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ABSTRACT 
As technology advances we encounter more available data on 
moving objects, thus increasing our ability to mine spatio-
temporal data. We can use this data for learning moving objects 
behavior and for predicting their locations at future times 
according to the extracted movement patterns. 

In this paper we cluster trajectories of a mobile object and utilize 
the accepted cluster centroids as the object's movement patterns. 
We use the obtained movement patterns for predicting the object 
location at specific future times. We evaluate our prediction 
results using precision and recall measures. We also remove 
exceptional data points from the moving patterns by optimizing 
the value of an exceptions threshold. 

Categories and Subject Descriptors 
I.5.3   [Pattern Recognition]:   Clustering- algorithms. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Spatio-temporal data mining, Moving objects, Prediction, 
Clustering. 

1. INTRODUCTION 
With technological progress, more data is available on the 
location of moving objects at different times, either via GPS 
technologies, mobile computer logs, or wireless communication 
devices. This creates an appropriate basis for developing efficient 
new methods for mining moving objects. 

Spatio-temporal data can be used for many different purposes. 
The discovery of patterns in spatio-temporal data, for example, 
can greatly influence different fields like animal migration 
analysis, weather forecasting, and mobile marketing. Clustering 
spatio-temporal data can also help in social groups' discovery, 
which is used in tasks like shared data allocation, targeted 
advertising, and personalization of content and services.  Spatio-
temporal prediction can be used to improve resource utilization in 
wireless networks and to introduce a variety of innovative 

location-based services for mobile users. 

The goal of this work is to predict locations of mobile objects at 
future times. We use a compact representation of a spatio-
temporal trajectory and we cluster periodical trajectories of each 
object using a similarity measure that allows the discovery of 
recurring trajectory patterns. We remove exceptional data-points 
from the cluster's centroids and use the centroids as movement 
patterns. Then we suggest an algorithm for predicting mobile 
object's locations at future times according to its discovered 
movement patterns. Finally we evaluate the proposed algorithm 
by conducting experiments on a real-world collection of spatio-
temporal data. We predict locations at future times by the 
proposed algorithm, and evaluate the precision and recall of the 
results. We also examine different exception thresholds in order to 
optimize the prediction results by tuning this parameter. 

2. RELATED WORK 
 [5]Krumm and Horvitz  describe a method called Predestination 

that uses a history of a driver’s destinations, along with data about 
driving behaviors, to predict where a driver is going as a trip 
progresses. Driving behaviors include types of destinations, 
driving efficiency, and trip times. Four different probabilistic cues 
were considered and combined in a mathematically principled 
way to create a probability grid of likely destinations. The authors 
introduced an open-world model of destinations that helps the 
algorithm to work well in spite of a paucity of training data at the 
beginning of the training period by considering the likelihood of 
users visiting previously unobserved locations based on trends in 
the data and on the background properties of locations. The best 
performance on 3,667 different driving trips gave an error of two 
kilometers at the trip’s halfway point. This technique, however, 
predicts the driver’s destination, while we try to predict his/her 
location at any time during his/her trip. 

Other methods for prediction in spatio-temporal databases assume 
that objects move according to linear functions, though in practice 
individual objects may follow different motion patterns, Tao et 
al. [6] introduce a general framework for monitoring and indexing 
moving objects, where first, each object computes individually 
the function that accurately captures its movement and then a 
server indexes the object locations at a coarse level and processes 
queries using a filter-refinement mechanism. A novel recursive 
motion function is suggested that supports a broad class of non-
linear motion patterns. The function does not presume any a-
priori movement but can postulate the particular motion of each 
object by examining its locations at recent timestamps. An 
indexing scheme is suggested that facilitates the processing of 
predictive queries without false misses. This prediction technique 
is based on recognizing a movement function, but finding such 
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function can be unrealistic in some cases. Therefore we will try a 
different approach.  

In this paper we define an algorithm for location prediction in 
spatio-temporal data according to movement patterns that were 
obtained by clustering object trajectories that are cheaper to mine 
due to their compact representation.  

