen data mining algorithm, 
depending on the number of training examples required at each step. 

2. Derive an upper bound for the accuracy loss between the finite-data and the infinite-
data models, as a function of the number of examples required at each step of the finite-data 
algorithm. 

3. Minimize the time complexity by decreasing the number of examples required at each 
step, subject to pre-specified limitation on the accuracy loss. 

This general framework assists in two main issues related to mining of high-speed data 
streams. The first one is how much data is enough for producing a model, which is almost as 
accurate as the one produced from infinite-data. The second one is how to keep the existing 
model updated when the data stream is dynamic and concept drifts are discovered. 

To deal with dynamic data streams, Last  [22] developed the OLIN (On Line Information 
Network) classification algorithm that induces an oblivious decision-tree model called Info-
Fuzzy Network (IFN). As shown in  [24] and  [25], IFN is characterized by almost the same 
accuracy level as CART and C4.5 but has a much more compact structure. Its anytime 
properties, shown in  [23], make IFN particularly appropriate for the task of real-time data 
mining in high-speed data streams.  OLIN gets a continuous stream of data and builds an info-
fuzzy network based on a sliding window of latest examples. Unlike the CVFDT algorithm 
having a fixed window size, OLIN dynamically adjusts the size of the training window and 
the rate of the model reconstruction to the current rate of the concept drift measured by 
fluctuations in the classification error rate.  

In  [3] [4] [5] [6], we have extended the ideas suggested by Last  [22] in order to enhance the 
performance of the OLIN system. We have suggested a series of incremental algorithms also 
dealing with continuous dynamic data streams, but this time instead of creating a new 
classification model for each new sliding window of examples, the algorithms update or 
replace a current model according to the new data unless a major concept drift is detected. 
This paper summarizes the above work by presenting, for the first time, a comprehensive 
evaluation of these incremental methods in comparison to the regenerative (OLIN) approach 
and the state-of-the-art algorithm for mining dynamic data streams (CVFDT). The evaluation 
results presented in this paper also include, for the first time, the experiments with the 
Intrusion Detection Dataset  [16], which is much larger than the traffic data streams used in 
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our previous publications.  A full description of the methods and the experiments is provided 
in the subsequent sections. 

3. Information Networks: An Overview 

3.1 The Batch Learning Algorithm (IN) 

Many batch and online learning methods use the information theory to induce classification 
models. One of the batch information-theoretic methods, developed by Last & Maimon  [24] 
 [25], is the Info-Fuzzy Network algorithm (also known as Information Network - IN). IN is 
an oblivious decision-tree classification model designed to minimize the total number of 
predicting attributes. The underlying principle of the IN-based methodology is to construct a 
multi-layered network in order to maximize the Mutual Information (MI) between the input 
and the target attributes. Each hidden layer is uniquely associated with a specific predictive 
attribute (feature) and represents an interaction between that feature and features represented 
by preceding layers. Unlike such popular decision-tree algorithms as CART  [2] and C4.5 
 [29], the IN algorithm is using a pre-pruning strategy: a node is split if the split leads to a 
statistically significant decrease in the conditional entropy of the target attribute (equal to an 
increase in the conditional mutual information1). If none of the remaining candidate input 
attributes provides a statistically significant increase in the mutual information, the network 
construction stops. The output of the IFN algorithm is a classification network, which can be 
used as a decision tree to predict the value (class) of the target attribute.  For continuous target 
attributes, each prediction refers to a discretization interval rather than a specific class. 

Figure 1 illustrates a sample structure of a 3-layer information network for the well-known 
Credit Approval Dataset  [26].  The IFN algorithm has selected only three predictive features 
to be included in the network: Other Investments, Balance, and Bank Account.  
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Figure 1 Sample Info-Fuzzy Network - Credit Approval Dataset 

The network construction algorithm can be summarized as follows (based on  [24]): 

                                                 
1 The conditional mutual information  [7], or information gain  [28], is an information-theoretic measure of association 

between two random variables X and Y , which is defined as a decrease in the entropy (uncertainty) of Y as a result of 
knowing X (and vice versa). 



 

 

7

Input: the set of n training instances; the set CI of m candidate input attributes (discrete and 
continuous); the target (classification) attribute T; the minimum significance level sign for splitting a 
network node (default: sign = 0.1%). 
Output: a set I of selected input attributes and an information-theoretic network IN.  Each input 
attribute has a corresponding hidden layer in the network. 
Step 1 - Initialize the information-theoretic network: a single root node representing all training 
instances, no hidden layers (I = ∅, l = 0), and a target layer for the values of the target attribute. 
Step 2 - While the number of layers l < m (number of candidate input attributes) do 
Step 2.1 – for each candidate input attribute Ai ∉ I do 
if Ai is discrete then 
Return the statistically significant conditional mutual information cond_MIi between Ai and T. 
Else return the best threshold splits of Ai and the statistically significant conditional mutual 
information cond_MIi between Ai and the target attribute T. 

