
Anytime Algorithm for Feature Selection

Mark Last1, Abraham Kandel1, Oded Maimon2, Eugene Eberbach3

1Department of Computer Science and Engineering, University of South Florida, 4202 E. Fowler Avenue, ENB 118, Tampa, FL 33620
USA

{mlast,kandel}@csee.usf.edu
2Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel

maimon@eng.tau.ac.il
3Jodrey School of Computer Science, Acadia University, Wolfville, NS B0P 1X0, Canada

eugene.eberbach@acadiau.ca

Abstract. Feature selection is used to improve performance of learning algorithms by finding a minimal subset of relevant
features. Since the process of feature selection is computationally intensive, a trade-off between the quality of the selected
subset and the computation time is required. In this paper, we are presenting a novel, anytime algorithm for feature
selection, which gradually improves the quality of results by increasing the computation time. The algorithm is
interruptible, i.e., it can be stopped at any time and provide a partial subset of selected features. The quality of results is
monitored by a new measure: fuzzy information gain. The algorithm performance is evaluated on several benchmark
datasets.

Keywords: feature selection, anytime algorithms, information-theoretic network, fuzzy information gain

1 Introduction

Large number of potential features constitutes a seriously obstacle to efficiency of most learning algorithms. Such popular
methods as k-nearest neighbors, C4.5, and backpropagation do not scale well in the presence of many features. Moreover,
some algorithms may be confused by irrelevant or noisy attributes and construct poor classifiers. A successful choice of
features provided to a classifier can increase its accuracy, save the computation time, and simplify its results.

In practical applications, like data mining, there is no better solution than using the knowledge of a domain expert, who
can identify manually all relevant predictors of a given variable. However, in many learning problems, such an expert is not
available, and we have to use automated methods of feature selection that choose an optimal subset of features according to a
given criterion. A detailed overview of feature selection methods is presented by Liu and Motoda (1998).

Since classification accuracy is an important objective of learning algorithms, the most straightforward method (called the
wrapper model) is to evaluate each subset of features by running a classifier and measuring its validation accuracy.
Obviously, this approach requires a considerable computation effort. Another approach (the filter model) uses indirect
performance measures (like information, distance, consistency, etc.), but it still requires training and validation of a learning
algorithm on the final subset of selected features.

Whether the wrapper model or the filter model is applied to a set of features, the user may have to stop the execution of the
algorithm, because there is no more time left for continuing the computation. Moreover, the time constraints may be
unknown in advance and they can vary from seconds in real-time learning systems to hours or days in large-scale knowledge
discovery projects. In both cases, we may be interested to find a good, but not necessarily the optimal, set of features as
quickly as possible. However, as appears from (Liu and Motoda, 1998), the existing methods of feature selection do not
consider the trade-off between time and performance.

Anytime algorithms (e.g., Dean and Boddy, 1988, Horvitz, 1987, Russell and Wefald, 1991, Zilberstein, 1996) offer such a
trade-off between the solution quality and the computational requirements of the search process. The approach is known
under a variety of names, including flexible computation, resource bounded computation, just-in time computing, imprecise
computation, design-to-time scheduling, or decision-theoretic metareasoning. All these methods attempt to find the best
answer possible given operational constraints. A formal model for anytime algorithms is provided by $-calculus (Eberbach,
2000), which is a higher-order polyadic process algebra with a utility (cost) allowing to capture bounded optimization and
metareasoning typical for distributed interactive AI systems.

In this paper, we present an information-theoretic algorithm for feature selection, which is shown theoretically and
empirically to have the basic properties of anytime algorithms. We define a criterion for measuring the quality of the
algorithm results and study the algorithm performance profile on several benchmark datasets. We also evaluate the
performance of the algorithm, when it is run to its completion, by comparing the classification accuracy, using the selected
features, to the accuracy obtained with the full set of features.

In section 2, we present a brief overview of existing feature selection methods. The information-theoretic connectionist
method of feature selection is described by us in section 3. We also analyze the theoretical properties of the method and
compare them to the desired properties of anytime algorithms. Section 4 reports initial experiments that study the
performance of the information-theoretic method and suggests possible enhancements using $-calculus. Finally, in section 5
we summarize the benefits and the limitations of our approach and discuss some directions for future research in the field of
resource-bounded feature selection.

