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Abstract 

We describe and evaluate an information-theoretic algorithm for data-

driven induction of classification models based on a minimal subset of available 

features.  The relationship between input (predictive) features and the target 

(classification) attribute is modeled by a tree-like structure termed an information 

network (IN).  Unlike other decision-tree models, the information network uses 

the same input attribute across the nodes of a given layer (level).  The input 

attributes are selected incrementally by the algorithm to maximize a global 

decrease in the conditional entropy of the target attribute.  We are using the pre-

pruning approach: when no attribute causes a statistically significant decrease in 

the entropy, the network construction is stopped.  The algorithm is shown 

empirically to produce much more compact models than other methods of 

decision-tree learning, while preserving nearly the same level of classification 

accuracy. 
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1. Introduction 
The process of Knowledge Discovery in Databases (KDD) is defined by Fayyad et al.  [8] 

as “the nontrivial process of identifying valid, novel, potentially useful, and ultimately 

understandable patterns in data”.  A pattern is an expression, which describes the data at some 

level of abstraction.  An example of a very simple pattern used by many credit card companies is 

most students are profitable customers.  Data mining is the core step of the KDD process, which 

is concerned with a computationally efficient enumeration of patterns presenting in a database.  

Classification is a primary data mining task aimed at learning a function that classifies a database 

record into one of several pre-defined classes (e.g., classes of profitable vs. non-profitable 

customers) based on the values of the record attributes (age, occupation, etc.).   

Common classification methods, like backpropagation, Naïve Bayes Classifier, and C4.5, 

are designed to optimize the predictive performance of the induced model, e.g., its ability to 

classify correctly new credit card applicants.  Other aspects of knowledge discovery, such as 

validity of discovered patterns, simplicity of representation, and identification of relevant 

features, are given only secondary consideration by most existing algorithms.  Consequently, 

classification models induced from real-world data tend to be overcomplex, statistically 

insignificant, and wasteful in the number of used features. The information-theoretic 

classification method presented in this paper, is aimed at solving these problems by using three 

guiding principles: maximizing the mutual information between a set of predictive attributes and 

the target (classification) attribute, finding a minimal set of database attributes involved in the 

induced model, and verifying the statistical significance of the discovered patterns.  The 

importance of these objectives for the classification task is explained in the next sub-sections. 

1.1. Information Theory and Classification 
The data classification process is aimed at reducing the amount of uncertainty, or gaining 

information, about the target (classification) attribute. In Shannon’s information theory (see  [4]), 

information is defined as that which removes or reduces uncertainty. For a classification task, 

more information means higher accuracy of a classification model, since the predicted class of 

new instances is more likely to be identical to their actual class.  A model that does not increase 
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the amount of information is useless and its predictive accuracy is not expected to be better than 

just a random guess.  We also realize that more information is needed to predict accurately a 

multi-valued outcome (e.g., medical diagnosis) than to predict a binary outcome (e.g., customer 

credibility). 

Information theory (see  [4]) suggests a general modeling of conditional dependency 

between random variables.  If nothing is known on the causes of a variable X, its degree of 

uncertainty can be measured by the unconditional entropy H(X) =-Σ p(x) log2 p(x)   (expected 

value of log2 [1/p(x)]).  The entropy reaches its maximum value of log [domain size of X], when 

X is uniformly distributed in its domain, i.e. each value of X has the same probability.  Entropy is 

different from statistical variance by its metric-free nature: it depends only on the probability 

distribution of a random variable rather than on its concrete values.  Thus in classification tasks, 

where the metric of class labels is unimportant, minimizing the entropy of the target attribute can 

be a criterion for choosing the best hypothesis. Examples include the use of information gain in 

ID3  [19] and C4.5  [21] algorithms for finding the best feature to split2 a node of a decision tree.  

According to the information theory, adding information on attributes related to a random 

variable can decrease its entropy. Moreover, it is shown mathematically in  [4] that additional 

information never increases the entropy.  The entropy of a random variable Y, given another 

random variable X, (the conditional entropy) is given by H(Y/X) = -Σ p(x,y) log p(y/x)   

(expected value of log2 [1/p(y/x)]).  A symmetrical association between two random variables X 

and Y (mutual information) is defined as a decrease in the entropy of Y as a result of knowing X 

and vice versa, namely: 
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where p (x) is the unconditional probability of x, p (x/y) is the conditional probability of x 

given y, and  p(x, y) is the joint probability of x and y.  The intuition behind the definition of 

mutual information is as follows. If Y and X are independent, ∀x,y: p(x) = p(x/y), resulting in 

I(X; Y) = 0.  In all other cases, the ratio between conditional and unconditional probabilities of x 

will be either below or above 1.00, generating negative and positive terms respectively. Each 

                                                 

2 To “split” a node in decision-tree learning means to partition the set of training samples associated with a node by creating a 
child node for each value of the tested feature (see  [18]). 
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non-zero term is weighted by the joint probability of the corresponding value-pair. The above 

relationship between entropy and mutual information is proven formally in  [4]. The decrease in 

entropy of Y as a result of knowing n variables (X1,..., Xn) can be calculated incrementally by 

using the following chain rule  [4]:  

I(X1,..., Xn; Y) = Σ I(Xi;Y / Xi-1,..., X1) (2) 

The information-theoretic methodology of classification, initially introduced by us in 

 [16], is aimed at finding a minimal set of predictive features that maximize a decrease in the 

entropy of the classification attribute.  The method has already been applied to real-world tasks 

of knowledge discovery in time-series databases  [12] and manufacturing data  [14].  In this paper, 

we present, for the first time, a detailed numeric example of the network construction procedure, 

a new way of extracting rules from the network structure, and a comprehensive comparison of 

our method to other decision-tree algorithms. 

1.2. Dimensionality Reduction and Feature Selection   
Minimizing the number of relevant attributes, or features, in a classification model is 

important for several reasons from increasing the learning speed of a classification algorithm to 

dealing with the "curse of dimensionality" problem in parameter estimation.  John et al.  [11] 

distinguish between two models of selecting a “good” set of features under some objective 

function.  The feature filter model assumes selecting the features before applying an induction 

algorithm (by using some evaluation measures), while the wrapper model uses the prediction 

accuracy of the induction algorithm itself to evaluate the features.  The filter model is in line with 

the definition of the KDD process in  [8]: selection of relevant features is considered a pre-

processing step of knowledge discovery.  The wrapper approach, on the other hand, is aimed at 

optimizing the generalization performance of a given data mining algorithm. An overview of 

existing filter and wrapper methods for feature selection can be found in  [15]. 

