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Abstract. Real-time data mining of high-speed and non-stationary data 

streams has a large potential in such fields as efficient operation of machinery 

and vehicles, wireless sensor networks, urban traffic control, stock data analysis 

etc.. These domains are characterized by a great volume of noisy, uncertain 

data, and restricted amount of resources (mainly computational time). Anytime 

algorithms offer a tradeoff between solution quality and computation time, 

which has proved useful in applying artificial intelligence techniques to time-

critical problems. In this paper we are presenting a new, enhanced version of an 

anytime algorithm for constructing a classification model called Information 

Network (IN). The algorithm improvement is aimed at reducing its 

computational cost while preserving the same level of model quality. The 

quality of the induced model is evaluated by its classification accuracy using 

the standard 10-fold cross validation. The improvement in the algorithm 

anytime performance is demonstrated on several benchmark data streams.  

Keywords: anytime algorithms, classification, information theory, 

Information Network algorithm, classification accuracy, computation cost 

1 Introduction 

Systems that deal with continuous data streams are becoming increasingly 

important primarily due to the emergence of sensors and similar small-scale 

embedded computing devices that continuously produce large volumes of data they 

obtain from their environment. The complex nature of real-world, streaming data has 

increased the difficulties and challenges of data mining applications in terms of 

knowledge induction and decision making within the limited time scope. 

 Data generated by wireless sensor networks (WSN) is one of the important 

examples. WSN are now used in many application areas including environment and 

habitat monitoring, health care, home automation, and traffic control. Each sensor 

node of such network records as streams time-stamped observations, taken at varying 

time frequency. A typical observation includes measurements of various physical or 

environmental parameters such as temperature, sound, vibration, pressure, as well as 

sensor location. While real-time tracking of environmental conditions is extremely 



important for handling a chemo/bio contamination, seismic detection etc., continuous 

transmission of all recorded observations by the meter-reading chips to the nearest 

hub node and, subsequently, to the central station may be infeasible due to the limited 

battery life of the chips and the local hubs. The intuitive solution is to use data-mining 

techniques to analyze and induce time-dependent models of observed behavior and 

transfer these models to the central station rather then the streamed data. At the same 

time, the high rate of data changes requires to generate the model rapidly within the 

allocated time frame.  

 The anytime algorithms give intelligent systems the capability to trade 

computational time for the quality of results. This capability is efficient for solving 

time-constrained problems such as decision making in dynamic environment, sensor 

interpretation, and planning [    17]. The term anytime algorithm was introduced by 

Dean et al. in the mid-1980s in their work on time-dependent planning [  4], [  5]. 

Similar approaches termed flexible computation by Horvitz [   10], [   11] and imprecise 

computation by Liu et al. [   15] are based on a general idea that many computational 

tasks are too complicated to be completed at real-time speeds, therefore it is important 

to build a system that can generate good approximate results in a much shorter time 

period.  

According to Zilberstein [   17], the desired properties of anytime algorithms 

include the following: measurable solution quality, which can be easily determined at 

run time, monotonicity (quality is a non-decreasing function of time), consistency of 

the quality w.r.t computation time and input quality, diminishing returns of the quality 

over time, interruptibility of the algorithm, and preemptability with minimal 

overhead.  

 In this paper, we propose a new, enhanced version of an anytime algorithm 

for inducing a classification model called Information Network (IN). The original 

algorithm was developed by Last et al. [  13]. The model is a tree-like structure that 

represents relationship between input (predictive) features and target (classification) 

attributes. Unlike most other decision-tree models, the information network uses the 

same input attribute across all nodes of a given layer (level) and thus it can be 

considered an oblivious decision-tree. The method was shown theoretically and 

empirically to have the basic properties of interruptible anytime algorithms [  12]. The 

enhanced method presented in this paper is aimed at improving the anytime 

performance of the IN algorithm by reducing its computational time while 

maintaining the same quality level of the induced model. The most time-intensive 

operation in network construction is choosing, at each iteration of the algorithm, an 

input attribute, which provides the maximum significant increase in mutual 

information relative to the previous layer. Therefore the idea is to filter out the least 

significant attributes, before the classifier construction, and afterwards to build a 

model using a reduced subset of candidate input attributes.  We evaluate the 

performance of the algorithm on eleven benchmark datasets from various sources (see 

Section 4).  

 The paper is organized as follows. Section 2 reviews the related works in the 

fields of anytime classification algorithms and resource-aware knowledge discovery 

in data streams. The enhanced anytime algorithm for induction of oblivious decision 

trees is described by us in Section 3. Experimental results are presented and discussed 



in Section 4. Finally we conclude the paper and present the possible future research 

directions in Section 5. 