2 Overview of Feature Selection Methods

Most feature selection techniques are limited to certain types of data. Thus, Littlestone (1988) has studied the problem of
learning Boolean functions in the presence of irrelevant attributes. Littlestone’s algorithm is limited to datasets with binary
classes. The primary advantage of this algorithm is that the number of errors grows only logarithmically with the number of
irrelevant attributes.

A number of linear dimension reducers have been developed over years. The linear methods of dimensionality reduction
include projection pursuit (Friedman and Tukey, 1974), factor analysis (see Kim and Mueller, 1978), and principal
components analysis (see Dunteman, 1989). These methods do not deal directly with eliminating irrelevant and redundant
variables, but are rather concerned about transforming the observed variables into a small number of “projections”, or
“dimensions”. The underlying assumptions are that the variables are numeric and the dimensions can be expressed as linear
combinations of the observed variables (and vice versa). The methods assume each discovered dimension to represent an
unobserved factor and thus provide a new way of understanding the data (similarly to the curve equation in the regression
models). However, the linear methods are not able to reduce the number of original features as long as all the variables have
non-zero weights in the linear combination.

John et al. (1994) distinguishes between two models of selecting a “good” set of features under some objective function.
The feature filter model assumes filtering the features before applying an induction algorithm, while the wrapper model uses
the induction algorithm itself to evaluate the features. The possible search strategies in the space of feature subsets include
backward elimination and forward selection. The performance criterion of the wrapper model in (John et al., 1994) is the
prediction accuracy of the induction algorithm, estimated by n-fold cross validation.

A new book on feature selection by Liu and Motoda (1998) suggests a unified model of the feature selection process.
Their model includes four parts: feature generation, feature evaluation, stopping criteria, and testing. In addition to the
“classic” evaluation measures (accuracy, information, distance, and dependence) that can be used for removing irrelevant
features, they mention important consistency measures (e.g., inconsistency rate), required to find a minimum set of relevant
features. By decreasing the inconsistency rate of data, both irrelevant and redundant features are removed. As indicated by
Liu and Motoda (1998), consistency measures are only suitable for selecting discrete features.

Caruana and Freitag (1994) present an enhanced greedy algorithm, based on the wrapper model. Again, the metric used is
the generalization performance of the learning algorithm (its accuracy over the validation data set), which significantly
increases the computation time of the entire process.

Almuallim and Dietterich (1992) make use of the information theory (see Cover, 1991) for selecting relevant features.
Their Mutual-Information-Greedy (MIG) Algorithm defined for Boolean noise-free features, selects a feature if it leads to the
minimum conditional entropy of the classification attribute. Since the algorithm assumes noiseless data, no significance
testing is required (any non-zero entropy is significant). The assumption of noise-free data leaves the MIG algorithm at quite
a distance from most practical problems of feature selection.

A statistical approach to feature selection from numeric / ordinal attributes is presented by Liu and Setiono (1997). The
adjacent intervals are merged until the chi-square statistic exceeds a pre-determined threshold value. The attributes
discretized into a single interval can be removed as irrelevant or redundant. The algorithm is limited to first-order attribute-
class correlations.

To sum-up this section, the backward elimination strategy, used by certain methods, is very inefficient for large-scale
datasets, which may have hundreds and thousands of original attributes. Most forward selection wrapper methods satisfy the
basic requirements of anytime algorithms, but they are highly expensive in terms of the computational effort. The existing
filter algorithms are computationally cheaper, but they are evaluating features in a random order, making them more similar
to contract algorithms, where intermediate results are hardly useful. In the next section, we are describing the information-
theoretic method of feature selection, initially introduced by us in (Maimon, Kandel, and Last, 1999) and (Last and Maimon,

1999). As shown in this paper for the first time, the method is much faster than the wrapper techniques and it can be
implemented as an anytime algorithm, when the computation time is limited.

3 Information-Theoretic Method of Feature Selection

Our method selects features by constructing an information-theoretic connectionist network, which represents interactions
between the predicting (input) attributes and the classification (target) attributes. The minimum set of input attributes is
chosen by the algorithm from a set of candidate input attributes. The network construction procedure is described in sub-
section 3.1. The theoretical properties of the algorithm in the context of anytime computation are evaluated in sub-section
3.2.