The wrapper approach is usually associated with a considerable computational effort, 

since it requires re-running of an induction algorithm multiple times.  The filter methods, on the 

other hand, are computationally cheaper, but, as indicated by  [15], there is a danger that the 

features selected by a filter method will not allow a classification algorithm to fully exploit its 

potential. Unlike the filter and the wrapper approaches, the information-theoretic method 

presented in this paper implements automated feature selection “on the fly” as an integral part of 
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the learning process.  Thus, a minimal subset of features is found in a single run of the induction 

algorithm. 

1.3. Statistical Significance of Classification Models 
As indicated by  [18], some learning algorithms tend to create very complex models that 

do not generalize well beyond the set of training examples.  The problem of overfitting the 

training set arises whenever the constructed model incorporates some random patterns, which are 

unlikely to occur in the entire population.  An ideal induction algorithm should be able to find 

every valid pattern presenting in data, while filtering out all the random factors and patterns. 

The dilemma of increasing the complexity of a model (e.g., by splitting a decision tree 

node) vs. the danger of overfitting a given sample is well known in statistical hypothesis testing 

(see  [17]).   A null hypothesis H0 (which is usually less complex than the alternative hypothesis 

H1) can only be rejected at a given significance level, which specifies how rare the training cases 

must be, based on the assumption that H0 is true.  In other words, the level of significance 

represents the risk of a researcher in making a decision to reject H0. One of the first decision-tree 

algorithms, ID3  [19], has applied the chi-square statistic to the null hypothesis about the 

irrelevance of a tested attribute. However, most other methods of decision-tree learning, like 

CART  [3] and C4.5  [21], have adopted the post-pruning approach (grow a maximal tree and then 

prune it) for the sake of exploring a larger set of potentially valid patterns. The post-pruning 

methods include cost-complexity pruning  [3] and pessimistic error pruning  [21].  The MDL-

based PUBLIC algorithm  [24] attempts to save part of the post-pruning effort by implementing a 

“branch and bound” strategy, which does not expand nodes with guaranteed high encoding cost. 

The straightforward approach of the information-theoretic algorithm is to completely pre-

prune the model by ignoring statistically insignificant features and patterns.  Thus, the 

information-theoretic network is not grown beyond necessity, following the famous Occam’s 

razor principle3. An additional benefit of the pre-pruning approach is the ability to stop the 

model construction at any time in the case of limited computation resources. As shown later in 

this paper, statistical pre-pruning tends to produce more compact models than existing post-

pruning techniques, without a substantial decrease in the predictive accuracy. 

                                                 

3 “Nunquam ponenda est pluralitas sin necesitate”: “Entities should not be multiplied beyond necessity”  [18] 
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1.4. Paper Organization 
Section 2 describes the structure of the information theoretic connectionist network and 

presents a detailed numeric example of the network construction procedure.  We also analyze the 

computational complexity of the proposed method as a function of data dimensionality. In 

Section 3, we compare the information-theoretic methodology to the most common techniques of 

decision-tree construction and evaluate the algorithm performance on a variety of standard 

learning tasks.  Section 4 concludes the paper with representing a number of issues for future 

research.  More details of the algorithm are given in the Appendix. A beta version of the 

software is available at http://www.ise.bgu.ac.il/faculty/mlast/ifn.htm. 

2. Method Description 

2.1. Information-Theoretic Network Structure 

Gorin et al.  [9] [10] have applied an information-theoretic connectionist network, having a 

fixed number of internal layers, to speech recognition tasks.  Gorin used two types of networks: a 

single-layer network and a two-layer network.  A single-layer network has an input node for each 

input variable and assumes that all variables are independent.  The two-layer network has a 

second (“hidden”) layer with a node for each variable-pair.  In this paper, we present an 

algorithm for building a multi-layer information-theoretic network (IN), where the number of 

layers is determined automatically by the network construction algorithm.  A multi-layer 

information network has the following components: 

1) |I| - total number of hidden layers (levels) in the network.  Each layer is uniquely 

associated with an input (predicting) attribute by representing the interaction of that 

attribute and the input attributes of the previous layers.  The first layer (layer 0) includes 

only the root node and is not associated with any input attribute. At each iteration of the 

network construction procedure, the last hidden layer is termed the final layer. The 

topology of the network differs from the decision-tree structure used by CART  [3], ID3 

 [19], and C4.5  [21] in two aspects: all nodes of a given layer are labeled by the same input 

attribute and continuous input attributes are discretized to the same intervals at all nodes 

of the associated layer.  In most decision-tree algorithms, the choice of attributes and 

discretization thresholds is done locally at each node.  The structure of the information-
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theoretic network is motivated by our belief that many datasets can be accurately 

represented by a compact model, based on a "global" set of predictive features.  This 

belief is empirically validated in Section  3 of our paper. 

2) Ll - a subset of nodes z in a hidden layer No. l.  Each node represents a conjunction of 

values of the first l input attributes, which is similar to the definition of an internal node in 

a standard decision tree.  If a hidden layer l is associated with a nominal input attribute, 

each outgoing edge of a non-terminal node corresponds to an attribute distinct value.  For 

continuous features, the outgoing edges represent the intervals obtained from the 

discretization process. 

3) K - a subset of distinct target nodes Ct (the target layer).  Each target node is associated 

with a value (class) t in the domain of the target attribute T.  For continuous target 

attributes, the target nodes represent disjoint intervals in the attribute range.   A target 

layer is missing in the standard decision-tree structure. 

4) (z, t)- connection between a terminal (unsplit) node z and a target node Ct.  The 

information-theoretic meaning of the connection weights is explained in sub-section  2.5 

below. 

The connectionist nature of our system (each terminal node is connected to every target 

node) resembles the topological structure of multi-layer neural networks (see  [18]), which also 

have input and output nodes and a variable number of hidden layers.  Consequently, we refer to 

our system as a network and not as a tree.  However, information networks differ from neural 

networks in that the information-theoretic weights are defined only for the connections to the 

target layer, whereas internal connections are associated with values or intervals of input 

attributes and do not have any weights at all.  A neural network has, in contrast, a weight 

associated with every inter-layer connection. 

