
Fuzzification and Reduction of Information-
Theoretic Rule Sets 

Mark Last and Abraham Kandel 

Department of Computer Science and Engineering 

University of South Florida 

4202 E. Fowler Avenue, ENB 118 

Tampa, FL  33620, USA 

Abstract.  If-then rules are one of the most common forms of knowledge 
discovered by data mining methods.  The number and the length of extracted rules 
tend to increase with the size of a database, making the rulesets less interpretable 
and useful.  Existing methods of extracting fuzzy rules from numerical data 
improve the interpretability aspect, but the dimensionality of fuzzy rulesets 
remains high.  In this paper, we present a new methodology for reducing the 
dimensionality of rulesets discovered in data.  Our method builds upon the 
information-theoretic fuzzy approach to knowledge discovery.  We start with 
constructing an information-theoretic network from a data table and extracting a 
set of association rules based on the network connections.  The set of information-
theoretic rules is fuzzified and significantly reduced by using the principles of the 
Computational Theory of Perception (CTP).  We demonstrate the method on a 
real-world database from semiconductor industry. 

Keywords: data mining, association rules, fuzzy rules, information-theoretic networks, 
computational theory of perception. 

1. Introduction 

As indicated by (Fayyad et al. 1996), discovery of useful and understandable 
patterns from data is a major goal in data mining.  The basic idea of data mining is 
a computationally efficient search in the infinite space of patterns possibly 
existing in a database.  Patterns and models can be represented in different forms 
(e.g., neural networks, mathematical equations, etc.), but if-then rules are known 
as one of the most expressive and human readable representations (Mitchell 1997). 
Srikant and Agrawal (1996) have suggested a heuristic method for explicit 



 2

enumeration of association (if-then) rules between database attributes.  As 
opposed to the neural network structure, each association rule is easily interpreted 
in the natural language.  However, a long list of association rules is not much 
more helpful to the user than the weights of a neural network.  Due to the random 
nature of data, the list may include many meaningless interactions.  In addition, 
the most significant associations (having highest support and confidence) are 
usually the most trivial and uninteresting ones. 

Decision-tree algorithms, like C4.5, suggest a more focused approach to rule 
extraction (Quinlan 1993).  The rule extraction method of C4.5 assumes that the 
user is interested in only one attribute (called “class”) as a consequent of every 
rule.  This assumption significantly reduces the search space vs. the problem of 
finding association rules between any database attributes (see above).   A set of 
mutually exclusive and exhaustive if-then (production) rules can be easily 
extracted from a decision tree.  Quinlan (1993) presents a method for generalizing 
(simplifying) the rules by removing one or more conditions.  The method includes 
setting a preference ordering for conflicting rules and choosing a default rule.  
However, these are decision rules and not association rules: the initial rule set 
includes only one rule for each tree leaf, which represents the predicted class at 
that leaf.   

The vague nature of human perception, which allows the same object to be 
classified into different classes with different degrees, is utilized for building fuzzy 
decision trees by Yuan and Shaw (1995).  Like in C4.5, each path from root to 
leaf of a fuzzy decision tree is converted into a rule with a single conclusion.  
However, the same object may have a non-zero membership grade in more than 
one rule.  If a unique classification is required, the class with the highest 
membership is selected. 

There are many techniques described in the literature for extracting fuzzy rules 
from raw data.  Wang and Mendel (1992) present an algorithm for generating 
fuzzy rules from numerical attributes.  The total size of the fuzzy rule base is 
exponential in the number of input attributes (n), but, under certain assumptions, 
the number of active rules for a given input is bounded by 2n.   Au and Chan 
(1999) describe a genetic algorithm based method, called FARM, for discovering 
fuzzy associations between linguistic terms. The fitness function (i.e. the 
“goodness” of a rule) used to evaluate the set of rules is based on a probabilistic 
approach. Both positive (if-then) and negative (if-then-not) association rules can 
be discovered by FARM.  Slawinski et. al. (1999) use a hybrid evolutionary 
approach. Here, the fitness of a rule is related to its relevance (a rule is considered 
relevant if the constrained probability of its conclusion exceeds the unconstrained 
probability).  Fuzzy approach to testing a given set of rules (hypotheses) is 
presented in (Last and Kandel 1999) and (Last, Schenker, and Kandel 1999). 

None of the fuzzy-oriented methods mentioned above attempt to interpret rules 
extracted by another (possibly “crisp”) rule induction algorithm.  In this paper, we 



 3 

are applying a fuzzy approach to post-processing a given set of “crisp” association 
rules extracted from an information-theoretic network (Maimon, Kandel, and Last 
1999).  The information-theoretic method of knowledge discovery minimizes the 
dimensionality of extracted rules by using a built-in feature selection procedure.  
In addition, the algorithm discovers both positive and negative association rules 
and it is not limited to a single conclusion of each condition.  Post-processing of 
the information-theoretic rules is based on the Computational Theory of 
Perception (Zadeh 1999) and, as demonstrated by a real-world case study, it 
results in a small and manageable set of compact linguistic rules. 

Section 2 of this Chapter describes the information-theoretic fuzzy approach to 
knowledge discovery and rule extraction.  The process of rule post-processing is 
presented in Section 3.  In Section 4, we proceed with a detailed case study of rule 
extraction from manufacturing data.  The Chapter is concluded by section 5, 
which reviews the potential of the fuzzy set theory for post-processing of data 
mining results 

2. Information-Theoretic Fuzzy Approach to 
Knowledge Discovery 

The Info-Fuzzy Network (IFN) methodology, initially introduced by us in 
(Maimon, Kandel, and Last, 1999), is a novel and unified approach to automating 
the process of Knowledge Discovery in Databases (KDD).  The main stages of the 
IFN methodology include discretization of continuous attributes, feature selection, 
extraction of association rules, and data cleaning.  The method is aimed at 
maximizing the mutual information  (see Cover 1991) between input (predicting) 
and target (dependent) attributes.  The following sub-sections describe the 
extended data model, used by IFN, the network construction algorithm, and the 
procedure for extracting information-theoretic association rules from the IFN 
structure. 

2.1 Extended Relational Data Model 

We use here the standard notation of the relational data model (see Korth and 
Silberschatz, 1991).  The relational model represents the database as a collection 
of relations, or tables of values.  Each table resembles, to some extent, a “flat” file 
of records. 

1) R -  a relation schema including n attributes. Each attribute represents a 
column of the data table. The number of attributes n is called the degree of a 
relation. In our case, n ≥ 2 (each table is assumed to have at least two 
columns). 



 4

2) Ai - attribute (column)  i in the data table.  R = (A1,  ..., An).  

3) Di - the domain of an attribute Ai.  We assume that each domain is a set of Mi 
discrete values.  ∀i: Mi ≥ 2, finite. For numeric attributes having continuous 
domains, each value represents an interval between two continuous values.  
The discretization is performed in the process of network construction (see 
below). 

4) Vij- a value  j of domain Di. Consequently, D i= (Vi1,..., ViMi). 

5) r (R) - a relation instance (table) of the relation schema R.  This is a set of n-
tuples (records).  Each n-tuple is an ordered list of n values, which represent a 
row in the data table. 

6) m -  number of tuples (records) in a relation r. We assume that m≥2 (each 
table has at least two rows). 