3.1 Network Construction Algorithm

An information-theoretic network is constructed for each target attribute separately. It consists of the root node, a changeable
number of hidden layers (one layer for each input attribute), and a target layer. Each hidden (target) layer consists of nodes
representing different values of an input (target) attribute. The network differs from the structure of a standard decision tree
(see Quinlan, 1986 and 1993) in two aspects: it is restricted to the same input attribute at all the nodes of each hidden layer
and it has interconnections between the terminal (unsplitted) nodes and the final nodes, representing the values of the target
attribute

Without loss of generality, we present here a search procedure for constructing a multi-layer network of a single target
attribute Ai. In a general case, the network should be re-built (starting with Step 4) for every target attribute defined in a
database.

Step1 - Given a relation schema and available domain knowledge, partition the schema into a subset of candidate input
and a subset of target attributes.

Step 2 - Enter a minimum significance level α for splitting a network node (default: α = 0.001).
Step 3 - Read records of a relation. Records with non-valid or missing target values are ignored by the algorithm. Missing

values of candidate input attributes are encoded in a pre-determined form (e.g., by assigning them a special code).
Step 4 - Initialize the structure of the information-theoretic network to a single root node associated with all records and a

target layer for values of the target attribute. Initialize to zero MI (Ai ; Ii), the estimated mutual information (Cover, 1991)
between the target attribute Ai and the set of input attributes Ii.

Step 5 - If the maximum number of layers (equal to the number of candidate input attributes) is exceeded, stop and return
the list of selected (input) attributes. Otherwise, go to the next step.

Step 6- Repeat for every candidate input attribute Ai’, which is not in the network:
Step 6.1 – Initialize to zero the degrees of freedom and the estimated conditional mutual information (MI (Ai’ ; Ai / Ii)) of

the candidate input attribute and the target attribute, given the final layer of hidden nodes.
Step 6.2 – If Ai’ is a continuous attribute, then find the best partitioning of the attribute. The details are provided in (Last

and Maimon, 1999).
Step 6.3 – Else (if the attribute Ai’ is discrete), Do
Step 6.3.1 - Repeat for every node z of the final hidden layer:
Step 6.3.1.1 - Calculate the estimated conditional mutual information of the candidate input attribute i’ and the target

attribute i, given the node z (MI (Ai’; Ai / z)).
Step 6.3.1.2 - Calculate the statistical significance of the estimated conditional mutual information, by using the

likelihood-ratio statistic (based on Rao and Toutenburg, 1995).
Step 6.3.1.3 - If the likelihood-ratio statistic is significant, mark the node as "splitted" and increment the estimated

conditional mutual information of the candidate input attribute and the target attribute, given the final hidden layer of nodes
(MI (Ai’; Ai / Ii)); else mark the node as "terminal".

Step 6.3.1.4 - Go to next node.
Step 6.3.2 - Go to next candidate input attribute.
Step 6.3.3 - EndDo
Step 7 - Find a candidate input attribute maximizing the estimated conditional mutual information (“the best candidate

attribute”).
Step 8 - If the maximum estimated conditional mutual information is zero, stop and return the list of input attributes.

Otherwise, go to the next step.
Step 9 - Add a new hidden layer to the network: make the best candidate attribute a new input attribute and define new

nodes for a Cartesian product of splitted hidden nodes in the previous layer and the values of the best candidate attribute.

Increment the estimated mutual information MI (Ai ; Ii) by the amount of estimated conditional mutual information MI (Ai’ ; Ai
/ Ii) at the current layer. According to the chain rule (see Cover, 1991), the overall mutual information between Ii and Ai is
equal to the sum of conditional mutual informations at all the hidden layers.

Step 10 - Go to Step 5.
An example of an information-theoretic connectionist network, which has three hidden layers (related to three selected

attributes), is shown in Fig. 1. The performance of the algorithm is evaluated in Section 4 below.

Target layer

(Class)

0

1

3

4

5

6

2

0

1

Other
investments = 0

Other
investments = 1

Balance
between $1
and $445

Balance>
$445

Bank
account=1

Bank
account=0

Layer 1
(Other investments)

Layer 2

(Balance)

Layer 3

(Bank Account)

Target layer

(Class)

0

1

3

4

5

6

2

0

1

Other
investments = 0

Other
investments = 1

Balance
between $1
and $445

Balance>
$445

Bank
account=1

Bank
account=0

Layer 1
(Other investments)

Layer 2

(Balance)

Layer 3

(Bank Account)

Fig. 1. Information-Theoretic Network: Credit Dataset

3.2 Anytime Properties of the Information-Theoretic Algorithm

According to Zilberstein (1996), the desired properties of anytime algorithms include the following: measurable solution
quality, which can be easily determined at run time, monotonicity (quality is a non-decreasing function of time), consistency
of the quality w.r.t. computation time and input quality, diminishing returns of the quality over time, interruptibility of the
algorithm (from here comes the term any time), and preemptability with minimal overhead. Thus, measuring the quality of
the intermediate results is the key concept of anytime algorithms. Below, we are discussing several alternatives for
measuring the quality of an information-theoretic network.