2.2. Illustrative Example 

To demonstrate the construction procedure of an information network presented in sub-

section  2.3 below, we are using the Credit Approval (“Australian”) dataset from the UCI 

Repository  [2]. This is an encrypted form of a proprietary database, containing data on 690 credit 

card applications and their outcomes. The data were originally provided by a large bank in 
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Australia. Each case represents an application for credit card facilities described by eight discrete 

and six continuous attributes, with two decision classes (Accept / Reject).  In the UCI 

Repository, the original attribute names have been changed to meaningless symbols (A1 – A14) 

with the purpose of protecting the confidentiality of the data.  However, the real names of the 

attributes are available at the site of Rulequest Research [http://www.rulequest.com/see5-

examples.html].  This dataset has been used as a benchmark with a wide range of learning 

algorithms (starting from  [20]).   

The database attributes are shown in Table 1 below.  The original names of the attributes 

(provided by the Rulequest Research site) are given in parentheses.  The Domain column shows 

the set or range of possible values for each attribute.  In the Type column, we make a distinction 

between discrete (nominal) and continuously valued attributes.  The last column (Use in 

Network) specifies how each attribute is treated by the information-theoretic algorithm. 

Table 1. Credit Approval Dataset – List of Attributes 

Attribute Domain Type Use in Network 

A1 (Sex) 0, 1 Nominal Candidate input 

A2 (Age) 13.75 - 80.25 Continuous Candidate input 

A3 (Mean time at addresses) 0 - 28 Continuous Candidate input 

A4 (Home status) 1, 2, 3 Nominal Candidate input 

A5 (Current occupation) 1 - 14 Nominal Candidate input 

A6 (Current job status) 1 - 9 Nominal Candidate input 

A7 (Mean time with employers) 0 - 28.5 Continuous Candidate input 

A8 (Other investments) 0, 1 Nominal Candidate input 

A9 (Bank account) 0, 1 Nominal Candidate input 

A10 (Time with bank) 0 - 67 Continuous Candidate input 

A11 (Liability reference) 0, 1 Nominal Candidate input 

A12 (Account reference) 1, 2, 3 Nominal Candidate input 

A13 (Monthly housing expense) 0 - 2000 Continuous Candidate input 

A14 (Savings account balance) 1 - 100001 Continuous Candidate input 

Class (Reject / Accept) 0, 1 Nominal Target 
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2.3. Network Construction Procedure 

2.3.1 Overview 

The network construction algorithm starts with defining the target layer (one node for 

each target value, or class) and the “root” node representing an empty set of input attributes. 

Unlike CART  [3] and C4.5  [21], IN is built only in one direction (top-down).  After the 

construction process is stopped, there is no bottom-up post-pruning of the network branches.   

The process of pre-pruning the network is explained below. 

A node is split if it provides a statistically significant increase in the mutual information 

of the node and the target attribute. Mutual information, or information gain, is defined as a 

decrease in the conditional entropy of the target attribute (see  [4]). If the tested feature is 

nominal, the splits correspond to the feature values.  Splits on continuous features represent 

thresholds, which maximize an increase in mutual information.  For each new layer, the 

algorithm re-computes the best threshold splits of continuous attributes and chooses an input 

attribute (either discrete, or continuous), which provides the maximum increase in mutual 

information across all nodes of the final layer. 

The nodes of a new hidden layer are defined for a Cartesian product of split nodes of the 

final layer and the values of the new input attribute.  According to the chain rule (see sub-section 

 1.1 above), the mutual information between a set of input attributes and the target (defined as the 

overall decrease in the conditional entropy) is equal to the sum of drops in conditional entropy 

across all hidden layers.    If there is no candidate input attribute significantly decreasing the 

conditional entropy of the target attribute, the network construction stops.   

The network construction algorithm is summarized in Figure 1. 
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Input: the set of n training instances; the set CI of m candidate input attributes (discrete and continuous); the 

target (classification) attribute T; the minimum significance level sign for splitting a network node (default: 

sign = 0.1%). 

Output: a set I of selected input attributes and an information-theoretic network IN (see sub-section  2.1).  Each 

input attribute has a corresponding hidden layer in the network. 

Step 1 - Initialize the information-theoretic network: single root node representing all records, no hidden layers

(I = ∅, l = 0), and a target layer for the values of the target attribute. 

Step 2 - While the number of layers l < m (number of candidate input attributes) do 

Step 2.1 – for each candidate input attribute Ai ∉ I do 

if Ai is discrete then 

Return the statistically significant conditional mutual information cond_MIi between Ai and T. 

Else return the best threshold splits of Ai and the statistically significant conditional mutual information 

cond_MIi between Ai and the target attribute T. 

Step 2.2 – find the candidate input attribute Ai* maximizing cond_MIi 

Step 2.3 –  If cond_MIi* = 0, then 

End do.   

Else  

Step 2.3.1 – expand the network by a new hidden layer associated with the attribute Ai and increment 

the number of layers l. 

 Step 2.3.2 – Update the set I of selected input attributes: I = I ∪ Ai* 

Step 3 – Return the set I of selected input attributes and the network structure 

 

Figure 1 Network Construction Algorithm 
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2.3.2 Selecting Nominal Attributes 

The Credit Approval dataset (see sub-section  2.2 above) has 14 candidate input attributes 

(A1 – A14).  At the initial stage of the algorithm, all 690 records of the training set belong to the 

root node.  For each nominal attribute, the algorithm calculates the conditional mutual 

information of a candidate input attribute Ai and the target attribute T given a node z by the 

following formula (based on  [4]): 
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where 

MT / Mi - number of distinct values of the target attribute T /candidate input attribute i.   

P (Vij / z)  - an estimated conditional (a posteriori) probability of a value j of the 

candidate input attribute i given the node z  (also called a relative frequency estimator) 

P (Ct / z) - an estimated conditional (a posteriori) probability of a value t of the target 

attribute T given the node z. 

P (Vij’
t/ z) - an estimated conditional (a posteriori) probability of a value j of the 

candidate input attribute i and a value t of the target attribute T given the node z. 