Step 2.2 – find the candidate input attribute Ai* maximizing cond_MIi 

Step 2.3 –  If cond_MIi* = 0, then 
End do.   

Else  
Step 2.3.1 – expand the network by a new hidden layer associated with the attribute Ai* and 
increment the number of layers l. 
 Step 2.3.2 – Update the set I of selected input attributes I = I ∪ Ai* 

Step 3 – Return the set I of selected input attributes and the network structure 
The network predictions can be used to compute the reliability degrees of the actual values 

of a target attribute in each training instance. In  [25], data reliability is defined as a fuzzy 
measure representing the degree of certainty that the value of a target attribute A in a specific 
instance k is correct from the user’s point of view.  The calculation of reliability degrees in 
 [25] is based on the difference between estimated probabilities of the actual target value 
(class) and the value (class) predicted by the info-fuzzy network. It is also based on the user-
specified coefficient β, which represents the subjective attitude of a particular user to 
reliability of “unexpected” data.  Low values of β (around 1) provide a continuous range of 
reliability degrees between 0 and 1 for different values of a target attribute.  Higher values of 
β (like 10 or 20) assign a reliability degree of zero to nearly any value, which is different from 
the predicted one. 

Low data reliability cannot be used as an indication of low model accuracy.  To clarify this 
issue, we are providing two extreme examples of binary (two-class) classification problems.  
If a model is close to a random guess, its accuracy is very low (e.g., 51.1% only).  However, 
according to the reliability function defined in  [25], the reliability degree of minority class 
instances is very close to 1, since they have almost the same probability as the instances of the 
majority class.  On the other hand, in a very accurate model of 99.9% accuracy, the minority 
class instances are considered extremely unreliable.  In general, data reliability, unlike model 
accuracy, is determined by the difference between class probabilities rather than by the 
probability of any specific class. 

3.2 The Online Learning Algorithm (OLIN) 

The OLIN algorithm  [22] extends the IN algorithm for mining continuous and dynamic 
data streams. The system repeatedly applies the IN algorithm to a sliding window of training 
examples and changes the size of the training window (and thus the re-construction 
frequency) according to the current rate of concept drift. The purpose of the system is to 
predict at any given time the correct class for the next arriving example. 

The architecture of the OLIN-based system is presented in Figure 2. 
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Figure 2 OLIN-based System Architecture (from  [22]) 
 

The online learning system contains three main parts: the Learning Module is responsible 
for applying the IN algorithm to the current sliding window of examples; the Classification 
Module is responsible for classifying the incoming examples using the current network; and 
the Meta Learning Module controls the operation of the Learning Module. As shown in 
Figure 2, the system builds a network from T0 training examples; afterwards, the next V0 
examples are classified according to the induced network. According to the regenerative 
approach of OLIN, when more examples arrive, a completely new network is built from the 
most recent T1 examples, where the last example belonging to T1 is also the last example of 
V0. In order to ensure that each example in the data stream will be classified only once, the 
validation intervals have to be disjoint and consecutive. After constructing a new network, the 
set V1 is classified using that network. This regenerative process continues indefinitely if the 
data stream never stops. 

The Meta Learning module gets as input the error rates of the training and the validation 
examples classified by the current IN model.  Those error rates are denoted as Etr and Eval 
respectively. In addition, it gets the description of the model itself (selected attributes, entropy 
information, etc.). Using all these inputs, the module re-calculates the size of the next training 
window (interval) and the number of validation examples to be classified by the next model. 

The OLIN system is based on the assumption that if the concept is stable, the training and 
the validation examples, should conform to the same distribution. Thus, the error rates in 
classifying those examples using the current model should not be significantly different. On 
the other hand, a statistically significant difference may indicate a possible concept drift. The 
variance of the differences between the error rates is calculated by the following formula 
based on a Normal Approximation to the Binominal distribution (Eq. 9 in  [22]):  

CountAdd
EE

W
EE

DiffVar valvaltrtr

_
)1()1(

_
−

+
−

=   (1) 

Where W is the size of the training window and Add_Count is the number of validation 
examples. 
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The algorithm tests the null hypothesis that the concept is stable, in which case the 
maximum difference between the training and validation error rates, at the 99% confidence 
level is: 

DiffVarDiffVarZDiffMax _326.2__ 99.0 ==   (2) 

A concept drift is detected by the algorithm when the difference between the error rates is 
greater than Max_Diff implying that the null hypothesis can be rejected. In that case, the 
algorithm re-calculates the size of the next training window using the following formula 
(based on Eq. 8 in  [22]): 

))1(log)()((2ln2
))1()1((

2

2

−−−
−⋅−

=
NTEEHTH

NTNIW
trtr

iαχ  (3) 

Where α is the significance level sign used by the network construction algorithm (default: 
α = 0.1%), NIi is the number of values (or discretized intervals) for the first input attribute Ai 
in the info-fuzzy network, NT is the number of target values, H (T) is the entropy of the target, 
and Etr is the training error of the current model. 