The most straightforward quality measure is the classification accuracy of the model on the training cases. Training
accuracy is a non-decreasing function of time, since at each iteration, the algorithm adds a new feature to make the model
more accurate. However, this parameter cannot be used as a direct indicator of the solution quality due to the well-known
problem of overfitting (see Mitchell, 1997): the model having the highest training accuracy does not necessarily generalize
best on the new (validation) cases. This implies that we should use a separate validation set for evaluating the quality of the
selected features. A similar approach of combining the training and the validation error rates is used by the CART method
(Breiman et al., 1984). However, the calculation of the validation accuracy has two serious limitations: it reduces the size of
the available training set and increases the computation time (which makes the quality less recognizable). Moreover, the
accuracy measures may be problematic for datasets with skewed class distributions. This leads us to considering measures,
which are computationally cheaper and more general than the classification rate.

Since the network construction is aimed at maximizing the mutual information between a set of input attributes and the
target attribute (see Step 7 in the algorithm), we can use the mutual information itself as the quality measure of the network.
Mutual information is defined by (Cover 1991) as the difference between unconditional and conditional entropies (MI (Ai; Ii)
= H (Ai) - H (Ai / Ii)). For an empty set of selected features, the mutual information is zero. Adding input features decreases
the conditional entropy and increases the mutual information. The optimal value of the mutual information is equal to the
unconditional entropy of the target attribute, which is different for every dataset. This means that the mutual information is
not a normalized quality function (see Zilberstein, 1993). The quality of the estimated mutual information depends on
another parameter: significance level, defined in the step 2 of the algorithm. Thus, the user perception of the quality of the
results may be a complex, non-linear function of both the mutual information and its statistical significance. A general
fuzzy-theoretic approach to automating the human perception of data is described in (Last and Kandel, 1999).

To represent the automated perception of the network quality, we will use here a new measure, called fuzzy information
gain, which is defined as follows:

oute
FGAIN

+
=

1

2 ,
);(

)/(

ii

ii

IAMI

IAH
out

βα= (1)

Where

H (Ai / Ii) - estimated conditional entropy of the target attribute Ai, given the set of input attributes Ii
MI (Ai ; Ii) - estimated mutual information between the target attribute Ai and the set of input attributes Ii
α - significance level, used by the algorithm
β - scaling factor, representing the perceived utility ratio between the significance level and the estimated mutual

information. The meaning of different values of β is demonstrated in Fig. 2. The shape of FGAIN (MI) varies from a step
function for low values of β (about 1) to almost a linear function, when β becomes much higher (about 500). Thus, β can be
used to represent the level of user-specific quality requirements.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

MI

F
G

A
IN

1
100
500

Fig. 2. Fuzzy Information Gain as a function of MI, for three different values of β.

Interpretation. FGAIN is defined above as a continuous monotonic function of three parameters: α, H (Ai / Ii), and MI (Ai ;
Ii). It is non-increasing in the significance level α, because lower α means higher confidence and, consequently, higher
quality. In the ideal case α = 0, which implies that FGAIN is equal to one. FGAIN is also non-increasing in the conditional
entropy H (Ai / Ii), because lower conditional entropy represents lower uncertainty of the target attribute, given the values of
the input attributes. If the target attribute is known perfectly (H (Ai / Ii) = 0), FGAIN obtains the highest value (one). On the
other hand, FGAIN is non-decreasing in the mutual information MI (Ai; Ii) that represents the decrease in the uncertainty of
the target. When MI (Ai ; Ii) becomes very close to zero, FGAIN becomes exponentially small.

Now we need to verify that our method of feature selection has the desired properties of anytime algorithms, as defined by
Zilberstein (1996). The conformity with each property is checked below.

• Measurable quality. According to equation (1), the Fuzzy Information Gain can be calculated directly from the
values of conditional entropy and mutual information after each iteration of the algorithm.