P (Ct ; Vij ; z) - an estimated joint probability of a value t of the target attribute T , a value 

j of  the candidate input attribute i, and the node z. 

The contingency table4 for a nominal attribute A8 (Other Investments) and the target 

attribute (Class) at the root node (z = 0) is shown in Table 2.   The dataset has 306 records of 

“bad” customers (Class = Reject), who do not have other investments with the bank (Other 

Investments = No).  Only 23 customers with the same characteristics turned out to be “good” 

customers (Class = Accept).  The customers with other investments (Other Investments = Yes) 

represent an opposite pattern: most of them (284 out of 361) should be accepted by the bank.  

The resulting conditional mutual information for this attribute, based on the estimated values of 

conditional and unconditional probabilities, is 0.426 bits. 

                                                 

4 A contingency table represents a joint frequency distribution, or cross-tabulation, of two discrete random variables  [17] 
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Table 2 Contingency Table: Other Investments (Node 0) 

j/ t 0 (Reject) P (Vij
t/ z) P (Ct; Vij; z) 1 (Accept) P (Vij

t/ z) P (Ct; Vij; z) Total P (Vij / z)  

0 (No) 306 0.443 0.443 23 0.033 0.033 329 0.477 

1 (Yes) 77 0.112 0.112 284 0.412 0.412 361 0.523 

Total / P (Ct / z) 383 0.555  307 0.445  690  

 

The statistical significance of the estimated conditional mutual information between a 

candidate input attribute Ai and the target attribute T, is evaluated by using the likelihood-ratio 

statistic (based on  [1]): 

G2 (Ai ; T / z) = 2•(ln2)• E*(z) • MI (Ai ; T / z) (4) 

Where E*(z) is the number of records associated with the node z 

The Likelihood-Ratio Test  [23] is a general-purpose method for testing the null 

hypothesis H0 that two discrete random variables are statistically independent. For example, if 

the customer credibility is independent of his/her other investments in the bank, the proportion of 

credible customers among those having other investments should be equal to their proportion 

among those who do not.  The Likelihood-Ratio Test is directly related to the information theory, 

since independence of two attributes implies that their expected mutual information is zero.  If 

H0 holds, then the likelihood-ratio test statistic G2 (Ai ; T / z) is distributed as chi-square with (NIi 

(z) - 1)•( NT (z) - 1)  degrees of freedom, where NI i (z)  is the number of distinct values of a 

candidate input attribute i at node z and NT (z) is the number of values (classes) of the target 

attribute T at node z.   

The default significance level (p-value), used by the information-theoretic algorithm, is 

0.1%.  We have found empirically that larger p-values tend to decrease the generalization 

performance of the network for most real-world datasets.  Thus, under normal circumstances, the 

user should keep the default level of p-value rather than running the algorithm repeatedly for a 

set of p-values and comparing the results.  However, if a given dataset is known to contain 

mostly regular patterns rather than random noise, the user can weaken the significance 

requirement of the test, up to removing the significance testing completely.   

In the Credit dataset, there are 690 records associated with the root node.  This implies 

that the likelihood-ratio statistic of Other Investments is 2*ln2*690*0.426 = 407.  The attribute 
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Other Investments has two values (Yes / No) and the target attribute (Class) has two values as 

well.  Consequently, the likelihood-ratio statistic calculated above has (2-1)*(2-1) = 1 degree of 

freedom.  According to the chi-square distribution, the significance level of the obtained value is 

much higher than 0.1%, which means that the null hypotheses can be rejected and Other 

Investments is considered as a candidate for the next input attribute.   

Calculated values of conditional mutual information for other candidate input attributes 

are shown in Table 3.  Discretization of continuous attributes is demonstrated in the next sub-

section.  As one can see, Other Investments happens to be the best attribute at Layer 0 and it is 

selected as the first input attribute in the network.  The next layer (Layer 1) is going to have two 

hidden nodes corresponding to 329 records of those customers who do not have other 

investments (Node 1) and 361 records of those who have them (Node 2). 

Table 3 Conditional Mutual Information (Layer 0) 

Attribute Significant Conditional 
Mutual Information 

A1 (Sex) 0 

A2 (Age) 0.023 

A3 (Mean time at addresses) .041 

A4 (Home status) .030 

A5 (Current occupation) .109 

A6 (Current job status) .050 

A7 (Mean time with employers) .123 

A8 (Other investments) .426 

A9 (Bank account) .156 

A10 (Time with bank) .214 

A11 (Liability reference) 0 

A12 (Account reference) 0 

A13 (Monthly housing expense) .051 

A14 (Savings account balance) .123 

 

2.3.3 Selecting Continuous Attributes 

The conditional entropy of the target attribute can only be calculated with respect to 

attributes taking a finite number of values.  The algorithm performs discretization of continuous 
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attributes “on-the-fly” by using an approach, which is similar to the information-theoretic 

heuristic of Fayyad and Irani  [7]: recursively finding a binary partition of an input attribute that 

minimizes the conditional entropy of the target attribute.  However, the stopping criterion we are 

using is different from  [7].  Rather than searching for a minimum description length (minimum 

number of bits for encoding the training data), we make use of a standard statistical likelihood-

ratio test  [23].  As indicated in sub-section 2.3.2 above, the significance level of the test can be 

adjusted to the noisiness of a given dataset.  The MDL-based stopping criterion of  [7] does not 

provide this flexibility. The search for the best partition of a continuous attribute is dynamic: it is 

performed each time a candidate input attribute is considered for selection.  The dynamic 

discretization algorithm is described in the Appendix. 

One of continuous attributes considered at Layer 1 is A14 (Savings Account Balance).  

This attribute has 238 distinct values ranging from 1 to 100,001.  The dynamic discretization 

algorithm tries to split the range of this attribute by each one of its values across all nodes of the 

final hidden layer (Nodes 1 and 2 in our case).   This requires calculating conditional mutual 

information from 2 × 238 = 476 contingency tables.  The algorithm finds the threshold providing 

the maximum significant conditional mutual information and applies the same procedure 

recursively to each one of resulting sub-intervals (again across all final nodes) as long as the 

increase in the conditional mutual information is statistically significant.  For the Balance 

attribute, the first best threshold found by the algorithm is 401.  