7) tk [Ai] - value of an attribute i in a tuple (record)  k. Each value represents a 
cell in the data table. Each value is an element of the attribute domain or is 
null (∀k, i:    tk[Ai] ∈ {Di., Null}).  A null value may be empty (non-existing in 
the real world) or missing (existing in the real world, but not entered into the 
data table). 

To find a set of association rules in a database, we make the following partition of 
the relation schema: 

1) O - a subset of target (classification) attributes (O ⊂ R, |O| ≥1).  The values 
of target attributes will be the consequents of association rules. 

2) C - a subset of candidate input attributes (C ⊂ R, |C| ≥ 1).  The values of 
candidate input attributes can be used as conditions in the antecedent part of 
association rules. 

3) Ii - a subset of input attributes (features) selected by the algorithm for the 
target attribute i (∀i: Ii ⊂ C).  The antecedent of every rule will include at least 
one input attribute. 

Assumptions:  

• ∅=∩∀ OIi i : . An attribute cannot be both an input and a target.  This 

implies that cyclic dependencies cannot be detected by the IFN method. 

• ROIi i ⊆∪∀  : . Some attributes in a database may be neither input, nor 

target.  These may include identifying (key) attributes and candidate input 
attributes that were not chosen by the algorithm for the target attribute i.   

 



 5 

2.2 Info-Fuzzy Network Structure 

An Info-Fuzzy Network (IFN) has the following components: 

• |Ii| - total number of hidden layers in a network.  Each hidden layer is 
uniquely associated with an input attribute by representing the interaction of 
that attribute and the input attributes of the previous layers.  The first layer 
(layer  0) includes only the root node and is not associated with any input 
attribute.  The number of conditions in the antecedent of an association rule 
cannot exceed the number of network layers. 

• Ll - a subset of nodes in a hidden layer l.  Each hidden node represents a 
conjunction of rule conditions. 

• At (l) - an input attribute corresponding to the layer l in the network 

• K - distinct target nodes Vij for each value j in the domain of the target 
attribute i.  Continuous target attributes are discretized to a pre-defined set of 
intervals.  Each target node represents a consequent of association rules. 

• wz 
ij- a connection weight between a hidden node z and a target node  Vij .  

Each node-target connection is related to a distinct association rule.  As we 
show below, the calculation of the rule weights is based on the information 
theory. 

The network structure, described above, differs from the structure of a standard 
decision tree (see Quinlan, 1986 and 1993) in two aspects. First, it is restricted to 
the same input attribute at all nodes of each hidden layer. Second, its node-target 
connections represent association rules between input and target attributes unlike 
the standard decision trees, which are used to extract prediction rules only (e.g., 
see Quinlan 1993). 

 

2.3 Network Construction Procedure 

Without loss of generality, we present here a search procedure for constructing a 
multi-layered network of a single target attribute Ai.  In a general case, the 
network should be re-built (starting with Step 4 below) for every target attribute 
defined in a database. 

Step1 - Given a relation schema and available domain knowledge, partition the 
schema into a subset of candidate input and a subset of target attributes (see the 
extended relational model above).  

Step 2 - Enter a minimum significance level α for splitting a network node 
(default: α = 0.001).  High significance levels cause the random (“noisy”) rules to 
be excluded from the network. 



 6

Step 3 - Read tuples (records) of a relation.  Tuples with non-valid or missing 
target values are ignored by the algorithm. Missing (null) values of candidate 
input attributes are ignored too, but without ignoring the other, non-empty 
attributes in the same tuple. The domain of every attribute may be restricted by the 
user to a set of pre-defined values or learned by the algorithm from the data itself. 

Step 4 - Estimate unconditional (a priori) probability of each value of the target 
attribute by: P(Vij) = Oij/n,  

where 

Oij - number of occurrences of the value j of a target attribute i in the relation  

n - number of complete tuples in the relation  

Step 5 - Calculate the estimated unconditional entropy of the target attribute (see 
Cover, 1991) by: 

)(log)()(
1

ijij

M

j
i

VPVPAH
i

⋅∑−=
=

 (1) 

Where 

Mi - domain size of an attribute  i (number of distinct values taken by the attribute) 

The entropy is a metric-free measure of uncertainty. It reaches its highest value 
(logMi), when the probability of all values is distributed uniformly.  If an attribute 
takes a single value with the probability of 1.0, its entropy is equal to zero.  The 
formula (1) above calculates unconditional entropy, since it is not based on the 
knowledge of values of any other attribute. 

Step 6 - Initialize the info-fuzzy network (single root node associated with all 
tuples, no input attributes, and a target layer for values of the target attribute). An 
example of the initial network structure for a three-valued target attribute is shown 
in Figure 1. 

Layer No. 0
(the root node)

0

1

2

3

Connection 
Weights

Target 
Layer  

Figure 1 Info-Fuzzy Network: Initial Structure 

Step 7 - While the maximum number of layers (equal to the number of candidate 
input attributes) is not exceeded, Do: 



 7 

Step 8- Repeat for every candidate input attribute Ai’, which is not in the network: 

Step 8.1 – Initialize to zero the degrees of freedom and the estimated conditional 
mutual information of the candidate input attribute and the target attribute, given 
the final layer of hidden nodes.  Conditional mutual information is defined as a 
decrease in the conditional entropy, which represents uncertainty of a random 
attribute, given values of other attributes. According to (Cover, 1991), the 
information on more attributes can never increase the entropy.  Thus, conditional 
mutual information is a non-negative variable.  As shown below, conditional 
mutual information can be estimated by using the frequency estimators of 
conditional and unconditional probabilities of the target attribute values. 

Step 8.2 – If Ai’ is a continuous attribute, then Do: 

Step 8.2.1 - Define the boundaries of the interval S, to be partitioned, as the first 
and the last distinct values of Ai’. 

Step 8.2.2 – Repeat for every distinct value included in the interval S (except for 
the last distinct value): 

Step 8.2.2.1 – Define the distinct value as a partitioning threshold (T).  
All distinct values below or equal to T belong to the first sub-interval S1 
(sub-interval  1).  Distinct values above T belong to the second sub-
interval S2 (sub-interval  2). 

Step 8.2.2.2 – Repeat for every node z of the final hidden layer: 

Step 8.2.2.2.1 – Calculate the estimated conditional mutual 
information between the partition of the interval S at the 
threshold T and the target attribute Ai, given the node z, by the 
following formula (based on Cover (1991)): 

),/(),/(

),/;(
log);;(),/;(

1

0

2

1 zSVPzSSP

zSVSP
zVSPzSATMI

ijy

ijy

ijy

M

j y
i

i

•
⋅∑ ∑=

−

= =

 (2) 

where 

P (S y/ S, z)  - an estimated conditional (a posteriori) probability 
of a sub-interval S y, given the interval S and the node z 

P (V ij/ S, z) - an estimated conditional (a posteriori) probability 
of a value j of the target attribute i given the interval S and the 
node z. 

P (S y ; V ij / S, z) - an estimated joint probability of a value j of 
the target attribute i and a sub-interval Sy, given the interval S 
and the node z. 

P (S y; V ij; z) - an estimated joint probability of a value j of the 
target attribute i, a sub-interval Sy, and the node z. 