• Recognizable quality. In (Last and Maimon, 1999), we have shown that the mutual information can be calculated
incrementally by adding the conditional mutual information of each step to the mutual information at the previous
step. This makes the determination of FGAIN very fast.

• Monotonicity. According to Steps 7 - 9 of the algorithm, a new attribute is added to the set of input attributes only if
it causes an increase in the mutual information. This means that the mutual information is a non-decreasing function
of run time. Since one can easily verify, that the Fuzzy Information Gain is a monotonic non-decreasing function of
MI, the monotonicity of the quality is guaranteed. In fact, FGAIN is a step function, since no new results can be
available between the completions of two succeeding iterations. An example of such quality function is shown by
Zilberstein (1993).

• Consistency. The theoretical run time of the algorithm has been shown by us in (Last and Maimon, 1999) to be
quadratic-logarithmic in the number of records and quadratic polynomial in the number of initial candidate input
attributes. In the next section, we are going to analyze experimentally the performance profile of the algorithm on
datasets of varying size and quality.

• Diminishing returns. This property is very important for algorithm’s practical usefulness: it means that after a small
part of the running session, the results are expected to be sufficiently close to the results at completion time. We
could prove this property mathematically, if we could show that the mutual information is a concave function of the
number of input attributes. Though the last proposition is not true in a general case, it is possible to conclude from

Fano’s inequality (see Cover, 1991) that the mutual information is bounded by a concave function. The actual
concavity of FGAIN is evaluated empirically in the next section.

• Interruptibility. The algorithm can be stopped at any time and provide the current list of selected attributes. Before
the completion of the first iteration, the algorithm will provide an empty list resulting in zero quality. Each iteration
forms, what is called, a contract anytime algorithm, i.e. the corrections of FGAIN are available only after
termination of an iteration.

• Preemptability. Since the algorithm maintains the training data, the list of input attributes, and the structure of the
information-theoretic network, it can be easily resumed after an interrupt. If the suspension is expected to be long,
all the relevant information may be stored in files on a hard disk.

4 Experimental Results

According to Zilberstein (1996), the performance profile (PP) of an anytime algorithm denotes the expected output quality as
a function of the execution time t. Since there are many possible factors affecting the execution time, the performance
profile, in many cases, has to be determined empirically and not analytically. To study the performance profile of the
information-theoretic method for feature selection, we have applied it to several benchmark datasets, available from the UCI
Machine Learning Repository (Blake and Merz, 1998). Rather than measuring the absolute execution time of the algorithm
on every dataset, we have normalized it with respect to the completion time, which is the minimal time, when the expected
quality is maximal (Zilberstein, 1993). Obviously, this relative time is almost independent of the hardware platform, used for
running the algorithm.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100%
Relative Time

F
G

A
IN

Chess
Credit
Diabetes
Glass
Heart

Fig. 3. Performance profile of the information-theoretic algorithm

We have used seven datasets for our analysis (see Table 1), but in two datasets (Breast and Iris), the run time was too short
to be detectable by the computer system (Pentium II 400 MHZ). Thus, we are presenting in Fig. 3 performance profiles for
five datasets only. Two important observations can be made from this chart. First, we can see that FGAIN is a non-
decreasing function of execution time. The second observation is about the diminishing returns: except for the Chess dataset,
the performance profiles are concave functions of time. We have explained the theoretical background of this result in sub-
section 3.2 above.

The number of selected features in each dataset and the absolute execution times are shown in Table 1. The size of the
datasets varies between 150 and 3,196 cases. The total number of candidate input attributes is up to 36, including nominal
and continuous features. On average, less than 30% of the attributes have been selected by the algorithm, when it was run to
its termination. The completion time starts with undetectable (less than 0.1 sec.) and goes up to 1.65 sec. for the Diabetes
dataset, which has 768 records and 8 continuous attributes. These times are significantly lower than the execution times of a
wrapper selector, which may vary between 16sec and several minutes for data sets of similar size (see Liu and Motoda,
1998).