The contingency tables for the threshold of Balance = 401 at Nodes 1 and 2 are shown in 

Table 4 and Table 5 respectively.  The total number of cases in each table is equal to the number 

of records associated with the corresponding nodes (329 and 361).  The chi-square statistic G2 

for Node 1 is 0.052 (using expression (13) in the Appendix).  The confidence level of this value 

(with one degree of freedom) is very low: about 18% only.  Thus, we cannot reject the null 

hypothesis and split the Balance attribute at this node.  However, at Node 2, we get G2 = 56.7, 

which has a significance level much higher than 0.1%.  Consequently, the conditional mutual 

information of 0.059 bits that we have at this node can be considered statistically significant.  

Since the final layer (Layer 1) has only two nodes and subsequent partitioning of the Balance 

range has not caused a statistically significant improvement in the mutual information, the total 

conditional mutual information between Balance and the target attribute given the final layer is 
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also equal to 0.059 bits.  This number is higher than the conditional mutual information 

associated with any other attribute, which makes Balance the second selected attribute in the 

network. The new layer (Layer 2) has two nodes (No. 3 and 4) associated with the two intervals 

of Balance (below 401 and above 401).  In the network, these nodes are connected by edges to 

Node 2 in Layer 1.  Node 1 becomes a terminal node. The third and the last input attribute (Bank 

Account) has been selected by using a similar procedure. 

Table 4 Contingency Table: Balance (Node 1) 

y / t 0 P (S y ; Ct / S, z) P (S y; Ct ; z) 1 P (S y ; Ct / S, z) P (S y; Ct ; z) Total P (S y / S, z)  

Balance <= 401 271 0.824 0.393 20 0.061 0.029 291 0.884 

Balance > 401 35 0.106 0.051 3 0.009 0.004 38 0.116 

Total / P (Ct / S, z) 306 0.930  23 0.070  329  

 

Table 5 Contingency Table: Balance (Node 2) 

y / t 0 P (S y ; Ct / S, z) P (S y; Ct ; z) 1 P (S y ; Ct / S, z) P (S y; Ct ; z) Total P (S y / S, z)  

Balance <= 401 74 0.205 0.107 156 0.432 0.226 230 0.637 

Balance > 401 3 0.008 0.004 128 0.355 0.186 131 0.363 

Total / P (Ct / S, z) 77 0.213  284 0.787  361  

 

2.3.4 Summary 

The iterations of the network construction procedure applied to the Credit Approval data 

set are summarized in Table 6 below.  The table shows the input attribute selected at each step 

and the associated change in the conditional entropy of the target attribute.  The table also 

includes the increase in the network size (number of split nodes) and the ratio between the 

cumulative mutual information and the number of input attributes.  Only three attributes (out of 

14 candidates) were selected by the information-theoretic algorithm.  As one can see from the 

first row of Table 6, the first input attribute (Other Investments) contributes more than 80% of 

the overall mutual information, which is equal to 0.516 bits (see the last row). 
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Table 6 Network Construction Procedure– Credit Approval 

 Attribute Mutual Conditional Conditional Split MI to 

Iteration Name Information MI Entropy Nodes Attributes 

0 Other investments (A8) 0.426 0.426 0.566 1 0.426 

1 Balance (A14) 0.485 0.059 0.506 1 0.243 

2 Bank account (A9) 0.516 0.031 0.475 1 0.172 

 

The resulting information-theoretic connectionist network is shown in Figure 2 below.  

Thick lines represent internal connections (standing for values or intervals of input attributes) 

and thin lines denote the connections between the terminal nodes and the nodes of the target 

layer. Dotted thin lines indicate the predicted target values, i.e., the values having maximum 

probability at a given terminal node. The classification performance of the networks induced 

from this and other datasets is evaluated in Section  3 below. 
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Figure 2 Information-Theoretic Network: Credit Dataset 

The subset of attributes selected by the information-theoretic algorithm can be used as an 

input for any other data mining method, i.e., IN can be implemented as a feature filter method in 

the KDD process.  The application of the information-theoretic methodology to feature selection 

is discussed by us in  [13]. 
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2.4. Time and Space Complexity 
The computational complexity of the network construction procedure depends on the 

types of candidate input attributes presenting in the training data.  In this sub-section, we 

compute the complexity bounds for “pure” datasets, which include either discrete or continuous 

attributes only. In the case of a “mixed” dataset, the overall complexity can be roughly estimated 

by the following expression: 

cd Comp
m
CComp

m
DComp +=  (5) 

where m is the total number of candidate input attributes and  D (C) is the number of 

discrete (continuous) attributes respectively.  Accordingly, Compd (Compc) is the computational 

complexity in a purely discrete (continuous) dataset. 

 The computational complexity bounds are calculated by using the following notation: 

n - total number of records in a training data set 

m -  total number of candidate input attributes 

p - portion of significant input attributes, selected by the network construction 

procedure (p ≤ 1) 

L – maximum number of hidden nodes in a layer (bounded by the number of distinct 

conjunctions of input attribute values presenting in the training set) 

MC - maximum domain size of a candidate input attribute. For continuous attributes, 

this is the maximum number of thresholds considered by the discretization procedure.  In our 

algorithm, like in the discretization algorithm of Fayyad and Irani  [7], the number of potential 

thresholds is equal to the number of distinct attribute values, which is bounded by the size of the 

training set (n). 

MT - domain size of the target attribute (number of distinct classes) 

The computational “bottleneck” of the algorithm is estimating the conditional mutual 

information of a candidate input attribute and the target attribute, given every hidden node.   The 

calculation of the conditional mutual information is performed at each hidden layer of the 

information-theoretic network for all candidate input attributes at that layer.  All frequency 

estimators used in the calculation of MI (Ai ; T / z)  are re-computed at each hidden node by a 
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single pass over a subset of training examples associated with that node (bounded by n). If a 

candidate input attribute is discrete, the summation terms of MI (Ai ; T / z)  refer to a Cartesian 

product of values of a candidate input attribute and the target attribute. The number of hidden 

layers is equal to pm.   This implies that for discrete attributes, the total number of calculations is 

bounded by:  

∑
=

−••••+•
≤−••+•=

pm

s

CT
CTd

ppmMMnLsmMMnLComp
0

2

2
)2()(  )()(  (6) 

The number of possible partitions of a continuous attribute is bounded by MC.  For every 

possible partition, the summation terms MI (Th; T / S, z) are summed over all nodes of the final 

layer for a Cartesian product of two sub-intervals and the values of the target attribute. 