In addition, the number of examples in the next validation interval is reduced by 
Red_Add_Count. Otherwise, the concept is considered stable and both the training window 
and the validation interval are increased by Add_Count examples up to their maximum sizes 
of Max_Add_Count and Max_Win, respectively. 

4. Incremental Information Network Algorithms 

The OLIN online classification algorithm  [22] deals with the potential concept drift in a 
non-stationary data stream by simply generating a new model for every new sliding window. 
On one hand, this regenerative approach ensures accurate and relevant models over time and 
therefore an increase in the classification accuracy. On the other hand, OLIN's major 
shortcoming is the high computational cost of generating new models. In this section, we 
present four incremental learning algorithms, which are aimed at reducing the high 
computational cost of the regenerative approach. As shown in the evaluation section of this 
paper, the incremental methods achieve almost the same and sometimes even higher accuracy 
rates than OLIN and are significantly cheaper, since there is no need of producing a new 
model for every new window of examples. 

4.1 Basic Incremental Approach 

We start this section with a detailed description of the Basic IOLIN algorithm initially 
introduced by us in  [3]. In general, the basic incremental method updates a current model as 
long as the concept is stable. If a concept drift has been detected, the algorithm creates a 
completely new network. The operations of the Update_Current_Network procedure include 
checking split validity, examining the replacement of the last layer, and adding new layers as 
necessary. Each of the update operations is aimed at reducing the error rate of the existing 
model, when using it for classifying new instances. The first update procedure 
Check_Split_Validity should eliminate nodes, which are not relevant for the model according 
to the current training window. The split validity checking starts from the root and goes 
downwards the network. The general idea is to ensure that the current split of a specific node 
actually contributes to the mutual information calculated from the current training set. 



 

 

10

Elimination of non-relevant splits should decrease the error rate. From experiments conducted 
with the regenerative OLIN  [22], we discovered that when there is no major concept drift 
between two adjacent windows, the main differences between the newly constructed model 
and the current one are in the last hidden layer of the information network. For this reason, the 
second procedure Check_Replacement_of_Last_Layer is applied in order to determine which 
attribute is most appropriate to correspond to the last (final) hidden layer. The attributes under 
consideration include the attribute that is already associated with the last layer or the second 
best attribute for the last layer of the previous model. The attribute selected for the last layer 
of the new model will be the one with the highest conditional mutual information based on the 
current training window. The last procedure New_Split_Process attempts to split the nodes of 
the last layer on attributes, which are not yet participating in the updated network. 

The basic intuition behind the incremental approach is to update the current classification 
model with the current training window concept as long as no major concept drift has been 
detected by a statistically significant drop in predictive accuracy and to build a new model 
only in case of a major concept drift. Actually, the regenerative approach can be viewed as a 
special case of the incremental approach. If a major concept drift is detected at each arrival of 
new data, the incremental approach is identical to the regenerative one. So the incremental 
approach becomes useful only when the concept stays stable between at least one pair of 
adjacent windows. This condition can be expected in most data streams, especially those 
where the size of the training window is relatively small. The pseudo-code outline of the 
Basic Incremental OLIN (Basic IOLIN) algorithm and its main procedures is presented 
below. 

 IN_Control 

Input: continuous stream of examples (S) 

Output: Updated / New network model 

 

Calculate the initial size of the training window Winit 

Set W = Winit 

Obtain IN model by applying the IN algorithm to the sliding window (W) 

While S is not finished 

 IN model = Incremental_IN (W, IN model) 

 Return IN model 
 

Figure 3 IN_Control Procedure 
The IN_Control procedure (see Figure 3) is responsible for managing the application. It 

gets as input a continuous stream of examples (S). The initial size of the training window Winit 
is calculated using the following expression  [22]: 

))1(log)()((log2ln2
)1(

22

2

−−−
−

=
NTPPHNT

NTW
ee

init
αχ  (4) 

Where α is the significance level sign used by the network construction algorithm (default: 
α = 0.1%), NT is the number of target values (classes), Pe is the maximum allowable 
prediction error of the model (default = 0.50), H is Shannon’s entropy  [7], and χ2

α (n) is the 
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inverse of the chi-squared distribution with probability α and n degrees of freedom.  The 
general idea behind the formula (4) is to find the minimum number of training examples 
required to construct an information network for predicting an NT-valued target attribute, 
while preserving the prediction error below Pe.  As explained in  [22], the nominator of (4) 
refers to the critical value of the chi-square distribution required to confirm the statistical 
significance α of splitting the root node on an input attribute while the denominator represents 
the mutual information between the input and the target attributes.  Figure 4 shows the initial 
size of the training window Winit as a function of the number of classes NT while the 
maximum allowable prediction error Pe is kept at the fixed level of 20%.  As one can see, the 
number of required examples is decreasing as the target attribute takes more values, since 
preserving the same error rate for more classes implies a higher decrease in error vs. the 
default (majority rule) model for uniform priors. Furthermore, a higher decrease in the error 
rate of the classification model indicates a smaller amount of uncertainty (noisiness) 
presenting in the data, which means that the mutual information (the denominator of Eq. 4) is 
higher. In other words, we need less training examples to induce a model of the same 
accuracy from less noisy data. 
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Figure 4 Winit and Error Decrease as a Function of NT 

Afterwards, the initial network model is produced by applying the IN algorithm to the 
initial window of examples.  The algorithm will run until the end of the data stream. As long 
as a data stream continues, the algorithm will keep running and producing up-to-date IN 
classification models. 