 Another question is how useful are the selected features for the classification task? The selected features can be
considered useful, if a classifier’s accuracy remains at approximately the same level. To verify this assumption, we have
partitioned each dataset into training and validation records, keeping the standard 2/3 : 1/3 ratio (Liu and Motoda, 1998). The
C4.5 algorithm (Quinlan, 1993) has been trained on each dataset two times: before and after feature selection. The error rate
of both models has been measured on the same validation set. The minimum and the maximum error rates have been
calculated for a 95% confidence interval. As one can see from Table 2, the error rate of C4.5 after feature selection is not
significantly different from its error rate with all the available features. Moreover, it tends to be slightly lower after applying
the feature selection algorithm. One exception is the Chess dataset, where the error rate has increased beyond the upper

bound of the confidence interval. Due to the feature selection procedure, the stability of the error rate is accompanied, in
most datasets, by a considerable reduction in the size of the decision tree model (measured by the number of tree nodes).

The novelty of our approach is that it allows capturing the trade-off between the solution quality and the time saved and/or
complexity of classification represented by the number of input attributes. This can be crucial for classification algorithms
working with a large number of input attributes, or with real time constraints. Alternative quality measures and costs of meta-
reasoning can be studied in the process algebra framework provided by $-calculus (Eberbach, 2000) which formalizes
anytime algorithms. For example, in terms of $-calculus expressing the tradeoff between the quality solution and the time,
can be thought as a new measure FGAINtot=(1-t) FGAIN, where t is a normalized execution time (assuming that the execution
time is bounded), or alternatively out in FGAIN can be modified.

Another benefit of $-calculus would be if we have a complete system consisting of several modules working in parallel,
sequentially, or alternatively as we have in multi-agent systems. In other words, $-calculus tries to address such questions
like: having two systems performing their own classifications, what will be the final quality combining them into one system.
$-calculus should allow to integrate, for instance, data-mining perception and learning modules with action selection and
monitoring. The key aspect is the separability of the quality/cost measures, allowing to express the quality of the whole
system as the function of its component qualities.

Table 1. Feature selection: summary of results

Dataset
Data
Size Classes Continuous Nominal

Total
Attributes

Selected
Attributes

Completion
Time (sec.)

Breast 699 2 9 0 9 3 -

Chess 3196 2 0 36 36 9 0.28

Credit 690 2 6 8 14 3 1.04

Diabetes 768 2 8 0 8 4 1.65

Glass 214 6 9 0 9 3 0.61

Heart 297 2 6 7 13 3 0.22

Iris 150 3 4 0 4 1 -

Mean 859 3 6 7 13.3 3.6 0.76

Table 2. Error rate and tree size of C4.5 before and after feature selection

 Validation Before F.S. After F.S.

Dataset Items Tree Size Error Rate Min. Max. Tree Size Error Rate

Breast 204 29 5.4% 2.3% 8.5% 19 4.9%

Chess 1025 45 1.3% 0.6% 2.0% 29 3.0%

Credit 242 26 14.5% 10.0% 18.9% 3 14.0%

Diabetes 236 63 28.4% 22.6% 34.1% 23 23.3%

Glass 71 39 36.6% 25.4% 47.8% 39 33.8%

Heart 93 33 19.4% 11.3% 27.4% 16 24.7%

Iris 49 9 0.0% 0.0% 9.5% 5 2.0%

5 Summary

In this paper, we have presented a novel algorithm for feature selection, which can be interrupted at any time and provide us
with a partial set of selected features. The quality of the algorithm results is evaluated by a new measure, the fuzzy
information gain, which represents the user perception of the model quality. The performance profile of the algorithm has
been shown to be a non-decreasing and mostly concave function of execution time. The quality of the final output has been
confirmed by applying a data mining algorithm (C4.5) to a set of selected features.

Topics for future research include consideration of alternative quality measures, predicting expected quality for a given
run time (and vice versa), and integrating anytime feature selection with real-time learning systems.

Acknowledgment

This work was partially supported by the USF Center for Software Testing under grant no. 2108-004-00.

References

1. H. Almuallim and T. G. Dietterich, Efficient Algorithms for Identifying Relevant Features, Proc. 9th Canadian Conf. on AI, pp.
38-45, 1992.

2. C.L. Blake and C.J. Merz , UCI Repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html,
1998.

3. L. Breiman, J.H. Friedman, R.A. Olshen, & P.J. Stone, Classification and Regression Trees, Wadsworth, Belmont, CA, 1984.
4. R. Caruana and D. Freitag, Greedy Attribute Selection, Proc. 11th Conf. on Machine Learning, pp. 28-36, 1994.
5. T. M. Cover, Elements of Information Theory, Wiley, New York, 1991.
6. T. Dean and M. Boddy, An Analysis of Time-Dependent Planning, Proc. AAAI-88, pp.49-54, AAAI, 1988.
7. P. Domingos and M. Pazzani, On the Optimality of the Simple Bayesian Classifier under Zero-One Loss, Machine Learning, vol.