 8

Step 8.2.2.2.2 - Calculate the likelihood-ratio test for the 
partition of the interval S at the threshold T and the target 
attribute Ai, given the node z, by the following formula (based on 
Rao and Toutenburg, 1995): 

),(),/(

),(
ln),(2),/;(

1

0

2

1

2

zSEzSVP

zSN
zSNzSATG

yij

yij

yij

M

j y
i

i

•
⋅∑ ∑=

−

= =

 (3) 

where 

Nij (Sy, z)  - number of occurrences of a value  j of the target attribute  i in 
sub-interval Sy and the node z. 

E (Sy, z)  - number of tuples in sub-interval Sy and the node z 

P (Vij/ S, z) - an estimated conditional (a posteriori) probability of a value 
j of the target attribute i, given the interval S and the node z. 

P (Vij/ S, z) • E (Sy, z)  - an estimated number of occurrences of a value  j 

of the target attribute  i in sub-interval Sy and the node z, under the 
assumption that the conditional probabilities of the target attribute values 
are identically distributed, given each sub-interval. 

Step 8.2.2.2.3- Calculate the degrees of freedom of the likelihood-ratio 
statistic by: 

DF (T; Ai / S, z) = (NI i’ (S, z) - 1) ⋅ (NT i (S, z) - 1)=  

(2-1)⋅ (NT i (S, z) - 1)= NT i (S, z) – 1 (4)     

Where 

NI i’ (S, z)  - number of sub-intervals of a candidate input attribute i’ at 
node z (2) 

NT i (S, z) - number of values of a target attribute i in the interval S at 
node z. 

Step 8.2.2.2.4 - If the likelihood-ratio statistic is significant at the level 
defined in Step 2 above, mark the node as “split” by the threshold T and 
increment the estimated conditional mutual information of the candidate 
input attribute and the target attribute, given the threshold T; else mark 
the node as “unsplit” by the threshold T. 

Step 8.2.2.2.5 - Go to next node. 

Step 8.2.2.3 – Go to next distinct value. 



 9 

Step 8.2.3 – Find the threshold Tmax maximizing the estimated conditional mutual 
information between a partition of the candidate input attribute Ai’ and the target 
attribute Ai, given the interval S and the set of input attributes I by: 

),/;(maxargmax SIATMIT ii
T

=  (5)   

 and increment the estimated conditional mutual information between the 
candidate input attribute Ai’ and the target attribute Ai by the value calculated in 
the formula (2) above. 

Step 8.2.4 – If the maximum estimated conditional mutual information is greater 
than zero, then do: 

Step 8.2.4.1 - Repeat for every node z of the final hidden layer: 

Step 8.2.4.1.1 – If the node z is splitted by the threshold Tmax, 
mark the node as splitted by the candidate input attribute Ai’ 

Step 8.2.4.2 - Partition each sub-interval of S (go to step 8.2.2).  If the 
threshold Tmax is the first distinct value in the interval S, Tmax is marked as 
a new encoding interval and only the second sub-interval is partitioned.  

Step 8.2.4.3 - EndDo 

Else (if the maximum estimated conditional mutual information is equal to zero) 
Do: 

Step 8.2.5 - Create a new encoding interval S and increment the domain 
size of Ai’ (number of encoding intervals). 

Step 8.2.6 - EndIf 

Step 8.2.7 – EndDo 

Step 8.3 – Else (if the attribute Ai’ is discrete), Do 

Step 8.3.1 - Repeat for every node z of the final hidden layer: 

Step 8.3.1.1 - Calculate the estimated conditional mutual information 
of the candidate input attribute i and the target attribute i, given the 
node z, by  

)/()/(

)/(
log);;()/;(

''

''

''

1

0

1

0'
'

'

zVPzVP

zVP
zVVPzAAMI

ijji

ij

ji

jiij

M

j

M

j
ii

i i

⋅
⋅∑ ∑=

−

=

−

=

 (6) 

Where 

P (Vi’j’/ z)  - an estimated conditional (a posteriori) probability of a 
value j’ of the candidate input attribute i’, given the node z. 



 10 

P (Vij/ z) - an estimated conditional (a posteriori) probability of a 
value j of the target attribute i, given the node z. 

P (Vi’j’
ij/ z) - an estimated conditional (a posteriori) probability of a 

value j’ of the candidate input attribute i’ and a value j of the target 
attribute i, given the node z. 

P (Vij; Vi’j’; z) - an estimated joint probability of a value j of the target 
attribute i, a value j’ of the candidate input attribute i’ and the node z. 

Step 8.3.1.2 - Calculate the statistical significance of the estimated 
conditional mutual information, by using the likelihood-ratio statistic 
(also based on Rao and Toutenburg, 1995): 

)()/(

)(
ln)(2)/;(

''

''

''

1

0

1

0'
'

2
'

zEzVP

zC
zCzAAG

jiij

ij

jiij

ji

M

j

M

j
ii

i i

•
⋅∑ ∑=

−

=

−

=

 (7) 

Where 

Ci’j’
ij (z)  - number of joint occurrences of value  j of the target 

attribute  i and value  j’ of the candidate input attribute i’ in the node 
z. 

Ei’j’(z)  - number of occurrences of value   j’ of the candidate input 
attribute  i’ at the node z. 

P (Vij/ z)• Ei’j’(z) - an estimated number of joint occurrences of value  
j of the target attribute  i and value  j’ of the candidate input attribute 
i’ under the assumption that the attributes i’ and i are conditionally 
independent, given the node z. 

Step 8.3.1.3 - Calculate the degrees of freedom of the likelihood-ratio 
statistic by: 

DF (Ai’ ; Ai / z) = (NI i’ (z) - 1)⋅( NT i (z) - 1)   (8) 

where 

NI i’ (z)  - number of values of a candidate input attribute i’ at node z. 

NT i (z) - number of values of a target attribute i at node z. 

Step 8.3.1.4 - If the likelihood-ratio statistic is significant, mark the 
node as "split" and increment the conditional mutual information of 
the candidate input attribute and the target attribute, given the final 
hidden layer of nodes (MI (Ai’ ; Ai / Ii) ) by the value calculated in the 
formula (6) above;  else mark the node as "terminal". 



 11 

Step 8.3.1.5 - Go to next node. 

Step 8.3.2 - Go to next candidate input attribute. 

Step 8.3.3 - EndDo 

Step 8.3.4 - EndIf 

Step 9 - Find a candidate input attribute maximizing the estimated conditional 
mutual information (“the best candidate attribute”). 

Step 10 - If the maximum conditional mutual information is zero, go to Step 13.  
Otherwise, go to the next step. 

Step 11 - Add a new hidden layer to the network: make the best candidate attribute 
a new input attribute and define a new layer of nodes for a Cartesian product of 
splitted hidden nodes in the previous layer and the values of the best candidate 
attribute.  A new hidden node is defined if the relation (data table) has at least one 
tuple associated with it. 

Step 12 - EndDo 

Step 13 - Stop the network construction 

Step 14 - Output the network structure which includes the names of the attributes 
associated with each hidden layer, the ID numbers of hidden nodes related to 
every value of an input attribute, and the connections between the terminal hidden 
nodes and the target nodes. 