2   Related work 

2.1 Anytime Decision Tree Induction 

 

Last et al. [  12] introduced an interruptible anytime information-theoretic 

classification algorithm. Their method constructs a compact and accurate decision-

tree model called Information Network. The algorithm has several objectives, such as: 

maximizing the mutual information between a set of predictive attributes and the 

target (classification) attribute, finding a minimal set of features involved in the 

induced model (hence, it can be also used as a feature selection method), and 

verifying the statistical significance of the discovered patterns.  

Esmeir et al. [  6] presented interruptible anytime algorithms for iterative 

improvement of decision trees. The motivation of their research is different from our 

goal of saving the computational resources. They explore the problem of how to 

produce better decision trees for hard-to-learn concepts when more time resources are 

available. Their framework consists of two anytime algorithms. The first one, called 

Sequencing LSID3 converts the recent LSID3 contract algorithm to an interruptible 

version, which does not require the allocated time in advance and can be interrupted 

at any time. The second is Interruptible Induction by Iterative Improvement (IIDT) 

which repeatedly selects a sub tree whose reconstruction is estimated to yield the 

highest marginal utility and rebuilds it, exploiting extra time allocation. 

2.2 Resource-aware Data Mining Techniques 

 

Gaber et al. [  7] presented a framework for resource-aware computing in data 

stream analysis. The streaming information is often generated, received or processed 

by computational devices such as wireless sensors. These devices are limited in terms 

of energy, memory, computational speed and communication bandwidth. The main 

goal of the research is to apply data mining techniques to continuous data streams 

within the scope of constrained device resources. This generic framework proposes 

Algorithm Granularity Settings (AGS). The idea is to periodically change algorithm 

settings from the input, output, and/or processing end points according to resource 

consumption pattern measurements performed over the last time period as well as a 

measure of resource criticality. In [  7] this method is applied to a novel threshold-

based micro-clustering algorithm, called RA-Cluster.  The strategy of adapting the 

CPU demand is done using the Randomized Assignment approach. As the CPU load 



increases, only a pre-specified fraction of the current micro-clusters is examined when 

making the micro-cluster assignment for a new data point. 

 Phung et al. [   16] extended the previous work [  7] for Wireless Sensor 

Networks.  Their approach was applied to online clustering algorithm (ERA-Cluster), 

which uses the resource monitoring of the Sun SPOT sensor nodes from Sun 

Microsystem™ to adapt to resource availability. The CPU adaptation of [   16] is also 

based on the Randomized Assignment approach. 

2.3 Anytime Properties of the IN Algorithm 

 

If the network quality is measured by its predictive accuracy, we can easily verify 

the algorithm conformity with the anytime properties defined by Zilberstein [  17] 

using a line of arguments similar to [  12]:  

• Measurable quality.  The predictive accuracy after each iteration of the 

algorithm can be estimated using 10-fold cross-validation or any other 

validation procedure. 

• Recognizable quality.  Due to the inherent compactness of IN models, 

counting the number of validation errors is a relatively fast procedure. 

• Monotonicity.   A new attribute is added by the algorithm to the set of input 

attributes only if it causes an increase in the mutual information.  According 

to Fano’s inequality [   3],an increase in mutual information implies an 

expected decrease in the error rate.  

• Consistency.  The theoretical run time of the algorithm has been shown by us 

in [  13] to be quadratic-logarithmic in the number of records and quadratic 

polynomial in the number of initial candidate input attributes. 

• Diminishing returns.  This property is very important for algorithm’s 

practical usefulness: it means that after a small part of the running session, 

the results are expected to be sufficiently close to the results at the 

completion time.  We could prove this property mathematically, if we could 

show that the mutual information is a concave function of the number of 

input attributes.  Though the last proposition is not true in a general case, it is 

possible to conclude from Fano’s inequality [  3] that the mutual information 

is bounded by a function, which behaves this way.  This conclusion is 

empirically confirmed by the results of Section 4. 

• Interruptibility.  The algorithm can be stopped at any time and provide the 

current list of selected attributes.   Each iteration forms, what is called, a 

contract anytime algorithm, i.e. the corrections of predictive accuracy are 

available only after termination of an iteration. 

• Preemptability. Since the algorithm maintains the training data, the list of 

selected input attributes, and the current structure of the information-

theoretic network, it can be easily resumed after an interrupt.  If the 

suspension is expected to be long, all relevant information may be stored on 

a hard disk. 