Consequently, for continuous attributes, the total number of calculations is bounded by:  

∑
=

−•••+••
≤−•+••=

pm

s

TC
TCc

ppmMnML
smMnMLComp

0

2

2
)2()2(

  )()2(  (7) 

Roughly speaking, the additional computational effort associated with dynamic 

discretization of m continuous attributes, is proportional to the product MC n m2. Thus, the time 

complexity of the network construction procedure is linear in the number of records, linear in the 

number of distinct attribute values, and quadratic in the number of candidate input attributes.  

Moreover, it is reduced by the factor of p (2-p), which is based upon the portion p of significant 

input attributes in a network.  

Like most other algorithms for decision-tree construction (e.g., see  [21]), our method 

requires all the training examples to reside in main memory (RAM).   For each network node, the 

program has also to keep in memory the predicting discrete value (or a continuous threshold) 

associated with every input attribute.  The resulting space complexity of the network 

construction procedure is m (n + pmL).  Scaling up the algorithm for very large datasets is a 

subject of ongoing research. 

2.5. Classification and Rule Extraction  
Due to the disjunctive nature of the information-theoretic multi-layer network, each 

record in a database can be associated with one and only one terminal node z.  The predicted 

value t* of a target attribute T at a terminal node z is found by the maximum a posteriori rule:  
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 t* = )}/({max arg
t

zCP t . (8) 

Terminal nodes represent conjunctions of values of input attributes.  A connection 

between a terminal node z and a node of the target layer, associated with the value (class) Ct, can 

be interpreted as a probabilistic rule of the form 

If terminal node = z then the value of the target attribute T is t with probability of P (Ct/z) 

In our previous work  [16], we have extracted a probabilistic rule from every connection 

between a terminal node and a node of the target layer.  This has resulted in a large number of 

rules having positive and negative information-theoretic weights.  In this paper, we are reducing 

the number of rules extracted from an information network by associating a single classification 

rule (If z then t*) with every terminal node.   The weight of that rule is calculated as the sum of 

information-theoretic weights over all edges connecting the corresponding terminal node to the 

nodes of the target layer: 

)(
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=

 (9) 

Where 

P(Ct ; z) - an estimated joint probability of the target value Ct and the node z. 

P (Ct / z) - an estimated conditional (a posteriori) probability of the target value Ct given 

the node z. 

P(Ct) - an estimated unconditional (a priori) probability of the target value Ct. 

P(z) –probability (relative frequency) of a node z 

The above expression is an extension of the average information content of a rule, 

defined by Smyth and Goodman  [25] for binary-valued attributes, to a more general case of 

multi-valued input and target attributes.  As indicated in  [25], a measure of this form (called J-

measure) is useful for relative evaluation of rules induced from data, since its value is always 

non-negative and it represents both the simplicity (probability of node occurrence P(z)) and 

goodness-of-fit (cross entropy) of a given rule. 

Proposition 1.  The sum of connection weights across all terminal nodes is equal to the 

estimated mutual information between the set of input attributes and the target attribute: 
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MI (T; I) = )(
)/(log);(
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=∈
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where 

T – the target attribute  

I - set of input attributes 

z – hidden node in the information-theoretic network 

F - subset of unsplit (terminal) nodes.   

P(Ct  ;z) - an estimated joint probability of the value Ct and the node z. 

P (Ct / z) - an estimated conditional (a posteriori) probability of the value Ct given the 

node z. 

P(Ct) - an estimated unconditional (a priori) probability of the value Ct. 

Proof.  This proposition is directly derived from the definition of mutual information 

between random variables X and Y  [4]: 

MI(X;Y) =  ∑∑
∈∈

•
YyXx yp

xypyxp
)(

)/(log),(  (11)  

In the above expression, we have substituted Y with the target attribute T and X with the 

set of input attributes I. A node z ∈ F represents a conjunction of input attribute values.  Since 

the information-theoretic network represents a disjunction of these conjunctions, each 

conjunction is associated with one and only one node z ∈ F.  Consequently, the summation over 

the terminal nodes covers all possible values of the input attributes.    This completes the proof. 

The most informative rules can be found by sorting the information-theoretic connection 

weights (wz
i) in decreasing order. The four rules extracted from the network of the Credit 

Approval Dataset (see Figure 2 above) are presented in Table 7 below. It seems like the rules 2 – 

4 can be replaced with a single classification rule If Other investments is 1 then Class is 1.  This 

rule reduction will not affect the classification accuracy of the network, but will ignore an 

important fact that two input attributes Balance and Bank Account do affect the credibility of a 

potential customer.   
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Table 7 Information-Theoretic Rules: Credit Dataset 

Rule 
No.  

Terminal 

Node No. Rule  Weight 

1 1  If Other investments is 0 then Class is   0  0.2413 

2 4  If Other investments is 1 and Balance is more than 445 then Class is   1  0.1906 

3 
6  If Other investments is 1 and Balance is between 1 and 445 and Bank account is 1 then 

Class is 1  0.0821 

4 
5  If Other investments is 1 and Balance is between 1 and 445 and Bank account is 0 then 

Class is   1  0.0019 

3. Empirical Evaluation 

3.1. Overview 
The performance of the information-theoretic algorithm was evaluated on ten publicly 

available data sets: Breast Cancer, Chess Endgames, Credit Approval, Diabetes, Glass 

Identification, Heart Disease, Iris Plants, Liver, Lung Cancer, and Wine. All these data sets are 

posted at the UCI Machine Learning Repository  [2] and widely used by the data mining 

community for evaluating learning algorithms.  The data sets selected by us here comprise a 

diverse mixture of attribute types, ranging from purely continuous to purely nominal attribute 

domains. A summary of characteristics of these datasets appears in Table 8 below. The algorithm 

performance (in terms of dimensionality reduction and predictive accuracy) is compared to two 

decision-tree algorithms: ID3 (presented by Quinlan in  [19]) and C4.5, which is a state-of-the-art 

decision tree algorithm introduced in  [21] and improved in  [22].  The classification accuracy of 