In Figure 2, a structure of a two-layered network (based on two selected input 
attributes) is shown. The first input attribute has three values, represented by 
nodes  1,2, and 3 in the first layer, but only nodes  1 and 3 are split due to the 
statistical significance testing in Step 8.3 above.  The second layer has four nodes 
standing for the combinations of two values of the second input attribute with two 
splitted nodes of the first layer. Like in Figure 1, the target attribute has three 
values, represented by three nodes in the target layer.  The network in Figure 2 has 
five terminal (unsplit) nodes: 2; 1, 1; 1, 2; 3, 1; and 3, 2.  The total number of 
input-target connections in this network is 5*3 = 15. 



 12 

Layer No. 0
(the root node)

0

1

2

3

Connection 
Weights

Target 
Layer

1

2

3

Layer No. 1
(First input 
attribute)

1,1

1,2

3,1

3,2

Layer No. 2
(Second input 
attribute)  

Figure 2 Info-Fuzzy Network: Two-Layered Structure 

2.4 Rule Extraction 

Each terminal node in an info-fuzzy network represents a conjunction of input 
attribute values. Thus, a connection between a terminal node and a node of the 
target layer may be interpreted as a rule of the form if conjunction of input values, 
then the value of the target attribute is likely / unlikely to be…   An information-
theoretic weight is associated with every input-target connection. The general 
algorithm for extracting association rules from the network connections and 
evaluating their information-theoretic weights is given below. 

Step 1 – Initialize the number of rules r to zero 

Step 2  - Repeat for every terminal node z: 

Step 2.1 – Repeat for every value j of the target attribute Ai: 

Step 2.1.1 – Initialize the hidden layer index l to zero 

Step 2.1.2 – While l < {number of layers associated with the 
node z} Do: 

Step 2.1.2.1 - Add new condition to the antecedent part 
of the rule r, based on the value of the input attribute 
corresponding to the layer l  

Step 2.1.2.2 – Increment l 

Step 2.1.2.3 - EndDo 

Step 2.1.3 - Make value j the consequent of the rule r 

Step 2.1.4 – Calculate the connection weight w z
j associated with 

the rule r by: 



 13 

)(

)/(
log);(

j

j

j

j

z VP

zVP
zVPw ⋅=  (9)   

Where 

P (Vj; z) - an estimated joint probability of the value Vj and the 
node z 

P (Vj/ z) - an estimated conditional (a posteriori) probability of 
the value Vj, given the node z 

P (Vj) - an estimated unconditional (a priori) probability of the 
value Vj 

Step 2.1.5 – Increment the number of rules r by one 

Step 2.1.6 – Go to next target value j 

Step 2.2  - Go to next terminal node z 

Step 3  - End 

Each connection weight represents a contribution of a node-pair to the total mutual 
information between the input attributes and the target attribute.  The weight will 
be positive if the conditional probability of a target attribute value, given the node, 
is higher than its unconditional probability and negative otherwise.  A zero weight 
means that the target attribute value is independent of the node value.  Thus, each 
positive connection weight can be interpreted as an information content of an 
appropriate rule of the form if node, then target value.  Accordingly, a negative 
weight refers to a rule of the form if node, then not target value.  Connections with 
zero weights can be ignored, since they do not change the conditional probability 
of the target attribute. 

The most informative rules can be found from sorting the rules by their 
information-theoretic connection weights.  Both the rules having the highest 
positive and the lowest negative weights are of a potential interest to a user.  As 
shown in the proposition below, the sum of connection weights is equal to the 
estimated mutual information between a set of input attributes and a target 
attribute. According to the well-known Pareto rule, a small number of informative 
rules are expected to explain a major part of the total mutual information. 

Proposition.  The sum of connection weights at all unsplitted and final layer nodes 
is equal to the estimated mutual information between a set of input attributes and a 
target attribute: 



 14 

)(

)/(
log);();(

1

0
ij

ij

ij

M

jFz
ii VP

zVP
zVPIAMI

i

⋅∑∑=
−

=∈
 (10)   

Where 

Ai – target attribute i 

Ii - set of input attributes 

z – hidden node in the information-theoretic network 

F  - subset of terminal (unsplit) nodes  

P(Vij; z) - an estimated joint probability of the target value Vij and the node z 

P (Vij/ z) - an estimated conditional (a posteriori) probability the target value Vij, 
given the node z 

P(Vij) - an estimated unconditional (a priori) probability of the target value Vij. 

Proof.  This proposition is directly derived from the definition of mutual 
information between random variables X and Y (Cover, 1991): 

∑ ⋅∑=
∈∈ YyXx yp

xyp
yxpYXMI

)(

)/(
log),();(  (11)   

In the above expression, we have replaced Y with the target attribute Ai and X with 
the set of input attributes Ii. A node z ∈ F represents a conjunction of input 
attribute values.  Since the information-theoretic network represents a disjunction 
of these conjunctions, each conjunction is associated with one and only one node z 
∈ F.  Consequently, the summation over all unsplitted and final nodes covers all 
possible values of the input attributes.   This completes the proof. 

2.5 Computational Complexity of the Algorithm 

The computational complexity of the network construction for a single target 
attribute is calculated by using the following notation: 

m - total number of records in a training data set 

|C| -  total number of candidate input attributes 

p - portion of candidate input attributes, selected as inputs by the network 
construction procedure, 0 ≤ p ≤ 1 

|I| - number of hidden layers (input attributes), |I| ≤ |C| 



 15 

MC - maximum domain size of a candidate input attribute 

MT - domain size of the target attribute 

The computational “bottleneck” of the algorithm is calculating the estimated 
conditional mutual information between every binary partition of a continuous 
candidate-input attribute and a target attribute, given a hidden node (MI (T; Ai / S, 
z)).   Since each node of l-th hidden layer represents a conjunction of values of l 
input attributes, the total number of nodes at a layer l is apparently bounded by 
(Mc)

l.  However, we restrict defining a new node by the requirement that there is at 
least one record associated with it (see Step 11 in sub-section 2.3 above).  Thus, 
the total number of nodes at any hidden layer cannot exceed the total number of 
records (m).  In most cases, the number of nodes will be much smaller than m, due 
to records having identical values of input attributes and the statistical significance 
requirement of the likelihood-ratio test when splitting a hidden node. 

The calculation of the conditional mutual information is performed at each hidden 
layer of the information-theoretic network for all candidate input attributes at that 
layer.  The number of possible partitions of a continuous attribute is bounded by 
mlog2m  (Fayyad and Irani, 1993).  For every possible partition, the term MI (T; Ai 
/ S, z) is summed over all nodes of the final layer. This implies that the total 
number of calculations is bounded by:  

∑ ≤−⋅⋅⋅⋅
=

||

0
2

 )|(|log
Cp

l
T

lCMmmm   

2
)2(||log 2

2

2 ppCMmm
T

−⋅⋅⋅⋅⋅
 (12) 

The actual number of calculations will usually be much smaller than this bound, 
since the number of tested partitions may be less than the number of distinct 
values (resulting from the likelihood-ratio test).  The number of distinct values, in 
turn, may be much lower than the total number of records (m) and some candidate 
input attributes may not require discretization due to their discrete nature (e.g., 
nominal attributes).  Thus, the run time of the search procedure is quadratic-
logarithmic in the number of records and quadratic polynomial in the number of 
initial candidate input attributes.  Moreover, it is reduced by the factor of p(2-p).  