3. SPECIFIC METHODS 

3.1 Representing trajectories 
A periodic spatio-temporal trajectory is a series of data-points 
traversed by a given moving object during a specific period of 
time (e.g., one day). Since we assume that a moving object 
behaves according to some periodic spatio-temporal pattern, we 
have to determine the duration of a single period. Thus, in the 
experimental part of this paper, we assume that a moving object 
repeats its trajectories on a daily basis, meaning that each 
trajectory describes an object movement during one day. In a 
general case, each object should be examined for its periodic 
behavior in order to determine the duration of its recurring 
movement.  The training data window is a sequence of periods 
used to learn the object's periodic behavior based on its recorded 
trajectories (e.g., daily trajectories recorded during one month).  

As a part of our suggested preprocessing technique  [2] we 
represent a trajectory as a list of minimal bounding boxes. A 
minimal bounding box (MBB) represents an interval bounded by 
limits of time and location. Figure 1 demonstrates an object's 
trajectory and its MBB-based representation for a given period. 

 
Figure 1. Object's trajectory 

 
Incoming data-points update the current MBB in the order of their 
arrival times. Therefore, the minimal time bound of the first MBB 
is the time of the earliest data-point in the dataset and the 
maximal time bound of each MBB is stretched until the time or 
the space distance between the maximal and the minimal 
locations of this MBB reaches some pre-defined segmentation 
thresholds. When one of these thresholds is exceeded, a new 
minimal bounding box is initiated with the time of the subsequent 
data-point as its minimal time bound. The larger the threshold is, 
the higher is the summarization level of the trajectories, meaning 
that we increase the processing rate of the next mining stages 
(shorter running times) but also decrease their precision.   

3.2 Defining a similarity measure 
We define similarity between two trajectories as the sum of the 
similarities between each two overlapping MBBs, divided by the 
amounts of MBBs in each of the compared trajectories. 

In  [2] we empirically compared two similarity measures between 
two MBBs. The first similarity measure is called "minimal 
distances"  [1]. It defines the distance between the trajectory 
MBBs as a lower bound of the original distance between the raw 
data, which is an essential property for guaranteeing correctness 
of results for most mining tasks.  

The second similarity measure is the "data-amount-based" 
similarity that was shown to outperform the "minimal distances" 
similarity measure in  [2]. We multiply the minimal-distances 
measure by the distance between the amounts of data points of the 
two compared MBBs (data#D). Since each MBB summarizes 
some data points, the more data points are included in both of the 
compared MBBs, the stronger support we have for their 
similarity. Our "data-amount-based" distance is calculated as: 

))(),((data#))(),((min

))(),((

jinmji

ji

TMBBTMBBDttTMBBTMBBD

TMBBTMBBd

⋅−⋅

= (1) 

Where the distance between the amounts of data points in two 
MBBs is calculated by: 
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Figure 2 describes the minimal distance and the times of overlap 
tm and tn: 
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Figure 2:  A. Times of overlapping between two MBBs; B. 

minimal distance between two MBBs 

3.3 Finding movement patterns by clustering 
A trajectories cluster contains similar periodic trajectories. 
Trajectories in the same cluster contain as much similar MBBs as 
possible (close in space and time). The centroid of a trajectories 
cluster represents a group of similar trajectories, meaning that this 
cluster's centroid can represent a movement pattern of a given 
object. Since in order to run generic clustering algorithms on the 
trajectories data, the algorithm needs to handle an input that 
consists of bound intervals (trajectories) instead of numeric 
vectors, we developed in 

Y 

X 
T(hours) 

 [3] a spatio-temporal version of the K-
Means algorithm for clustering trajectories using the data-amount-
based similarity measure defined above. This version handles 
interval-bounded data represented by a variable amount of 
attributes. It uses a new centroid structure and a new centroid 
updating method, which are defined below. 

 [3]We adapt the incremental clustering approach  in order to 
benefit from the difference between the clustering for the first 
training data window (e.g. trajectories during the first month of 
data collection), when no previous data is available, and 
clustering for the subsequent windows, where using previous 
clustering centroids can help performing a more efficient 
incremental clustering process. Less updates are needed assuming 
that the movement behavior of the same object stays relatively 
stable.  