C4.5 is based on the “fine tuned” results published in literature, which represent the optimized 

performance of this algorithm.  Other results were obtained with the default settings of all 

algorithms including the information-theoretic network. 
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Table 8 Description of Datasets 

 Number of  Candidate Attributes  

Dataset Records Classes Continuous Nominal Total 

Breast 699 2 9 0 9 

Chess 3196 2 0 36 36 

Credit 690 2 6 8 14 

Diabetes 768 2 8 0 8 

Glass 214 6 9 0 9 

Heart 270 2 6 7 13 

Iris 150 3 4 0 4 

Liver 345 2 6 0 6 

Lung-cancer 32 3 0 57 57 

Wine 178 3 13 0 13 

3.2. Dimensionality Reduction 
As indicated in sub-section  1.2 above, dimensionality reduction is an important objective 

of the knowledge discovery process.  Most real-world datasets contain some portion of 

completely irrelevant attributes.  Unlike the Naïve Bayes Classifier, which uses all attributes in a 

dataset, decision-tree algorithms tend to remove irrelevant attributes from the final tree (see 

 [21]).  The network construction algorithm, presented above, is also aimed at minimizing the set 

of input attributes in an information-theoretic network.  Table 9 below shows the initial number 

of candidate input attributes in each dataset, the number of input attributes selected by the 

evaluated algorithms (ID3, C4.5, and IN), and the reduction in data dimensionality (the portion 

of candidate input attributes that were excluded from the model).  The C4.5 trees were built by 

using Version 8 of the algorithm (described in  [22]).    For ID3 and C4.5, we have counted all the 

attributes that appear in at least one tree path.  In the information-theoretic network (IN), the 

number of input attributes is equal to the number of internal layers.   The training sets included 

all records of each dataset.  Table 9 also compares the complexity of the resulting models in 

terms of the total number of nodes in a tree / network and the run times of the algorithms on a 

Pentium III computer. 
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Table 9 Dimensionality Reduction – Summary Table 

 

Candidate 
Input 
Attributes 

Selected 
Input 
Attributes  

Dim. 
Reduction 
(%)   

Total 
nodes   

Run time 
(sec.)  

Dataset  ID3 C4.5 IN ID3 C4.5 IN ID3 C4.5 IN ID3 C4.5 IN 

Breast 9 4 7 4 56% 22% 56% 15 23 15 0.06 0.05 0.11

Chess 36 19 22 9 47% 39% 75% 51 59 29 0.55 0.33 0.60

Credit 14 4 9 3 71% 36% 79% 9 43 7 0.33 0.11 1.04

Diabetes 8 4 6 4 50% 25% 50% 21 43 15 0.61 0.11 0.82

Glass 9 7 9 4 22% 0% 56% 27 45 13 0.27 0.11 0.44

Heart 13 5 10 4 62% 23% 69% 22 49 18 0.11 0.05 0.11

Iris 4 2 2 1 50% 50% 75% 7 9 5 0.05 0.00 0.05

Liver 6 4 6 3 33% 0% 50% 9 51 7 0.06 0.06 0.11

Lung-cancer 57 1 5 1 98% 91% 98% 4 16 4 0.05 0.00 0.00

Wine 13 3 3 3 77% 77% 77% 9 9 11 0.16 0.06 0.27

Mean 16.9 5.3 7.9 3.6 57% 36% 68% 17.4 34.7 12.4 0.23 0.09 0.36

 

The results show that the models produced by the information-theoretic algorithm are 

significantly smaller than the decision trees built by ID3 and C4.5.  Thus, C4.5 failed to remove 

more than 50% of the attributes in eight datasets out of ten. On the other hand, the information-

theoretic network never included more than 50% of available attributes. The average difference 

between the two methods is 32% of the number of available attributes. This means that the 

information-theoretic algorithm is a much more “aggressive” dimensionality reducer than C4.5.  

ID3 tends to use less attributes than C4.5, but still its average number of selected attributes (5.3) 

is higher than the IN average (3.6). 

Table 9 also shows that, almost in all cases, the information-theoretic network produces a 

simpler model, compared to ID3 and C4.5.  IN has the minimal number of nodes in nine data sets 

out of ten.  This result is not completely surprising, since our algorithm is using less input 

attributes, and each node represents a conjunction of values of input attributes.   Due to the 

repetitive partitioning of the training set (as opposed to the recursive approach of ID3 and C4.5), 
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IN is slightly slower than other decision-tree methods.  As mentioned above, scaling-up the IN 

algorithm and improving its computational efficiency is a subject of ongoing research. 

In the next sub-section, we are examining the trade-off between the dimensionality 

reduction and the predictive accuracy of the information-theoretic network. 

 

3.3. Predictive Accuracy 
We are using here a common approach to estimating predictive accuracy, called k-fold 

cross-validation (see  [18]).   According to this approach, the data set is randomly partitioned into 

k disjoint subsets, with each subset being used once in a test set and k-1 times in a training set.   

Following the common practice of other researchers (e.g., see  [15]), we have chosen the value of 

k to be 10.  Due to the high variance of cross-validation runs, we have performed 10 runs of 10-

fold cross-validation, each based on a different random partitioning of the data set. 

Table 10 shows, for each dataset, the estimated predictive accuracy of the information-

theoretic network vs. other decision-tree methods. The results of ID3 were obtained with our 

own implementation of the algorithm (based on  [19]), while C4.5 results were taken from  [5].  

The confidence intervals for the IN predictive accuracy have been calculated at the 0.95 

confidence level, using t-distribution with n-1 degrees of freedom, where n is the number of 10-

fold cross-validation runs (10).  An asterisk (*) next to the upper bound of a confidence interval 

denotes a statistically significant advantage of C4.5 over IN.  

As one can see from Table 10, the predictive accuracy of the information-theoretic 

algorithm tends to be only slightly worse than the accuracy of C4.5.  One exception is the Iris 

dataset, where the network has provided us with better results than C4.5 along with reducing 

dimensionality by 75%.  In other datasets, a small loss of accuracy (the mean difference of less 

than 1%) is compensated by a considerable reduction in the number of input attributes (on 

average, the algorithm uses about 1/3 of the candidate input attributes, which appear in each data 

set).  ID3 does not show any advantages at all, since it has the lowest average accuracy, while 

using more input attributes than IN. Though the choice of the best model (either the most 

accurate, or the simplest) depends on a specific application, we believe that in many cases, a 
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small amount of accuracy can be sacrificed for the sake of obtaining a much more compact and 

interpretable model, like the one produced by the information-theoretic algorithm.   

