
Large Pheromones: A Case Study with
Multi-agent Physical A*

Ariel Felner12, Yaron Shoshani2, Israel A Wagner34, and Alfred M. Bruckstein4

1 Dpet. of Information Systems Engineering, Ben-Gurion University of the Negev,
Beer-Sheva, 84104, Israel

EMAIL: felner@bgumail.bgu.ac.il
2 Dept. of Computer Science, Bar-Ilan University, Ramat-Gan, 52900, Israel

3 IBM Haifa Labs, MATAM, Haifa 31905, Israel
4 Dept. of Computer Science, Technion, Haifa, 32000, Israel

Abstract. Physical A* (PHA*) and its multi-agent version MAPHA*
[2, 3] are algorithm that find the shortest path between two points in
an unknown real physical environment with one or many mobile agents.
Previous work assumed a complete sharing of knowledge between agents.
Here we apply this algorithm to a more restricted model of communi-
cation which we call large pheromones, where agents communicate by
writing and reading data at nodes of the graph that constitutes their
environment. Unlike small pheromones where only a limited amount of
data can be written at each node, the large pheromones model assumes
no limitation on the size of the pheromones and thus each agent can
write its entire knowledge at a node. We show that with this model of
communication the behavior of a multi-agent system is almost as good
as with complete knowledge sharing.

1 Introduction

This paper introduces the notion of large pheromones as a model of communi-
cation and global knowledge sharing in multi-agent systems. With pheromones,
agents communicate by writing and reading data at the nodes of the graph that
constitutes their environment (e.g. [7, 8]). Unlike pheromones in previous work
where only a limited amount of data can be written in each node, in the large
pheromones model, there is no restriction on the amount of data that can be
written in the the nodes and thus each agent can write its entire knowledge in a
node. We apply this model of communication to the multi-agent physical A* al-
gorithm (MAPHA*) which is the multi agent version of Physical-A* (PHA*) [2,
3]. These algorithms modify the A* algorithm to find shortest paths in physical
environments with mobile agents that move around the environment and ex-
plore unknown territories. These algorithms are designed to minimize the travel
effort of the agents. We will show that increasing the amount of data that can
be stored at each of the pheromones dramatically reduces the travel effort of the
agents. With maximal usage of this model with unlimited size of pheromones the
behavior of a multi-agent system is almost as good as with complete knowledge
sharing between the agents.



2

2 Physical A*

The A* algorithm [4] is a common method for finding a shortest path in graphs
that have exponential number of nodes (like combinatorial puzzles). A* keeps
an open-list of generated nodes and expands them in a best-first order according
to a cost function of f(n) = g(n) + h(n), where g(n) is the distance traveled
from the initial state to n, and h(n) is a heuristic estimate of the cost from node
n to the goal. h(n) is admissible if it never overestimates the actual cost from
node n to the goal. A* was proved to be admissible, complete, and optimally
effective [1]. Therefore, any other algorithm claiming to return the optimal path
must expand at least all of the nodes that are expanded by A* given the same
heuristic h [1]. An A* expansion cycle is usually carried out in constant time as
it takes a constant amount of time to retrieve a node from the open-list and to
generate all its neighbors by applying domain-specific operators to the expanded
node. Thus the time complexity of A* can be measured in terms of the number
of generated nodes.

Physical A* (PHA*) modifies A* to find the shortest path in much smaller
graphs which correspond to a real physical environment. Consider a mobile agent
who needs to find a shortest path between two physical locations and assume that
only a very small portion of the environment graph is known to the agent. Since
A* is optimally effective, the mobile agent needs to activate the A* algorithm
on this physical graph. For this type of graph, however, we cannot assume that
expanding a node from the open list takes constant time. Many of the nodes and
edges of this graph are not known in advance. Therefore, to expand a node that
is not known in advance, a mobile agent must first travel to that node in order
to explore it and learn about its neighbors. The cost of the search in this case is
the cost of moving an agent in a physical environment, i.e., it is proportional to
the distance traveled by the agent. PHA* expands all the mandatory nodes that
A* would expand and returns the shortest path between the two points but is
designed to minimize the traveling effort of the agent by intelligently choosing
the next assignment of the traveling agent. Note that since small graphs are
considered here, we can omit the actual computation time and focus only on the
travel time of the agent.