3. Post-processing of Association Rules 

The number of rules extracted from an information-theoretic network may be 
quite large.  It is bounded by the product of the number of terminal nodes and the 



 16 

number of target nodes (see the algorithm in 2.4 above), and the previous 
applications of the algorithm show that this bound is sharp.  Although the rules are 
important for the predictive accuracy of the network, the user may find it difficult 
to comprehend the entire set of rules and to interpret it in natural and actionable 
language.  As we show in this section, the fuzzification of the information-
theoretic rules provides an efficient way for reducing the dimensionality of the 
rule set, without losing its actionable meaning.  The process of rule reduction 
includes the following stages: 

Stage 1 - Fuzzifying crisp rules 

Stage 2 – Reducing the set of fuzzified rules by conflict resolution 

Stage 3 – Merging rules from the reduced set 

Stage 4 - Pruning the merged rules 

3.1 Fuzzifying Association Rules 

Although, the boundaries of the discretized intervals are determined by the 
algorithm of sub-section 2.3 above to minimize the uncertainty of the target 
attribute, the user may be more interested in the linguistic descriptions of these 
intervals, rather in their precise numeric boundaries.  Thus, we start with 
expressing "linguistic ranges" of continuous attributes as lists of terms that the 
attributes can take (“high”, “low”, etc.).  Then we define membership functions 
representing the user perception of each term.  According to (Zadeh 1999), this is 
the first stage in an automated reasoning process, based on the Computational 
Theory of Perception (CTP), which can directly operate on perception-based, 
rather than measurement-based, information. Subsequent CTP stages include 
constructing the initial constraint set (ICS), goal-directed propagation of 
constraints, and creating a terminal constraint set, which is the end result of the 
reasoning process. 

As indicated by (Shenoi 1993), fuzzification of numeric attributes in a real-world 
database may be used for an additional purpose: information clouding.  The user 
may be unwilling to disclose the actual values of some critical performance 
indicators associated with marketing, sales, quality, and other areas of business 
activity.  In many cases, data security considerations prevent results of successful 
data mining projects from being ever published.  The application part of this 
chapter also deals with highly sensible data obtained from a semiconductor 
company.   Direct presentation of rules extracted from this data could provide 
valuable information to the company competitors.  However, we are going to 
“hide” the confidential context of the rules by presenting them in their fuzzified 
form only. 



 17 

The terms assigned to each simple condition and to the target (consequence) of the 
association rule are chosen to maximize the membership function at the middle 
point of the condition / consequence interval. Thus, we convert a crisp rule into a 
fuzzy relation (Wang 1997). Since a complex condition is a conjunction of simple 
conditions, an algebraic product is used to find the fuzzy intersection of the simple 
conditions. Fuzzy implication of Mamdani type (see below) is applied to each 
rule. Mamdani implication is more appropriate for the fuzzification of the 
information-theoretic rules due to the local nature of these rules. The 
informativeness of each fuzzified rule is represented by weighting the implication 
by the information-theoretic weight of the corresponding crisp rule (see sub-
section 2.4 above).  If the weight is positive, the rule is stated as “If <conjunction 
of terms assigned to rule conditions>, then <term assigned to the rule target >”. 
If the weight is negative, the rule will be of the form “If <conjunction of terms 
assigned to rule conditions>, then not <term assigned to the rule target >”.   The 
expression for calculating the weighted membership grade of an association rule is 
given below. 

)}({)}]({max[
1

OxmaVw
kij TkiA

N

i jR
µµµ •∏•=

=

 (13) 

Where 
w – information-theoretic weight of the crisp rule 
N – number of simple conditions in the crisp rule 
Vi – crisp value of the simple condition i in the crisp rule (middle point of the 
condition interval) 
O – crisp value of the rule target (middle point of the target interval) 

)(
iA

V
ij

µ  - membership function of the simple condition i w.r.t. term j 

)(O
kT

µ - membership function of the target value O w.r.t. term k 

3.2 Removing Inconsistent Rules 

An information-theoretic ruleset represents association rules between conjunctions 
of input values and all possible target values. Hence, several rules may have the 
same IF parts, but different THEN parts. Fuzzification may even increase the 
number of distinct rules with identical antecedents, since several adjacent intervals 
may refer to the same linguistic term. This means that the set of fuzzy rules, 
produced in sub-section 3.1 above, may be inconsistent.  To resolve the conflicts, 
we calculate the grade of each distinct fuzzy rule and choose the target value from 
a conflict group that has a maximum grade.  A similar approach is used by (Wang 
and Mendel, 1992) for resolving conflicts in fuzzy rules generated from data.  The 
reduced set of distinct fuzzy rules is constructed by the following procedure: 



 18 

Algorithm RESOLVE_CONFLICTS (Set_of_Fuzzified_Rules) 

• Initialize total number of distinct fuzzy rules to zero. 

• Repeat for every fuzzified rule: 

• Find a distinct fuzzy rule with identical linguistic values of input 
attributes 

• If Rule Found, 

• Find identical linguistic value of the target attribute in the distinct 
rule 

• If Value Found, 

• Increment the grade of the target linguistic value by the grade of 
the fuzzified rule 

• Else (if value not found), 

• Update the set of target linguistic values in the distinct rule  

• Initialize the grade of the new target value to the grade of the 
fuzzified rule 

• Else (if rule not found) 

• Increase number of distinct fuzzy rules 

• Update the linguistic values of input attributes in the new rule  

• Update the first target linguistic value in the new rule 

• Initialize the grade of the first target value in the new distinct rule to 
the grade of the fuzzified rule 

• Next fuzzified rule 

• For each distinct fuzzy rule do 

• Find the target linguistic value providing the maximum membership grade 
for the rule 

• Make it the single target value of the rule 

In the above procedure, there is no explicit distinction between positive and 
negative rule grades. For example, the fuzzified rules of the form If A then B and  
If A then not B are associated with the same target value in the same distinct rule.  
However, their combined grade will be equal to the difference of their absolute 
grades.  Eventually the target value with the maximum positive grade will be 
chosen by the above procedure.  This closely agrees with the interests of most 
users, who need to estimate positively the expected outcome of each condition. 



 19 

The computational complexity of the RESOLVE_CONFLICTS algorithm is 
proportional to the square of the number of fuzzified rules times the average 
number of rule conditions.  This is because the algorithm compares the antecedent 
conditions of every fuzzified rule to the corresponding conditions of every distinct 
fuzzy rule. If the two antecedents are found identical, the grade of the 
corresponding target linguistic value is updated.  If no matching rule is found, a 
new distinct fuzzy rule is created.  Thus, the number of distinct fuzzy rules is 
bounded by the number of fuzzified rules. 

3.3 Merging Reduced Rules 

In the previous sub-section, we have shown a method for handling rules having 
identical antecedents and distinct consequents. However, the resulting set of 
conflict-free rules may be reduced by merging the rules having distinct 
antecedents and identical consequents. Thus, any two rules (I) and (II) having the 
form: 

I.If a is A and b is B and c is C, then t is T 

II.If d is D and e is E and f is F, then t is T 

can be merged into a single rule (III) of the following disjunctive form: 

III. If a is A and b is B and c is C or d is D and e is E and f is F, then t is T 

Using the above approach, we can create a rule base of a minimal size, limited by 
the number of target values.  However, this approach may produce a small number 
of long and hardly useable rules (like the rule III above).  Therefore, we perform 
the merging of disjunctive values for the last rule condition only. The procedure of 
merging fuzzy conjunctive rules is given below.  It is based on the assumption that 
each fuzzy rule is using the same partial sequence of input attributes, which is true 
for any rule base extracted from an information-theoretic network (see sub-section 
2.3 above).   