The Incremental_IN procedure (see Figure 5) is responsible for calculating both error rates 
of the training and validation examples after running the current model on those data sets. The 
maximum expected difference between those errors Max_Diff is calculated at the 99% 
confidence level using a Normal Approximation to the Binominal distribution (see Eq. 2 
above). It is important to mention our basic assumption that the correct classifications for the 
window of validation examples are immediately available. This is a reasonable assumption in 
process monitoring, traffic control, web usage mining, video stream monitoring, and other 
real-time data mining domains. The correct classifications are used for calculating the 
validation error rate and determine whether a major concept drift has occurred. 
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A concept is considered stable if the actual difference between the validation and the 
training errors (Eval - Etr) is smaller than the maximum expected difference Max_Diff. This 
means that the examples in the training window and in the subsequent validation interval 
conform to the same distribution and there is no statistically significant difference between 
the model’s training and validation error rates. In this case, operations for updating the 
network are applied. However, if there is a statistically significant increase in the error rate, it 
indicates that a major concept drift occurs and the basic incremental approach creates a new 
network. The size of the calculated training window is based on the concept stability (see 
 [22]). In general, the size of the training window increases if the concept appears to be stable 
and shrinks if a concept drift has been detected. 

 
 Incremental_IN 

Input: training window (W), current information network model (IN 

model) 

Output: Updated / New network model 

 

Calculate the training error rate Etr of IN model 

Calculate the validation error rate Eval of IN model 

Find the maximum expected difference between the last training and the 

validation errors Max_Diff  

If (Eval - Etr) < Max_Diff     //concept is stable  

IN_Model  = Update_Current_Network (IN_Model, W) 

Else 

IN_Model  = IN (W) 

Calculate New_Training_Window_Size W 

R t IN M d l  
Figure 5 Incremental_IN Procedure 

 
The Update_Current_Network procedure gets as inputs the current network structure and a 

sliding window. This procedure activates another procedure (Check_Split_Validity) for 
checking the split validity of the current network. Afterwards, it replaces the last layer of the 
network if needed. Finally, it activates the New_Split_Process procedure attempting to split 
the last layer (whether it was replaced or not) and add a new hidden layer to the network, if 
necessary. 
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 Update_Current_Network 

Input: training window (W), current information network model (IN model) 

Output: Updated network model 

 

Check_Split_Validity (IN_Model, W) on the last layer of the current model 

Calculate the conditional MI of Sec_Best_Attr based on the current training set (W) 

IF (conditional MI of the current last layer < conditional MI of Sec_Best_Attr) 

Replace last layer with Sec_Best_Attr 

New_Split_Process (IN) on the last layer of the current model 

Return IN_Model 

 

Figure 6 Update_Current_Network Procedure 

 

Check_Split_Validity is responsible to verify that the current split of each node actually 
contributes to the conditional mutual information calculated from the current training set.  

 
 Check_Split_Validity 

Input: training window W, current information network model (IN model) 

Output: Updated network model 

 

For i = 1 to i = total_number_of_layers-1 

For j = 1 to j = number of nodes in hidden layer i 

If node j is split 

Calculate the estimated conditional MI of j and the target attribute 

Calculate the Likelihood-ratio* statistic of j 

If the Likelihood-ratio statistic of j is significant 

 Leave the node split 

Else 

  Remove the splitting and make j a terminal node 
 

Figure 7 Check_Split_Validity Procedure 
*The likelihood-ratio statistic is discussed in  [22]. 
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New_Split_Process is responsible for splitting the nodes of the last layer on attributes, 
which are not yet included in the updated network. From the candidate attributes, which are 
not yet participating in the network structure, this procedure finds the best one for splitting the 
current last hidden layer according to the MI value. The split by the new input attribute is 
made on the relevant nodes of the last hidden layer and a new hidden layer is added to the 
network. 

 
 New_Split_Process (IN model) 

Input: current network model  

Output: Updated network model 

 

Repeat for every candidate input attribute i’ which is still not an input attribute 

Repeat for every node z of the final hidden layer 

Calculate the estimated conditional MI of i’ and the target attribute given z 

Calculate the Likelihood-ratio statistic of i’ and the target attribute given z 

If the Likelihood-ratio statistic of i’ is significant 

 Make i’ the best input attribute and define a new layer for i’ 
 

Figure 8 New_Split_Process Procedure 

 
The Basic IOLIN creates an information network based on a certain number of past 

examples. When the network construction completes, the algorithm applies it to online data in 
order to predict the target value of each new record. This means that the algorithm gets two 
windows as inputs: the first one is a sliding window of past examples and their actual 
classification, which is used for the construction of the network. The second one is a window 
of new records, which need to be classified. 