Table 10 Predictive Accuracy – Comparison to Other Methods 

Dataset ID3 C4.5 IN IN - Min. IN - Max.  

Breast 93.6% 94.4% 94.3% 94.1% 94.6%  

Chess 99.1% 99.2% 97.7% 97.7% 97.7% * 

Credit 83.1% 85.9% 84.1% 83.0% 85.1% * 

Diabetes 73.3% 73.5% 72.2% 71.2% 73.2% * 

Glass 63.8% 67.9% 60.9% 59.9% 61.9% * 

Heart 74.3% 77.5% 75.8% 74.7% 76.9% * 

Iris 94.9% 92.6% 95.6% 95.3% 95.9%  

Liver 63.5% 65.9% 63.7% 62.7% 64.8% * 

Lung-cancer 33.4% 40.9% 46.6% 40.1% 53.0%  

Wine 91.3% 92.4% 90.4% 89.5% 91.4% * 

Mean 77.0% 79.0% 78.1% 76.8% 79.5%  

 

4. Conclusion 
In this paper, we have presented a novel algorithm for building simple and reasonably 

accurate classification models, termed information-theoretic networks. The underlying principles 

of our methodology include maximization of mutual information, dimensionality reduction, and 

statistical significance testing. The algorithm was evaluated on a wide range of standard datasets 

containing continuous, categorical, and binary-valued attributes.  The related issues to be further 

studied include: integrating the information-theoretic network with other data mining methods 

(e.g., by using the algorithm as a feature selector only), utilizing prior knowledge in the network 

construction procedure, and applying the algorithm to non-relational (e.g., spatial) data.   
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Appendix: Dynamic Discretization Algorithm 
Partition (Data Table r, Information Network, Attribute Ai, Interval S, Significance 

Level sign) 

Input: the set of n training instances, an information-theoretic network, a continuous 

attribute Ai to be discretized, the interval S to be partitioned (the first and the last distinct values 

of Ai), and the minimum significance level sign for splitting an interval (default: sign = 0.1%). 

Output: the total number of discretization intervals for Ai and the lower bound of each 

interval. 

Step 1 – Initialize to zero the degrees of freedom and the estimated conditional mutual 

information of the candidate input attribute and the target attribute given the final hidden layer of 

nodes. 

Step 2 – Repeat for every distinct value included in the interval S (except for the last 

value): 

Step 2.1 – Define the value as a partitioning threshold (Th).  All values below or equal to 

Th belong to the first sub-interval S1.  Distinct values above Th belong to the second sub-interval 

S2. 

Step 2.2 – Repeat for every node z of the final hidden layer: 

Step 2.2.1 – Calculate the estimated conditional mutual information between the partition 

of the interval S at the threshold Th and the target attribute T given the node z by the following 

formula (based on  [4]): 

=),/;( zSTThMI  (12) 
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Where 

P (S y/ S, z)  - an estimated conditional (a posteriori) probability of a sub-interval S y, 

given the interval S and the node z. 
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P ( tC  / S, z) - an estimated conditional (a posteriori) probability of a value Ct of the target 

attribute T given the interval S and the node z. 

P (S y ; tC  / S, z) - an estimated joint probability of a value tC  of the target attribute T 

and a sub-interval Sy given the interval S and the node z. 

P (S y; tC ; z) - an estimated joint probability of a value tC  of the target attribute T, a sub-

interval Sy, and the node z. 

Step 2.2.2 - Calculate the likelihood-ratio test for the partition of the interval S at the 

threshold Th and the target attribute T given the node z by the following formula (based on  [23]): 
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Where 

Nt (Sy, z)  - number of occurrences of a value tC  of the target attribute T  in sub-interval 

Sy and the node z. 

E (Sy, z)  - number of records in sub-interval Sy and the node z. 

P ( tC  / S, z) - an estimated conditional (a posteriori) probability of a value tC  of the 

target attribute T given the interval S and the node z. 

P ( tC  / S, z) • E (Sy, z)  - an estimated number of occurrences of a value tC  of the target 

attribute T in sub-interval Sy and the node z under the assumption that the conditional 

probabilities of the target attribute values are identically distributed given each sub-interval. 

Step 2.2.3- Calculate the degrees of freedom of the likelihood-ratio statistic by: 

DF (Th; T / S, z) = (NI i (S, z) - 1)•(NT (S, z) - 1)= (2-1)• (NT i (S, z) - 1)= NT i (S, z) – 1 (14) 
    

Where 

NI i (S, z) - number of sub-intervals of a candidate input attribute i at node z (2) 

NT (S, z) - number of values of the target attribute in the interval S at node z. 
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Step 2.2.4 - If the likelihood-ratio statistic is significant, mark the node as “split” by the 

threshold Th and update the estimated conditional mutual information of the candidate input 

attribute and the target attribute given the threshold Th; else mark the node as “unsplit” by the 

threshold Th. 

Step 2.2.5 - Go to next node. 

Step 2.3 – Go to next distinct value. 

Step 3 – Find the threshold Thmax maximizing the estimated conditional mutual 

information between a partition of the candidate input attribute Ai and the target attribute T given 

the interval S and the set of input attributes I by: 

),/;(maxargmax SITThMITh
Th

=  (15) 

 and update the estimated conditional mutual information cond_MIi between the 

candidate input attribute Ai and the target attribute T. 

Step 4 – If the maximum estimated conditional mutual information is greater than zero, 

then do: 

Step 4.1 - Repeat for every node z of the final hidden layer:  If the node z is split by the 

threshold Thmax, mark the node as split by the candidate input attribute Ai 

Step 4.2 - If the threshold Thmax is the first distinct value in the interval S, mark Thmax as 

the lower bound of a new discretization interval, else Partition (Data Table r, Network, Attribute 

Ai, Interval S1).  

Step 4.3 - Partition (Data Table r, Network, Attribute Ai, Interval S2)  

Step 4.4 - EndDo. 

Else: 

Step 5 - Define a new discretization interval S and increment the domain size of Ai 

(number of discretization intervals). 
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