Algorithm MERGE_RULES (Consistent_Set_of_Fuzzy_Rules) 

• Initialize total number of merged fuzzy rules to zero. 

• Initialize number of conditions (l) to zero 

• While (l < total number of input attributes) do 

• Repeat for every fuzzy rule having l conditions 

• If there are no merged rules having l conditions 

• Define the first merged rule with l conditions 

• Initialize the rule grade 



 20 

• Else 

• Try to merge with an existing rule (having the same target value and 
the same input values for (l-1) conditions) 

• If merged,  

• Update disjunctive condition no. l by a new term 

• Update the rule grade by using a fuzzy union ("max" operation). 

• Else 

• Define a new merged rule with l conditions 

• Initialize the rule grade 

• Increment l 

The computational complexity of the MERGE_RULES algorithm is proportional 
to the square of the number of distinct fuzzy rules (bounded by the number of 
information-theoretic rules) times the average number of rule conditions (minus 
the last condition).  This is because the algorithm performs pairwise comparison 
of all conditions, except for the last one. If the partial antecedents of two rules are 
found identical and their target values are identical too, the rules are merged.  In 
the end of the process, only the rules, which do not match any other rule, are left 
unmerged.   

3.4 Pruning Merged Rules 

The rules merged by the algorithm of sub-section 3.3 above may include several 
values in the last (disjunctive) condition.  The number of values is bounded by the 
number of fuzzy terms in the attribute corresponding to the last condition.  
However, if the number of values in a disjunctive condition is equal to the number 
of attribute terms, the condition can be eliminated, since a complete linguistic 
domain of an attribute represents the entire universe of discourse.  In other words, 
we can prune the rule by removing the last condition.  The formal algorithm for 
pruning merged rules is given below. 

Algorithm PRUNE_RULES (Set_of_Merged_Rules) 

• Repeat for each layer l in the Info-Fuzzy Network 

• Repeat for each merged rule r having l conditions 

• If the number of values in the last condition (condition l) is equal to 
the domain size of the attribute At (l) corresponding to the layer l in the 
network: 

• Decrement the number of conditions in rule r by one 



 21 

• Remove rule r from the set of rules having l conditions 

• Add rule r to the set of rules having (l-1) conditions 

• End If 

• Next rule r at the layer l 

• Next layer l 

The computational complexity of the PRUNE_RULES algorithm is proportional 
to the number of merged rules.  The number of merged rules is bounded by the 
number of information-theoretic rules (see previous sub-sections).   

4. Case Study 

In this section, we are applying the process of rule extraction, fuzzification, and 
reduction to a real-world data set provided by a semiconductor company.  The 
semiconductor industry is a highly competitive sector, and the data included in our 
analysis is considered highly sensitive proprietary information.  Consequently, we 
are forced to omit or change many details in the description of the target data and 
the obtained results. As indicated in sub-section 3.1 above, fuzzification of 
continuous attributes has helped us to “hide” the proprietary information from the 
unauthorized (and, probably, curious) reader. 

4.1 The Problem Domain 

The Information-Fuzzy Network (IFN) methodology is applied to a real-world 
database containing typical data from a semiconductor plant.  The basic measure 
of profitability in semiconductor industry is the outgoing yield of manufactured 
batches. Overall, or line yield of a manufacturing process is defined as the ratio 
between the number of good parts (chips) in a completed batch and the initial 
number of chips in the same batch.  Since capitalization costs constitute the major 
part of manufacturing costs in semiconductor industry, the cost of producing a 
single batch is almost fixed. However, the income from a given batch is equal to 
the price of one chip times the number of good chips. Thus, there is a direct 
relationship between the yield and the profits of semiconductor companies, who 
treat their yield data as “top secret” information. 

Controlling and preserving the yield is a complex engineering problem. Both new 
and mature semiconductor products suffer from variability of yield within and 
between individual batches and even on specific wafers of the same batch.  
Improved understanding of this variability can save significant manufacturing 



 22 

costs by focusing on problematic processes and taking appropriate actions, 
whenever excursion of yield is expected for a given batch, wafer, etc. 

Although the amount of manufacturing data collected by semiconductor 
companies is constantly increasing, it is still hard to identify the most important 
parameters for yield modeling and prediction.  In this study, we are trying to find 
relationships between the batch yield and two types of available data: 

• Batch-based data including information about product and process type, 
batch priority, etc.  Different processes are expected to have different yields, 
depending on their maturity, tool condition, and other factors. 

• WIP (Work-in-Process) data showing the batch routing (sequence of 
fabrication steps), the date of completing each fabrication step, quantity 
transferred to the next step, and other parameters.  Multiple records (based on 
different fabrication steps) may be related to the same batch.  The batch yield 
may depend on the flow time, which is the amount of time spent at the same 
fabrication step.  Certain materials used in semiconductor industry are known 
to be sensitive to the time difference between succeeding operations. 

BATCHES

Batch_ID Spec_Number Priority

BATCH_FLOW

Batch_ID Step_No Operation Date_Fin Qty_Trans Qty_Scrap

BATCHES

Batch_ID Spec_Number Priority

BATCH_FLOW

Batch_ID Step_No Operation Date_Fin Qty_Trans Qty_Scrap  

Figure 3 Relational Schema of the Semiconductor Database 

The relational schema of the database provided to us by the company is shown in 
Figure 3 above.  Here is a short explanation about each attribute in the schema: 

• Table BATCHES 

• Batch_ID.  This is the identification number of each batch and the 
primary key of the table. 

• Spec_Number.  This is a specification (part) number of a batch.  It 
specifies the manufacturing parameters of the batch, like voltage, 
frequency, chip size, etc. 

• Priority. This is the priority rank of a batch, usually assigned by the 
marketing department. 



 23 

• Table BATCH_FLOW 

• Batch_ID.  This is the identification number of a batch. It is a foreign 
key, since it is related to the primary key of the table BATCHES, but it is 
also a part of the primary key of this table. 

• Step_No.  This is the serial number of a fabrication step in the 
manufacturing process of a given batch.  A completed batch has several 
steps.  The attribute Step_No is a part of the primary key.  Each record in 
the BATCH_FLOW table is uniquely identified by a combination of 
values of two attributes:  Batch_ID and Step_No. 

• Operation.  The code of the operation applied to the batch no. Batch_ID 
at the fabrication step no. Step_No. 

• Date_Fin.  The date when the fabrication step was completed.  After 
completion of a step, the batch is transferred automatically to the next 
step on its routing list. 

• Qty_Trans.  The quantity of good chips transferred to the next step.  If a 
batch consists of wafers, the number of good chips is calculated 
automatically from the number of wafers. 

• Qty_Scrap.  This is the number of chips scrapped at the current 
fabrication step.  It is equal to the difference between the number of chips 
transferred from the previous step and the number of chips transferred to 
the next step.  If entire wafers are scrapped, the number of scrapped chips 
is calculated automatically. 