As mentioned above, the assumption is that the true classification of the incoming records 
becomes available after a short while. The true classification can then be used to start the 
construction of a new network for future classification. As long as the true classification is not 
available from the monitored system, we can keep the current network. Another alternative is 
to use unsupervised learning methods in order to detect changes in the distribution of 
unlabelled data and update the current network accordingly. Zeira et al.  [33] present a 
methodology for change detection and segmentation based on a set of statistical estimators. 
This methodology can be used for detecting statistically significant changes in incrementally 
built classification models of data mining.  

The time complexity of the suggested incremental algorithm depends on the number of 
detected concept drifts. As long as no concept drift has been detected, the major 
computational cost is to add a new layer to the existing network. Checking the split validity of 
the nodes in the network is relatively cheap (O(n) where n is the number of nodes in the 
network). In case of concept drift, a new network should be constructed from scratch, and the 
cost of the network construction procedure is linear in the number of records, linear in the 
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number of distinct attribute values, and quadratic in the number of candidate input attributes 
 [24].  When a candidate input attribute is continuous, the number of distinct attribute values is 
equal to the number of potential splits, which is bounded by the size of the training set.  Thus, 
as shown in [23], the time complexity of discretizing each continuous attribute in a given 
layer of the network is quadratic in the number of training records.  Discretization also 
requires identification and sorting of distinct values for each continuous attribute before 
construction of a new network.  The computational complexity of these operations is at most 
quadratic in the number of records. 

4.2 Multiple-Model IOLIN 

The second incremental approach introduced in  [6] also updates a current model as long as 
the concept is stable. However, if a concept drift has been detected for the first time, the 
algorithm searches for the best model representing the current data from all previous 
networks. The idea is to utilize potential periodicity in the data by re-using previously created 
models rather than generating a new model with every concept drift as suggested by the Basic 
IOLIN approach. The search is made as follows: when a concept drift is being detected, the 
algorithm calculates the target attribute’s entropy and compares it to the target’s entropy 
values of each previous training window, where a completely new network was constructed. 
The previous network to be chosen is the one, which was built from the training window 
having the closest target entropy to the current target’s entropy. The chosen network is used 
for classification of the examples arriving in the next validation session. In the case of 
recurrence of a concept drift, a new network is created like under the Basic IOLIN approach. 
Following is the pseudo-code outline of the Multiple-Model IOLIN algorithm: 

 
Multiple Model IOLIN 
Input: Training window T, current network model, previous network models 
Output: Updated / Former / New network model 
 
For each new training window 

If concept drift is detected 
Search for the best network from the past by: 

1. Comparing the value of the target entropy (based on the current window data) to 
entropy values in all windows where a completely new network was built. 

2. Choose Network with Min |Ecurrent(T)- Eformer(T)|. 
3. Add new layers if possible. 

 If concept drift is detected again with the chosen network 
Create completely new network using the Info-Fuzzy algorithm 

Else update the existing network (see below) 
Else 

Update the existing network as follows: 
1. Eliminate non-relevant nodes. 
2. Replace the last layer with a better one. 
3. Add new layers if possible. 
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4.3 Pure Multiple-Model IOLIN 

In addition to the use of former models in the presence of concept drift, we also proposed in 
 [6] another variation of the multiple model approach, which includes the use of former 
models even in the case when the concept is stable. This means that when the concept is 
stable, we will use a former model instead of updating the current model. This approach 
should save additional run time because an appropriate model is likely to be found in the 
adjacent former windows. This approach is called the Pure Multiple Model IOLIN and its 
pseudo-code is given below: 
Pure Multiple Model IOLIN 
Input: Training window T, current network model, past network models 
Output: Former / New network model 
 
For each new training window 

Search for the best network from the past by: 
1. Comparing the value of the target entropy (based on the current 

window data) to entropy values in all windows where a totally new 
network was built. 

2. Choose Network with Min |Ecurrent(T)- Eformer(T)|. 
3. Add new layers if possible. 

 If a concept drift is detected again with the chosen network 
Create totally new network using the Info-Fuzzy algorithm 

4.4 Advanced IOLIN 

In the fourth proposed incremental algorithm, initially introduced by us in  [5]  [6], we 
enhance the update operations of the incremental algorithms by maintaining the information-
theoretic quality of the current model disregarding its predictive accuracy on the new data. 
We re-calculate the conditional mutual information of each layer using the top-down 
approach: we start with the first layer, and replace the input attributes in that layer and all 
subsequent layers in case of a significant decrease in the layer’s conditional mutual 
information with the target attribute. A decrease in the mutual information of the first layer 
will trigger a complete re-construction of the model. The current model will be retained only 
if there is no significant decrease in mutual information in any layer. In that case, we will try 
to add new layers representing attributes, which are not yet participating in the network.  