  



3 Enhanced Algorithm for Anytime Induction of Oblivious 

Decision Trees 
 

We aim at enhancing the Information Network algorithm by reducing the time needed 

to construct a classification model, while maintaining the same level of its predictive 

accuracy. At each iteration, the algorithm builds a new hidden layer by choosing an 

input attribute (either discrete, or continuous), which provides the maximum 

significant increase in mutual information relative to the previous layer. The 

computational complexity of evaluating a discrete attribute is the complexity of 

calculating its conditional mutual information MI(Ai;T/z) (1).  The complexity of 

evaluating a continuous attribute consists of calculating its conditional mutual 

information MI (Th; T/S, z) for a given split (2), as well as discretizing it into a 

number of discrete intervals. Both these operations are performed in each hidden layer 

of information network for all candidates in that layer. Hence, to reduce the 

computational cost of the Information Network algorithm we propose the following 

“fast feature filtering” procedure to be applied before the network construction: 

• Generate a random sample of training instances. The sample size is a pre-

specified percentage of the training examples. Based on the experimental 

results described in Section 4, the recommended sample size can be as low 

as 5%. 

• Compute the estimated mutual information for each candidate input attribute 

using the random sample of training instances.   Due to the small sample size 

(5%), this calculation is expected to take much less time than the first 

iteration of the algorithm based on the entire training set.  The mutual 

information calculated by the IN algorithm is shown in [  14] to be a much 

more efficient feature selection method than two alternative feature selection 

algorithms (Relief and ABB). 

• Filter out the least significant features, having the lowest values of estimated 

mutual information. The percentage of selected features is determined in 

advance. Based on the experimental results, described in Section 4, the 

recommended percentage is 30%, i.e., 70% of significant input attributes are 

removed from consideration by the algorithm. We call this approach Fast 

Feature Filtering (FFF). 

 

The Information Network induction is performed subsequently on the subset of 

selected features using all training examples. 

The pseudocode of the “fast feature filtering” procedure is given below: 

 
Input:  the set of n training instances; the set CI of 

m candidate input attributes (discrete and continuous); 

the target (classification) attribute T; the percentage 

of randomly selected training instances sample_size; the 

percentage of selected attributes from m candidate input 

attributes significant_Set_size. 

Output: a set I of selected significant input 

attributes. 

 



I = Ø 

Create random sample of sample_size training instances. 
For each candidate input attribute A

i
∉ I do 

 If A
i 
is discrete then 

  Return the statistically significant 
conditional mutual    information cond_MI

i 

between A
i 
and T. 

 Else return the best threshold splits of A
i 
and the 

statistically
    

significant conditional 
mutual information cond_MI

i 
between    A

i 
and T. 

 If cond_MI
i 
> 0, then   

  Update the set I of selected input 
attributes: I = I ∪  A

i*
 

End do 
Sort the set I of selected input attributes according 

to increasing its cond_MI
i
  

For each i ← significantSet_size to I  

 Exclude the less significant input attribute A
i 
from 

the set I: 
 I = I - A

i* 

 
i ← i + 1; 

End do 
Return a set I of selected significant input 

attributes.  

4 Experimental Results 

According to [   17], the performance profile (PP) of an anytime algorithm denotes 

the expected output quality as a function of the execution time t. Since there are many 

possible factors affecting the execution time, the performance profile, in many cases, 

has to be determined empirically and not analytically. 

 To study the performance profile of the enhanced method for induction of 

oblivious decision trees, we have applied it to eleven real-world datasets, including 

five datasets (Housing, Image Segmentation, Spambase, Waveform, Adult) from the 

UCI Machine Learning Repository [  1], five Traffic Direction datasets provided by the 

Traffic Control Center of Jerusalem, and the Intrusion Detection database originally 

used for the Third International Knowledge Discovery and Data Mining Tools 

Competition (current available from the UCI KDD Archive [  8]).The characteristics of 

each dataset are shown in Table 1. The size of the datasets varies between 506 and 

10,000 cases. The total number of candidate input attributes is from 11 up to 57, 

including nominal and continuous features. It should be noted that the Traffic 

Direction, Intrusion Detection and Adult datasets have actually more than 10,000 

instances, but due to the memory constraints we have confined ourselves to this 

amount of training examples.   

We have measured the quality of the induced model by the standard 10-fold 

cross validation procedure. To evaluate the attribute filtering method we have 

experimented with three different sample sizes of 5%, 10% and 20% accordingly. 