 

4.2 Data Preparation 

4.2.1 Data Selection 

In the original dataset provided by the company, the table BATCHES included 
3,129 records.  Since the company is manufacturing a variety of semiconductor 
products, the batches represented by the table records had different electric 
characteristics and different routings.  Consequently, we have decided to focus our 
analysis on a group of 816 batches related to a single product family.  The 
products of this family have two main parameters (chip size and electric current) 
and their manufacturing process includes about 30 fabrication steps. 



 24 

4.2.2 Feature Extraction 

The extended relational data model (see sub-section 2.1 above) assumes that the 
values of all candidate input and target attributes are given in the same record of a 
relational table.  However, the table BATCHES does not include some candidate 
input attributes (product parameters and flow times between succeeding steps), as 
well as the target attribute (yield).  The product parameters (size and current) were 
extracted from the attribute Spec_Number by using metadata on the attribute’s 
encoding schema.  The flow times at each fabrication step (except for the first 
one) were calculated by taking the difference between the completion dates of the 
current step and the previous step.  The completion dates were given by the 
attribute Date_Fin in the table BATCH_FLOW.  The line yield of each batch was 
found from dividing the value of the attribute Qty_Trans in the last fabrication 
step by its value in the first step.  These feature extraction operations have resulted 
in a new schema of the table BATCHES, which is shown in Figure 4 below. 

BATCHES

Batch_ID PriorityFlow_Time_1
…

Flow_Time_n Size Current Yield

BATCHES

Batch_ID PriorityFlow_Time_1
…

Flow_Time_n Size Current Yield
 

Figure 4 New Relational Schema of the BATCHES Table 

4.2.3 Discretization of Target Attribute 

The structure of the Info-Fuzzy Network introduced in sub-section 2.2 above 
requires the target attribute to be a discrete variable.  However, yield is a 
continuous attribute: it can take any value between zero and one.  Thus, we have 
discretized the attribute yield to 10 intervals of approximately equal frequency.  
The resulting entropy of yield was 3.32 (very close to log2 10). 

4.3 Extraction of Information-Theoretic Rules 

The Info-Fuzzy Network extracted from the BATCHES table is shown in Figure 5 
below.  The network includes three hidden layers related to three input attributes 
selected by the algorithm of sub-section 2.3 above: Size, Current, and 
Flow_Time_29 (flow time at operation 29).  Size (chip size) was defined as a 
nominal attribute, since the given product is manufactured in three different sizes 
only (represented by the three nodes of the first hidden layer).  Current is a 
continuous attribute, which was discretized by the algorithm into four intervals 
resulting in four nodes of the second layer. Another continuous attribute, 
Flow_Time_29, was discretized into two intervals.  Hence, the third hidden layer 
has two nodes.  The network has seven terminal (unsplitted) nodes: 1, 2, 5, 6, 7, 8, 



 25 

and 9.  Full connections between the terminal and the target nodes are not shown 
in Figure 5 due to space limitations. 

0

3

2

1

6

5

4

7

9

8

1

0

9

Layer 0

(Root node)

Layer 1

(Size)
Layer 2

(Current)

Layer 3

(Flow_Time_29)

0

3

2

1

6

5

4

7

9

8

1

0

9

Layer 0

(Root node)

Layer 1

(Size)
Layer 2

(Current)

Layer 3

(Flow_Time_29)

 

Figure 5 Info-Fuzzy Network (BATCHES Table) 

The relative importance of each selected attribute is shown in Table 1 below.  The 
column “Mutual Information” shows the cumulative association between a subset 
of input attributes, selected up to a given iteration inclusively, and the target 
attribute.  Since the mutual information is defined as the difference between 
unconditional and conditional entropy (Cover 1991), it is bounded by the 
unconditional entropy of yield, which is 3.32.  The estimated net increase in the 
mutual information, due to adding each input attribute, is presented in the column 
“Conditional MI”. The last column “Conditional Entropy” is the difference 
between the unconditional entropy (3.32) and the estimated mutual information.   

Table 1 Selected Attributes (BATCHES Table) 

 Attribute Mutual Conditional Conditional 

Iteration Name Information  MI Entropy 

0 Size 0.102 0.102 3.218 

1 Current 0.204 0.102 3.116 

2 Flow_Time_29 0.255 0.051 3.065 

 



 26 

The network of Figure 5 above can have up to 7*10=70 connections between its 
seven terminal nodes and ten nodes of the target layer.  The number of 
connections having non-zero information-theoretic weights is 58. Each connection 
represents an association rule of the form  

If Size = V1 and Current = V2, and Flow_Time_29 = V3 then Yield is [not] V4 

where V1, V2, and V3 either represent valid values from the domains of the 
corresponding attributes, or are equal to "don't care".  The consequent V4 
represents one of discretization intervals of the target attribute (Yield).  The rules 
having the highest positive and the smallest negative connection weights are given 
below (confidential information was replaced by meaningless letters). 

• Rule No. 28: If Size is Z and Current is between C and D then Yield is 
between A and B (weight = ������). 

• Rule No. 6: If Size is Y then Yield is not between E and F (weight = -������). 

Though the above rules are expressed in accurate, "crisp" terms defining the exact 
boundaries of each underlying interval, their representation power is quite limited 
for the following reasons: 

1) The user is more interested in the rules of the form "If current is high, then the 
yield is low", which is closer to the human way of reasoning.  People tend to 
"compute with words" rather than with precise numbers. 

2) The total number of rules, extracted from this dataset, is 58, which is larger 
than the number of rules generally used by people in their decisions. 

3) The rules cannot be presented to outsiders (e.g., representatives of a rival 
company) without revealing some sensitive information.  This may be an 
obstacle to open exchange of technological information in forums like 
professional conferences, multi-company consortia, etc.  

In the next sub-section, we are going to use the Computational Theory of 
Perception (Zadeh 1999) for converting the set of "crisp" numeric rules into a 
reduced set of fuzzy (linguistic) rules. 

4.4 Rules Fuzzification and Reduction 

We have chosen the following terms (words in natural language) for each type of 
numerical attribute in the BATCHES table: 

• Flow Time: short, long. 

• Current: low, medium, high. 

• Yield: low, normal, high. 



 27 

To convert the above attributes into linguistic variables, we have defined 
triangular membership functions associated with each term (see Figures 6-8 
below).  Triangular functions are frequently used in the design of fuzzy systems 
(Wang 1997).  To protect the confidentiality of the original data, the membership 
functions are shown here without the values of the X-axis.  The nominal attribute 
Size was not fuzzified. 

Flow Time

.

.

.

.

short

long

 

Figure 6 Membership Functions of Flow Time 

Current

.

.

.

.
low

medium

high

 

Figure 7 Membership Functions of Current 

Yield

.

.

.

.
low

normal

high

 

Figure 8 Membership Functions of Yield 

Applying the fuzzification procedure to the “crisp” rules, shown in the previous 
sub-section, results in the following fuzzy rules: 



 28 

• Rule No. 28: If Size is Z and Current is medium then Yield is normal (grade = 
������) 

• Rule No. 6: If Size is Y then Yield is not low (grade = -�����6) 

In Table 2 below, we present the consistent set of fuzzy rules, extracted from the 
BATCHES table by using the conflict resolution procedure of sub-section 3.2 
above.  The last column represents the number of original rules (crisp / fuzzified), 
associated with a given fuzzy rule.  As one can see, the size of the fuzzy rule base 
has been significantly reduced from 58 original rules to six rules only (a decrease 
of nearly 90%).  