This approach does not deal directly with the issue of concept drift detection. The 
information network is constantly updated and the occurrence of a concept drift can be 
concluded if all network layers have been replaced. For each window, the conditional mutual 
information (MI) value of every layer is saved. In the model update process, a comparison is 
made between the former MI value of the ith layer and the current MI value. If the current 
value is nearly as high as the former one (up to 5% difference), the ith layer is kept as is. If the 
current MI value is significantly lower, the ith layer is replaced with a new one. Following is 
the pseudo-code outline of the advanced IOLIN algorithm: 

 
Advanced IOLIN 
Input: Training window, current network model, conditional mutual information of each 
network layer i (Former_Conditional_MI(i)) 
Output: Updated network model 
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For each new training window 
For each Layer i in existing network 
 Calculate Cond_MI(i)  
 If Cond_MI(i)≥Former_Conditional_MI(i)*95% 

Keep ith layer as is and move to the next layer 
 Else 

Continue the network construction by adding new layers 
 Save value: Former_Conditional_MI(i) = Conditional_MI(i) 
 If reached the last layer 

Try adding new layers to the network 
 
The time complexity of the advanced approach depends on the number of layers that have 

been replaced. In the case of a layer replacement, the algorithm searches for the best input 
attribute from the candidate inputs. This search costs O (n) where n is the number of 
candidate input attributes. In the replacement of all layers, which is actually the construction 
of a totally new network, the cost will be O(n*l) where l is the number of the network layers. 

5. Evaluation 

In this section, the proposed incremental algorithms are evaluated vs. the original 
Regenerative OLIN algorithm  [22] on several real-world streams of dynamic data. In 
addition, the IN-based methods are compared to the CVFDT incremental decision-tree learner 
 [17] available as part of the VFML toolkit  [19].  We have examined two aspects of all 
incremental algorithms: first, we have evaluated their predictive accuracy on incoming 
examples and secondly we have compared their processing time per the same number of 
arriving records. All IN-based algorithms were implemented with the single-pass approach 
used by CVFDT  [17], which implies that the algorithm will process each incoming record 
only once – either for training, or for testing. The real-world data streams were obtained from 
two different domains: urban traffic control and network intrusion detection.  

5.1. Traffic Data Streams 

5.1.1 Data Acquisition and Preparation 
The data acquisition and preprocessing of this dataset are extensively discussed in  [3] and 

 [4], so here we describe this data only in brief. The data streams we used include traffic flow 
information from under-road sensors at a signaled three-way junction of Tahon and Uruguay 
streets in Jerusalem, Israel. The vehicles can cross the intersection in five different directions. 
The resulting five data streams related to these directions have included the incoming traffic 
volumes for 24 hours a day, seven days a week during the period of more than 3 years (1999-
2002). Traffic count records have been saved to the Traffic Sensors Database every 15 
minutes, for every lane in the intersection. 

In the data cleaning stage, duplicate records have been removed and missing volume 
quantities have been filled in with the average of their preceding and successive traffic 
volumes. Cases with missing successive traffic volumes were completely ignored. In order to 
represent the traffic volumes per hour and per direction, the traffic volume records of all lanes 
in the same direction were combined and then the 15-minute records were summed up to one-
hour records for each direction. Eventually, each original data stream has been converted into 
a data set, where a record contains twelve candidate attributes representing the exact time 
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(date, hour, day in week, etc.) when the traffic volume was measured and traffic volumes at 
earlier points of time (the previous hour, the same hour of the previous day, etc.). The 
resulting relational dataset is described in Table 1. 

The target attribute Current Hourly Volume represents the volume of traffic during a given 
hour. Since the target attribute is continuous, we have manually discretized it to four equal-
frequency intervals of traffic volume. The traffic data was partitioned into five separate data 
tables for the five traffic directions. Each table corresponding to a given direction contained 
about 30,000 hourly records. 

 

Table 1 Traffic Attributes 

Attribute Source Values Attribute 
Type 

Date Sensor  none 

Hour Sensor 0 to 23, as the beginning hour of 
the interval 

Input 

Year Derived 1999 to 2002 Input 
Month of Year Derived 1-12 Input 
Week of Year Derived 1 to 52 Input 
Day of Week Derived 1 to 7 Input 
Day of Year Derived 1 to 365 Input 
Day of Month Derived 1-31 Input 

Day Type Derived 0 = regular day, 1 = a holiday eve, 
2 = holiday 

Input 

Previous Hour 
Volume Sensor  Input 

Previous Day 
Hourly Volume Sensor  Input 

Previous Week 
Hourly Volume Sensor  Input 

Current Hourly 
Volume  Sensor  Target 

 

5.1.2 Results 
The runs of the algorithms were carried out on a Pentium IV processor with 256 MB of 

RAM. In the experiments, the online learning of the traffic data starts after inducing the initial 
model from the first 500 records, which leaves the system to work with about 30,000 records 
for each direction in every year. Table 2 presents the results of applying the IN-based single-
pass algorithms and the CVFDT algorithm to the traffic data sets.  The testing error rates and 
the processing times are shown graphically in Figure 9 and Figure 10, respectively 

 



 

 