Using each sample of the training set, we have calculated the mutual information for 

all candidate input attributes and selected 20%, 30%, 40%, 50%, 60% and 70% of the 

most significant features. With each subset of selected significant attributes, we have 

built 10 Information Networks, using the ten-fold cross validation procedure. This 

experiment has been repeated eighteen times for each dataset, using six different 

amounts of selected attributes and three different samples of the training set. The 

results of each experiment, which are the averages of 10 cross-validation models, are 

compared to the results of the original method (not using fast feature selection). After 

each iteration of the algorithm, we have computed the accuracy of the current model 

and the time needed to induce the new hidden layer of that model. These parameters 

are compared with the same parameters of the original algorithm, which induces a 

classification model from all candidates, without filtering out less significant 

attributes.  

 Based on the results of experiments we can say that on average, only three 

hidden layers are built in all 10 models over 11 datasets. We have found also, that 

after the third iteration the cross-validation accuracy of most models stops to increase 

significantly (see the “simplicity first” approach proposed in [ 9]). Measuring the run 

time and the predictive accuracy of the enhanced algorithm over three different 

sample sizes (5%, 10%, 20%), we have found that the 5%-sample preserves the same 

performance level as the larger samples. Considering these facts we have presented in 

Figure 2 the performance profile of only three-layered networks induced from various 

sets of significant attributes selected by a 5% random sample. To simplify the 

comparison of the results of the novel approach with the original one, as well, for 

better illustration, we have normalized the execution time of each experiment with 

respect to the execution time of the original algorithm. For the run time equal to zero, 

the average accuracy over 11 datasets is computed by means of the majority rule.  

Several important observations can be made from Figure 2. First, we can see, 

that the average performance profiles are concave functions of time. After the first 

iteration of the algorithm, the accuracy of the model is sufficiently close (85%) to the 

accuracy at completion time. It proves the very important anytime property of the 

algorithm: diminishing returns (see subsection 2.3).  Second, we can observe that 

execution time of the enhanced approach varies between 20-50% of run time using 

the original method, where the lowest computational time of 20% refers to induction 

of the model from 30% of selected significant attributes and the highest time of 50% 

refers to construction of the model from 70% subset accordingly. Finally, we note that 

with a 20% subset of selected features, the induced model has only two layers in eight 

datasets out of eleven (Housing, Adult, five Traffic Direction datasets, and Intrusion 

Detection). Hence, we exclude the 20% subset of significant attributes from our study, 

and compute the average performance for a three-layered network, regarding this 

network as a minimal model in all 11 datasets. 

The run time of the enhanced method with the 5% sample starts with 93.8 

msec. for the Traffic-Direction2 datasets and goes up to 87,895 msec. for the 

Spambase dataset, which has 4,601 records and 57 continuous attributes. Due to space 

limitations, Figure 3 shows the performance profiles of five datasets only. 
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Figure2. Average performance profile of the enhanced anytime algorithm over eleven datasets, 

sample size 5%. 

Our research is primarily aimed at reducing the computational time of the IN 

algorithm while keeping the same quality level of the classification model. To study 

how the sample size affects the accuracy and the execution time of constructing the 

Information Network, the average value of these parameters have been calculated for 

each sample size (see Table 2) 

 

0

0,2

0,4

0,6

0,8

1

0 20 40 60 80 100

Relative time (%)

A
c

c
u

ra
c

y

Image Segmentation

Spambase

Waveform

Adult

Intrusion detection

 

Figure3. Performance profiles of the enhanced anytime algorithm for five datasets, sample size 

5% 



Table 1. The characteristics of eleven benchmark datasets 

Dataset Data 

size 

Class

es 

Conti

nuous 

Nomi

nal 

Total 

Attributes 

Housing 506 3 12 1 13 

Image Segment. 2,100 7 19 0 19 

Spambase 4,601 2 57 0 57 

Waveform 5,000 3 21 0 21 

Adult 10,000 2 6 8 14 

Traffic-Direction1 10,000 4 6 5 11 

Traffic-Direction2 10,000 4 6 5 11 

Traffic-Direction3 10,000 4 6 5 11 

Traffic-Direction4 10,000 4 6 5 11 

Traffic-Direction5 10,000 4 6 5 11 

Intrusion Detect. 10,000 4 14 2 16 

 

Table2. Average accuracy, execution time and standard deviation of three-layered model over 

eleven datasets and various percentages of selected significant attributes 

Sample 

Size 

(%) 

Average 

attributes 

filtering 

time (sec.) 

Average 

accuracy  

Average 

execution 

time (sec) 

STDEV 

of  

mean 

accur. 