3.4 Representing a cluster centroid 
The centroid of a trajectory cluster should represent all 
trajectories that belong to that cluster in some summarized 
manner. We represent a cluster centroid as a summarized 
trajectory, or in other words as a set of MBBs. Each MBB is an 
interval that holds information about the upper and lower bounds 



in each one of the d location dimensions (in our case d = 2) , 
lower and upper time bounds, and the amount of data-points that 
are summarized by the MBB. 

Instead of the traditional centroid structure of a numeric vector 
and its common cluster updating method that calculates a cluster's 
centroid as a vector of averages of the items in the cluster, we 
represent clusters as MBBs, which requires using a bounding 
technique for updating clusters, since averaging bounds will lead 
to invalid bounds, that are not the MBB real bounds.  [2]

3.5 Identifying exceptions 
Our purpose is to maintain reliable and generic movement 
patterns, without recording exceptional movements that do not 
occur frequently within the clustered period. Since centroids are 
the movement patterns in our case, we need to remove 
exceptional movements from the centroids, or more precisely, we 
need to remove exceptional MBBs from the centroids. We can 
detect an exceptional MBB by its "data amount" property that 
records the amount of data points that are summarized within that 
MBB during the training window. If the object is frequently found 
in this location at this time, the "data amount" of the MBB will be 
a large number, but if the object rarely reaches this location at this 
time, the "data amount" of the MBB will be a small number, so 
we can use this property for recognizing sparse MBBs, or 
exceptional MBBs. The algorithm for removing exceptional 
MBBs is as follows: 

 
Our experiments below are aimed at finding the optimal value of 
the exception threshold, which is the maximal data-amount where 
an MBB is considered exceptional.   

Our exception bound is calculated according to the following 
decimal scaling:   

p−⋅

−−
=
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where k is the clusters amount and p is a tuning parameter. In the 
experiments section below we evaluate four different values of p: 
0, 1, 2, 3. Using the decimal scaling we decrease the number of 
data points to its first p digits, and divide it by the clusters amount 
(k) since more clusters lead to less data points in each MBB. 

3.6 Prediction according to cluster centroids 
After clustering mobile object's trajectories within a time period, 
and removing exceptional MBBs from the obtained centroids, we 
can treat the clusters centroids as the movement patterns of each 
mobile object. We can also predict the mobile object's locations at 
specific times in future periods according to the recognized 
moving patterns. 

In our case study below, where each trajectory records 
information of one day, and we cluster information of about one 
month, we get centroids that represent a period of one day (the 
date is ignored). We predict the object's location at a future time 
by searching in each centroid for an MBB that contains the future 
time within its time bounds, and returning its x and y maximal 
and minimal bounds. If no such MBB exists, we will return the 
MBB which is closest in time to the search time. If more than one 
MBB matches the search time, there are several options: (1)The 
algorithm returns the coordinates of all matching MBBs. (2)The 
algorithm returns the coordinates of the matching MBB with the 
highest amount of summarized datapoints. In this paper we will 
operate according to the first option, which ensures that no 
potential MBB is ignored in the prediction stage. The algorithm is 
as follows: 

  

Input: search time (T), object's cluster centroids (C)  
Output: a list of results (R) 

Predicting mobile object's future location: 
For each c in C                     --For each centroid of the clusters  

i =0; MBB=c.getMBB(i)     
while  MBB.maxT< T       --Proceed to a relevant MBB  
         MBB=c.getMBB(i);  i=i+1 
while MBB.minT≤T&MBB.maxT≥T  --Add relevant MBBs 
         R.addMBB(MBB);  i=i+1;  Found = true 
If MBB.minT>T and not Found   --Add MBB with nearest  
         If i>0                            time when there is no match 

Prev = c.getMBB(i-1)     -- Set the previous MBB 

Input: original cluster centroids (C), an exceptions-threshold  
Output: updated cluster centroids (C) 
Removing exceptions from centroids: 
For each c in C        --For each cluster centroid           Else Prev = c.getLastMBB()--Before 0:00 comes 23:59 

         If MBB.minT-T > T-Prev.maxT 
R.addMBB(MBB) -- If current MBB is closer to T 

         Else R.addMBB(Prev)--If previous MBB is closer to T 

   For each MBB in c    --For each MBB in the centroid  
      If MBB.data-amount ≤ exceptions-threshold 
           c.removeMBB(MBB) --Removes MBB from centroid 

Using experiments on a real dataset we will evaluate the recall 
and the precision of this technique. 