19

Table 2 Traffic Data Results 

Testing 
Error Rate 
(%) 

Run Time 
(sec) 

Data Source Algorithm 

28.63 50.76 Direction1 
23 49.79 Direction2 
23.7 55.76 Direction3 
23.23 50.48 Direction4 
22.43 49.55 Direction5 

CVFDT 

        
18.7 22.11 Direction1 
14.1 11.63 Direction2 
6.5 16.07 Direction3 
4.8 11.89 Direction4 
23.5 14.2 Direction5 

Regenerative IFN 

      
26.4 8.78 Direction1 
13.2 4.54 Direction2 
8.7 3.62 Direction3 
6.2 3.83 Direction4 
25.3 4.67 Direction5 

Basic Incremental IFN 

      
26.1 9.59 Direction1 
13.2 6.77 Direction2 
8.7 4.32 Direction3 
6.2 4.46 Direction4 
25.3 6.56 Direction5 

Multi Model IFN 

      
27.4 19.99 Direction1 
12.9 6.62 Direction2 
8.6 4.73 Direction3 
5.4 4.09 Direction4 
25.6 4.63 Direction5 

Pure Multi Model IFN 

      
19.5 8.86 Direction1 
12.9 10.47 Direction2 
6.4 16.09 Direction3 
4.5 9.05 Direction4 
22.2 12.94 Direction5 

Advanced Incremental 
IFN 

 
Table 2 and Figure 9 show that, in most cases, the IOLIN-based algorithms outperform the 

accuracy rate of the CVFDT algorithm, with Advanced IOLIN being the most accurate 
algorithm in all five data streams.  The differences in the error rates across traffic directions 
imply that Directions 2-4 are less noisy than Directions 1 and 5.  In practical terms, this 
means that the temporal behavior of car drivers crossing the intersection in Directions 1 and 5 
is less predictable than of those crossing in all other directions. 
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Figure 9 Testing Error Rates (Traffic Data) 
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Figure 10 Run Time (Traffic Data) 

 
 
Figure 10 presents the run time results. CVFDT is clearly inferior to all IN-based 

approaches, while the Basic IOLIN and the Multi-Model algorithms consume the least run 
time for processing the incoming examples. One can also notice that the Advanced IOLIN 
requires considerably longer run times than the other incremental approaches. The reason for 
that is the update procedure, which checks if changes should be made in each layer. On one 
hand, this process makes the model more accurate with respect to the testing window but on 
the other hand, it consumes longer processing times. 

5.2 The Intrusion Detection (ID) Data Set 

5.2.1 Data Acquisition 
The data set used for the experiments, was originally used for the Third International 

Knowledge Discovery and Data Mining Tools Competition, which was held in conjunction 
with KDD-99 (The Fifth International Conference on Knowledge Discovery and Data 
Mining). The competition task was to build a network intrusion detector, which is actually a 
predictive model capable of distinguishing between “bad” connections, called intrusions or 
attacks, and “good” normal connections. The database contains a standard set of data to be 
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audited, which includes a wide variety of intrusions simulated in a military network 
environment. The data is available from the UCI KDD Archive  [16]. 

The raw TCP data was accumulated for nine weeks from a local-area network (LAN) 
simulating a typical U.S. Air Force LAN. The simulated LAN was operated as if it was a true 
Air Force environment suffering from multiple attacks. The raw training data was about four 
gigabytes of compressed binary TCP dump data from network traffic. It was processed into 
about five million connection records. A connection is defined as a sequence of TCP packets 
running from source IP to target IP, starting and ending at defined times. Each connection is 
labeled as either normal or an attack with exactly one specific attack type. The main attack 
categories are: 

• DOS: denial-of-service 
• R2L: unauthorized access from a remote machine 
• U2R:  unauthorized access to local super user (root) privileges 
• Probing: surveillance and other probing (for example, port scanning) 

The classification task in our experiments was also to determine the type of the connection 
according to given past and present values of the data attributes. 

5.2.2 Preprocessing the Intrusion Detection Data 
The ID data set contains 41 candidate attributes and one class attribute. These 41 attributes 

can be partitioned into three distinct categories: basic features of individual TCP connections, 
content features within a connection representing domain knowledge, and traffic features 
computed using a two-second time window. 

For the purpose of the experiments, we used only a portion of the data (about 500,000 
records). For each discrete attribute, rare and uncommon values were eliminated. The basic 
rule for value elimination was as follows: if a value of an attribute appears in less than 1% of 
the entire data set (less than 5,000 records), the value should be removed. The domain of the 
target attribute was also reduced from 22 values to seven using the same rule. Initial 
experiments have supported the elimination of non-relevant values by producing almost the 
same mining models in less run time and with almost the same accuracy rates.  For 
continuous attributes, missing values were completed using a simple moving average with a 
lag equal to 5. 

Using the Weka software  [31], a feature selection procedure was applied, based on the 
information gain measure of each candidate input attribute X with respect to the target 
attribute: 
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Where D is the data set before splitting on the values of X, p is the number of values of X, 
Dj is the data subset satisfying X = j, H (D) is the entropy of the target attribute given the 
entire dataset D, and H (Dj) is the target attribute entropy given the subset Dj. 