STDEV 

of  

mean 

time 

Slope 

(*10-4) 

5 1,8 0.79 31,7 0.013 6 2.5 

10 1,8 0.80 32,1 0.013 6 2.49 

20 2 0.79 32,2 0.014 6 2.45 

 
As one can see from Table 2, the sample size affects the induction time of 

the classifier and does not affect its accuracy. To evaluate the trade-off between these 

characteristics we calculate their ratio called the Slope using the following equation: 

 

SLOPE = 
t

tQ

∆

∆ )(
 (3) 

 

Where,  

)(tQ∆  = the difference between the accuracy of the complete (three-

layered) model and the initial (majority rule) accuracy;  

t∆  = the execution time of inducing a complete (three-layered) model 

 

According to the value of Slope we can suggest that the 5% sample size is 

slightly more preferable than the 10% and 20% sample sizes.     

 Another question is which percentage of selected significant attributes is 

preferable for optimizing the accuracy-time relationship. To answer this question, we 



are summarizing in Table 3, the average accuracy and execution time, for each subset 

of significant attributes, comparing these parameters to the results of the original 

method, without the fast feature filtering (FFF), where the average accuracy is 0.806 

and execution time is 88,115 msec. 

The decrease in accuracy and execution time (see Table 3, columns 2 and 3) 

is computed relative to the 100 % set of candidate attributes. As we can see, the 

maximal reduction of time (79.9%) is reached with the 30% set. It is important to note 

that, the decrease in accuracy vs. the original method (see Table 3, column 5) has not 

been found statistically significant as for various sample sizes, as for various 

percentages of selected attributes. To find the optimal percentage of significant 

features we have calculated the Slope for each subset of selected attributes. According 

to the Slope value we can say that the 30% percentage of significant features is 

optimal for accuracy-time optimization task.  

Finally, we can conclude, based on analysis of the experimental results obtained 

for eleven datasets that best trade-off between the accuracy of the three-layered 

Information Network and computational time needed for its construction is achieved 

on a 30% subset of significant attributes selected by a 5% random sample. In this 

case, the execution time is reduced by almost 80%. 

Table 3. Average accuracy, execution time and standard deviation of three-layered model, over 

eleven datasets and various sample sizes  

Percent  

signif. 

attrib. 

Aver. 

accur. 

after 

FFF 

Aver. 

time 

(sec.) 

after 

FFF 

Slope 

(*10
-4

) 

Decre

ase 

accur. 

after 

FFF 

(%) 

Decre

ase 

time, 

after 

FFF 

(%) 

STDEV 

of mean 

accurac

y after 

FFF 

STDEV 

of mean 

time, 

after 

FFF 

30 0.788 17,6 4.38 4 80 0.018             5  

40 0.792 25,7 3.08 2 71 0.018 6 

50 0.793 33,2 2.39 2 62 0.018 8 

60 0.801 39,3 2.04 1 55 0.015 9 

70 0.804 44,0 1.83 0.3 50 0.015 11 

 

 One of the important benefits of the proposed FFF approach is that it allows 

capturing the tradeoff between the solution quality and the time saved and/or 

complexity of classification represented by the number of the most significant input 

attributes.  The anytime interruptability of the algorithm allows stopping it after each 

iteration to provide an approximate solution that is close to the complete result. This 

can be crucial for real-time classification algorithms working with a large number of 

input attributes and/or with timing constraints.  

 

 



5 Conclusions 
    

In this paper, we have proposed a new, “Fast Feature Filtering” version of an anytime 

algorithm for constructing a classification model called Information Network (IN). 

We have studied and improved the important anytime property diminishing returns of 

the algorithm. The new method enables to reduce significantly its computation cost 

while preserving the same level of model quality. This goal is achieved by means of 

monitoring the relationship between the random sample size of training examples and 

the percentage of most significant input attributes selected by this sample. The 

proposed algorithm is evaluated on eleven benchmark datasets available from 

different sources. The quality of the induced model is measured by its classification 

accuracy using the standard 10-fold cross validation. The performance profiles of the 

new version have been shown to be concave functions of time. Based on the 

experimental results, the optimal tradeoff between accuracy of a three-layered 

Information network and execution time needed for its construction is achieved with a 

30% subset of significant attributes selected using a 5% random sample. In this case, 

the accuracy rate is very close to the accuracy of the original algorithm, whereas the 

execution time is reduced by almost 80%. Topics for future research include 

predicting the expected quality for a given execution time (and vice versa), and 

integrating the enhanced version of the algorithm with real-time learning systems 

such as IOLIN [  2]. 
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