4. EXPERIMENTAL RESULTS 
For empirically evaluating the proposed algorithm for predicting 
location of moving objects in future periods and for optimizing 
the exceptions bound that is used for removing exceptional data 
points from the cluster centroids, we used INFATI, a real-world 
collection of spatio-temporal data, described in  [4] which 
contains information about 11 cars and their locations within three 
weeks.  Each run was repeated with five different cluster amounts 
(k) and with four different exception bounds as explained next. 
The algorithm learned the movement of a mobile object from a 
training set that contained all dates of the data collection, except 
for the last two dates that were used for testing. After learning 
patterns from the training set we used our location prediction 
algorithm to predict the objects future location at each tenth 
timestamp in the test set, since predicting the location at each 
timestamp could be redundant. We evaluate the prediction results 
with recall and precision measures. We also measured the range 



of the prediction which is the maximal distance between two 
points in the predicted MBB. 
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The amount of K-Means iterations was set to 20. We evaluate five 
different values of k: 4, 5, 6, 7, 8, and the summarization bounds 
for x and y coordinates were set to:  
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 [2]where D refers to the data values in each dimension. 
Figure 4:  Recall and precision vs. Exception bound  Our exception bound is calculated according to formula (1).   
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We evaluate four different values of p: 0, 1, 2, and 3.  

After running experiments, where our independent variable is 
exception bound and our dependent variables (tested separately) 
are precision, recall, prediction range, and runtime, we can 
evaluate our algorithm for predicting future locations using 
centroids. We calculate recall as the percentage of successful 
predictions where future locations are found within the predicted 
MBBs. We refer to precision as 1 if the future location is found 
within the predicted MBB, otherwise we calculate it as 1 divided 
by the minimal distance between the future location and the 
predicted MBB. If several MBBs are predicted we consider the 
maximal precision between them. We calculate the predicted 
range of successful predictions as the maximal distance between 
two points (the diagonal) in the predicted MBB. In case where 
several MBBs are predicted we consider the maximal diagonal 
over all predicted MBBs (we do not add distances since predicted 
MBBs may overlap). According to figure 3, the greater the 
exception threshold is, the more MBBs are removed and so the 
prediction algorithm needs to check less MBBs and therefore its 
running time decreases. In figure 4 we can see that recall and 
precision only decrease when p=3 in the exception bound, so the 
exception bound where p=2 is the optimum, since it removes the 
greatest amount of MBBs without decreasing the precision and 
recall. We can also see that our location prediction algorithm 
provides good results of 89.6% precision and 89.5% recall. We 
also measured the prediction average range, meaning the size of 
MBBs that were predicted when searching for one point. We 
found that this range is 13.1 in X coordinate and 27.4 in Y 
coordinate. In figure 5 we can see that the optimal exception 
bound (p=2) brought to the removal of 58% of the MBBs that 
originally constructed the clustering centroids.  

Figure 5:  Amount of removed MBBs vs. Exceptions bound  

5. CONCLUSIONS 
In this paper, we used a novel method for clustering trajectories 
into periodic movement patterns, as a basis for a location 
prediction algorithm. The algorithm was shown to operate well 
with 89.6% average precision and 89.5% average recall. 

We also found the optimal value of an exception threshold, which 
is the maximal amount of data points where an MBB is 
considered exceptional and is consequently removed from the 
cluster centroid before the prediction process starts.  

Further work is needed for improving prediction accuracy by 
predicting different locations (MBBs) with different likelihoods 
according to the amount of data points within each predicted 
MBBs. 
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