The obtained information gain values were between 1.52 and 0. Attributes with an 
information gain of less than 0.5 were eliminated. The remaining attributes were: Duration, 
Protocol_Type, Service, Src_Bytes, Dst_Bytes, Count, Srv_Count, Dst_Host_Count, 
Dst_Host_Srv_Count, Dst_Host_Same_Srv_Rate, Dst_Host_Diff_Srv_Rate, 
Dst_Host_Same_Src_Port_Rate, Dst_Host_Serror_Rate, Dst_Host_Srv_Serror_Rate, 
Dst_Host_Rerror_Rate, Dst_Host_Srv_Rerror_Rate. 
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5.2.3 Results 
The runs of the algorithms were again carried out on a Pentium IV processor with 256 MB of 
RAM. In the experiments, the online learning on the ID data starts after inducing the initial 
model from the first 500 records, which leaves the system to work with about 499,500 
records.  Table 3 presents the results of applying the IN-based single-pass algorithms and the 
CVFDT algorithm to the ID data set. 
 

Table 3: Intrusion Detection Data Results 

Testing 
Error Rate 
(%) 

Run Time 
(sec) 

Algorithm 
 

2.35 1001.15 CVFDT 
3.9 1079.67 Regenerative IFN 
3 322.48 Basic Incremental IFN 
3.5 222.47 Multi Model IFN 
4 169.07 Pure Multi Model IFN 
3.3 228.88 Advanced Incremental IFN 

 
The testing error rates are shown graphically in Figure 11. Though in this data stream, 

CVFDT has provided the lowest error rates, the error rates of the most accurate IN-based 
online algorithms (Basic and Advanced IOLIN) were higher by less than 1%. 

 

C
V

FD
T R
eg

en
er

at
iv

e

B
as

ic
 In

cr
em

en
ta

l

M
ul

ti 
M

od
el

P
ur

e 
M

ul
ti 

M
od

el

A
dv

an
ce

d 
In

cr
em

en
ta

l

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Algorithm

Er
ro

r 
Ra

te
 (%

)

 

Figure 11 Testing Error Rates (ID Data) 

 

Figure 12 presents the run time results. The incremental algorithms clearly outperform the 
performance of the CVFDT algorithm and the regenerative approach (OLIN) in terms of the 
run time. 
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Figure 12 Run Time (ID Data) 

6. Conclusions and Future Work 

This paper has performed a comprehensive evaluation of a series of novel real-time data 
mining algorithms, aimed at optimizing the classification performance under arrival of 
dynamic data. Unlike existing techniques for mining continuous data streams, the real-time 
algorithms adapt themselves automatically to the rate of data change (“concept drift”). The 
learning module of the proposed real-time data mining methods is based on an advanced 
decision-graph induction algorithm called Info-Fuzzy Network (IFN). 

The first algorithm is the basic incremental IN. The intuition behind the basic incremental 
approach is to update the current classification model with the current training window 
concept as long as no major concept drift has been detected by a statistically significant drop 
in predictive accuracy and to build a new model in case of a major concept drift. The second, 
multi-model approach also updates a current model as long as the concept is stable. In 
addition, if a concept drift has been detected, the algorithm searches for the best model for the 
current data from all the past networks. The third algorithm uses the pure multi-model 
approach – it searches for the best model from the past even if the concept is stable. The 
fourth approach is the advanced incremental IFN. In this approach, we have enhanced the 
update operations of the incremental IFN algorithm by maintaining the information-theoretic 
quality of the current model disregarding its predictive accuracy on the new data. 

The proposed real-time algorithms were implemented and then compared to the 
regenerative approach, which applies the batch IFN algorithm to every new training window 
and the CVFDT algorithm that constructs Hoeffding decision trees from dynamic data 
streams. From the results it can be clearly stated that the IN-based incremental algorithms 
achieve reasonably high predictive accuracy in the classification tasks while significantly 
decreasing the processing time of the training data when scanning the data only once (using 
the single-pass approach). Among the incremental approaches, the advanced IOLIN was 
found to be the most accurate one but also the most expensive in terms of the processing time. 
The reason for that is the update process in each layer of the network. 

The two features of high accuracy and short processing time are very important when the 
task is to classify high-speed data streams in real time. The information-theoretic incremental 
algorithms seem to be quite accurate and at the same time cheaper in terms of the processing 
time than the CVFDT algorithm based on Hoeffding bounds. 

The future research can examine multi-thread implementations of incremental algorithms 
aimed at further reduction of the processing times per record. Another important issue for 
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future research can be the calculation of the training window size. Currently, the size of the 
training window depends on the accuracy rates achieved on the training and the testing 
samples. The problem is how to calculate the size of the window if the accuracy rate of the 
testing sample is not available. In addition, the incremental algorithms can be evaluated using 
more real-world data streams from the fields of meteorology, agriculture, image processing, 
etc. 
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