 

Table 2 The Set of Consistent Fuzzy Rules 

Rule No Rule Text Grade 
Number of 
Crisp Rules 

0 If Size is X then Yield is low 0.0522 5 

1 If Size is Y then Yield is normal 0.0226 10 

2 
If Size is Z and Current is medium then Yield is 
normal 0.0395 17 

3 
If Size is Z and Current is high then Yield is 
normal 0.0097 8 

4 
If Size is Z and Current is low and Flow_Time_29 
is short then Yield is normal 0.0077 10 

5 
If Size is Z and Current is low and Flow_Time_29 
is long then Yield is low 0.0176 8 

 

All the rules in Table 2 above are conjunctions of fuzzy and “crisp” conditions.  
However, rules 2 and 3 can be merged into a disjunction, since they have the same 
consequent (Yield is normal).  The formal algorithm for merging fuzzy rules was 
presented in sub-section 3.3 above and the resulting set of 5 merged fuzzy rules is 
shown in Table 3 below. The merged rule (no. 2) does not include all the terms 
associated with the attribute Current, and, thus, it cannot be pruned by the 
algorithm of sub-section 3.4. 

The users (process engineers) would be particularly interested in the rules 
describing problematic situations, where the yield is below normal.  Thus, Rule 0 
indicates that the chips of the size X are more problematic, since their yield tends 



 29 

to be low.  Corrective actions may include changes of the manufacturing process, 
purchase of new equipment, and adjustment of chips’ prices.  Rule 4 says that 
batches having a different size (Z) and low current suffer from low yield, if the 
flow time at Operation 29 is long.  In this case, the engineers should find the 
reason why long waiting times at this operation cause the yield to be low.  
Anyway, the delays may be decreased by the proper changes of the working 
procedures (assigning higher priority to low-current batches of size Z). 

Table 3 The Set of Merged Fuzzy Rules 

Rule No Rule Text Grade 

0 If Size is X then Yield is low 0.0522 

1 If Size is Y then Yield is normal 0.0226 

2 If Size is Z and Current is medium or high then Yield is normal 0.0395 

3 
If Size is Z and Current is low and Flow_Time_29 is short then 
Yield is normal 0.0097 

4 
If Size is Z and Current is low and Flow_Time_29 is long then 
Yield is low 0.0077 

5. Conclusions 

In this paper, we have presented a new approach to extracting a compact set of 
linguistic rules from relational data.  The approach is based on the Information-
Fuzzy Network (IFN) methodology, which is aimed at maximizing the mutual 
information between input and target attributes.  Post-processing of the IFN output 
includes information-theoretic fuzzification of numeric association rules, removal 
of conflicting rules, merging of consistent rules, and pruning of merged rules.  As 
demonstrated by the case study of a semiconductor database, the process results in 
a small set of interpretable and actionable rules.  If necessary, the fuzzification of 
the rules can also be helpful for hiding confidential information from unauthorized 
users of the rule set. 

The full potential of the fuzzy set theory for efficient post-processing of data 
mining results has yet to be studied.  Future research includes integration of the 
Computational Theory of Perception with other rule extraction systems like C4.5 
(Quinlan 1993) and Quest (Agrawal et al. 1996).  Application of the same 
approach to non-relational data (e.g., time series databases and multi-media 
documents) is another important topic. 



 30 

Acknowledgment 

This work was partially supported by the USF Center for Software Testing under 
grant no. 2108-004-00. 

References 

R.Agrawal, M. Mehta, J. Shafer, and R. Srikant ( 1996). The Quest Data Mining System.  
Proc. of KDD-96, pages 244-249. AAAI Press. 

W.-H. Au and K. C. C. Chan ( 1999). FARM: A Data Mining System for Discovering 
Fuzzy Association Rules.  Proc. of IEEE International Fuzzy System Conference, pages 
1217-1222. IEEE Press. 

T. M. Cover (1991).  Elements of Information Theory. Wiley. 
U. Fayyad and K. Irani ( 1993). Multi-Interval Discretization of Continuous-Valued 

Attributes for Classification Learning.  Proc. of   the 13th International Joint 
Conference on Artificial Intelligence, pages  1022-1027. Morgan Kaufmann. 

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth (1996a).  From Data Mining to Knowledge 
Discovery: An Overview. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. 
Uthurusamy, Editors,  Advances in Knowledge Discovery and Data Mining, , pages  1-
30. AAAI/MIT Press. 

H.F. Korth and A. Silberschatz (1991).  Database System Concepts. McGraw-Hill, Inc. 
M. Last and A. Kandel ( 1999). Automated Perceptions in Data Mining.  Proc. of 1999 

IEEE International Fuzzy Systems Conference, pages  190-197. IEEE Press. 
M. Last, A. Schenker, and A. Kandel (1999). Applying Fuzzy Hypothesis Testing to 

Medical Data.  Proc. of RSFDGrC’99, pages 221-229. Springer-Verlag. 
O. Maimon, A. Kandel, and M. Last (1999).  Information-Theoretic Fuzzy Approach to 

Knowledge Discovery in Databases. In R. Roy, T. Furuhashi and P.K. Chawdhry, 
editors,  Advances in Soft Computing - Engineering Design and Manufacturing, , pages  
315-326.  

T.M. Mitchell (1997).  Machine Learning. McGraw-Hill. 
J.R. Quinlan (1986). Induction of Decision Trees. Machine Learning,  1 ( 1): 81-106. 
J. R. Quinlan (1993).  C4.5: Programs for Machine Learning. Morgan Kaufmann. 
C.R. Rao and H. Toutenburg (1995).  Linear Models: Least Squares and Alternatives. 

Springer-Verlag. 
S. Shenoi (1993). Multilevel Database Security Using Information Clouding.  Proc. of  

IEEE International Conference on Fuzzy Systems, pages  483-488. IEEE Press. 
T. Slawinski, et. al. (1999). A Hybrid Evolutionary Search Concept for Data-based 

Generation of Relevant Fuzzy Rules in High Dimensional Spaces.  Proc. of  IEEE 
International Fuzzy System Conference, pages  1432-1437. IEEE Press. 



 31 

R. Srikant and R. Agrawal (1996). Mining Quantitative Association Rules in Large 
Relational Tables.  Proc. of ACM-SIGMOD 1996 Conference on Management of Data, 
pages  1-12. 

L.-X. Wang and J.M. Mendel (1992). Generating Fuzzy Rules by Learning from Examples. 
IEEE Transactions on Systems, Man, and Cybernetics,  22 ( 6): 1414-1427. 

L.-X. Wang (1997).  A Course in Fuzzy Systems and Control. Prentice-Hall. 
Y. Yuan, M.J. Shaw (1995). Induction of Fuzzy Decision Trees. Fuzzy Sets and Systems, 

69 (0): 125-139. 
L. A. Zadeh (1999).  A New Direction in System Analysis: From Computation with 

Measurements to Computation with Perceptions. In N. Zhong, A. Skowron, S. Ohsuga, 
Editors,  New Directions in Rough Sets, Data Mining, and Granular-Soft Computing , 
pages  10-11.  

 