29, pp. 103-130, 1997.
8. G.H. Dunteman, Principal Components Analysis, Sage Publications, Inc., Newbury Park, CA, 1989.
9. E. Eberbach, Expressiveness of $-Calculus: What Matters?, Proc. The Ninth Intern. Symp. on Intelligent Information Systems

IIS’2000, Springer-Verlag, Bystra, Poland, June 2000.
10. E. Eberbach, Expressing Evolutionary Computation, Genetic Programming, Artificial Life, Autonomous Agents and DNA-Based

Computing in $-Calculus – Revised Version, Proc. Congress on Evolutionary Computation CEC’2000, San Diego, CA, July
2000.

11. J.F. Elder IV and D. Pregibon, A Statistical Perspective on Knowledge Discovery in Databases. In Advances in Knowledge
Discovery and Data Mining, U. Fayyad, et al., Eds. AAAI/MIT Press, Menlo Park, CA, pp. 83-113, 1996.

12. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, From Data Mining to Knowledge Discovery: An Overview. In Advances in
Knowledge Discovery and Data Mining, U. Fayyad, et al., Eds. AAAI/MIT Press, Menlo Park, CA, pp. 1 -30, 1996.

13. J.H. Friedman and J.W. Tukey, A Projection Pursuit Algorithm for Exploratory Data Analysis, IEEE Transactions on
Computers, vol. 23, no. 9, pp. 881-889, 1974.

14. E.J. Horvitz, Reasoning about Beliefs and Actions under Computational Resource Constraints, Proc. of the 1987 Workshop on
Uncertainty in AI, Seattle, Washington, 1987.

15. G. H. John, R. Kohavi, and K. Pfleger, Irrelevant Features and the Subset Selection Problem, Proc. Machine Learning: Proc. of
the 11th Int'l Conf., San Mateo, CA, pp. 121-129, 1994.

16. J-O. Kim and C.W. Mueller, Factor Analysis: Statistical Methods and Practical Issues, Sage Publications, Inc., Beverly Hills,
1978.

17. G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall Inc., Upper Saddle River, CA, 1995.
18. H.F. Korth and A. Silberschatz, Database System Concepts, McGraw-Hill, Inc., New York, 1991.
19. M. Last and O. Maimon, An Information-Theoretic Approach to Data Mining, Submitted to Publication, 1999.
20. M. Last and A. Kandel, Automated Perceptions in Data Mining, Proc. 1999 IEEE International Fuzzy Systems Conference,

Seoul, Korea, pp. 190-197, 1999.
21. N. Littlestone, Learning Quickly When Irrelevant Attributes Abound: A New Linear-threshold Algorithm, Machine Learning, no.

2, pp. 285-318, 1988.
22. H. Liu and R. Sutiono, Feature Selection via Discretization, IEEE Transactions on Knowledge and Data Engineering, vol. 9, no.

4, pp. 642-645, 1997.
23. H. Liu and H. Motoda, Feature Selection for Knowledge Discovery and Data Mining, Kluwer, Boston, 1998.
24. O. Maimon, A. Kandel, and M. Last, Information-Theoretic Fuzzy Approach to Knowledge Discovery in Databases. In

Advances in Soft Computing - Engineering Design and Manufacturing, R. Roy, T. Furuhashi and P.K. Chawdhry, Eds. Springer-
Verlag, London, 1999.

25. T.M. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.
26. S. Russell and E. Wefald, Do the Right Thing: Studies in Limited Rationality, The MIT Press, 1991.
27. J.R. Quinlan, Induction of Decision Trees, Machine Learning, vol. 1, no. 1, pp. 81-106, 1986.
28. J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.
29. C.R. Rao and H. Toutenburg, Linear Models: Least Squares and Alternatives, Springer-Verlag, Berlin, 1995.
30. S. Zilberstein, Operational Rationality through Compilation of Anytime Algorithms, Ph.D. Dissertation, University of California

at Berkeley , 1993.
31. S. Zilberstein, Using Anytime Algorithms in Intelligent Systems, AI Magazine, vol. 17, no. 3, pp. 73-83, 1996.