Unlike ordinary navigation tasks the purpose of the agent in PHA* is not
to reach the goal node as soon as possible, but rather to explore the graph in
such a manner that the shortest path will be retrieved for future usage. On the
other hand, our problem is not an ordinary exploration problem where the entire
graph should be explored in order for it to be mapped out. See [2, 3] for more
comparison to other algorithms and problems.

An example for a real application can be the following scenario. A division of
troops is ordered to reach a specific location. The coordinates of the location are
known. Navigating with the entire division through unknown hostile territory
until reaching its destination is unreasonable and inefficient. Instead, one may
have a team of scouts search for the shortest path for the division to pass through.
The scouts explore the terrain and report shortest path for the division to move



3

along in order to reach its destination. PHA* is an algorithm designed to help
these scouts.

PHA* works in two levels. The high level (which invokes the low level as a
subroutine), acts like a regular A* search algorithm: at each cycle it chooses the
best node from the open-list for expansion. Nodes are evaluated according to a
heuristic function h(n) , which, in our case, is the Euclidean distance between n
and the goal node. If the node chosen by the high level has not been explored by
the agent, the low level, which is a navigation algorithm, is activated to bring
the agent to that node and explore it. After a node has been explored by the
low level it is expandable by the high level. If the chosen node has already been
explored, or if its neighbors are already known, then it is readily expandable by
the high level without the need to send the agent to visit that node.

In [2, 3] a number of navigation algorithms for the low level are presented.
They all attempt to navigate to the target via unexplored nodes. Thus, while
navigating through unknown parts of the graph, the agent might visit new nodes
that have not been explored yet and explore them on the fly. This may save the
need to travel back to those nodes at a later time, should they be selected for
expansion by the high-level algorithm. See [2, 3] for a comprehensive description
and all technical details of these ideas and algorithms.

2.1 MAPHA*: Multi-agent Physical A*

In [2, 3], PHA* was generalized to the Multi-agent Physical A* (MAPHA*) where
a number of agents cooperate in order to find the shortest path. The task is that
these agents should explore the necessary portion of the graph, i.e., the A* nodes
as fast as possible. The assumption in [2, 3] was that each agent can communicate
freely with all the other agents and share data at any time. Thus any information
gathered by one agent is available and known to all of the other agents. This
framework can be obtained by using a model of a centralized supervisor that
moves the agents according to the complete knowledge that was gathered by all
of them. Another possible model for complete knowledge-sharing is that each
agent broadcasts any new data about the graph to all the other agents.

MAPHA* also uses a two level framework. The high level chooses which nodes
to expand, while the low level navigates the agents to these nodes. Since complete
knowledge sharing is assumed there is one central high level which activates A*
and distributes the agents to different tasks. Suppose that we have p available
agents and We would like to distribute these p agents to the nodes from the
front of the open lest as efficiently as possible. This is done by distributing more
agents to nodes in the front of the window, (i.e. with a relatively small f -value)
but on the other hand give high priority to assigning an agent to a relatively
close-by node. See [2, 3]

3 Communication models and pheromones

There are many models for communication in multi agent systems. As described
above, the most trivial model is complete knowledge sharing where any new



4

discovery of an agent is immediately shared with all the other agents. Other
models restrict the level of communication. Some models allow broadcasting or
message exchanging between agents but restrict the size or frequency of message.
Many times, a penalty cost is associated with each message.

In nature, ants and other insects communicate and coordinate by leaving
trails of odor on the ground. The “data” placed on the ground is called pheromones.
Inspired by nature, a famous model for communicating in a multiagent system
is that of ant-robotics, (e.g. [7, 8]). In this model, information is spread to other
agents via “pheromones”, i.e., small amounts of data that are written by an agent
at various places in the environment (e.g. nodes in the graph), and can be later
used or modified by other agents visiting that node. In our ant-inspired model
we assume that the information network is a graph, and the role of a pheromone
is taken by a memory area on each node, that our search a(ge)nts can read and
modify. This paradigm suggests a distributed group of one or more lightweight
autonomous agents that traverses the environment in a completely autonomous
and parallelized way. Data is spread by the agents via these pheromones, which
together serve as a distributed shared memory.

Usually, it is assumed that a very small amount of data (no more than a few
bytes) can be written in each pheromone. It turns out, however, that despite
these severe limitations on pheromone size, such agents are able to cooperate
and achieve goals like covering a faulty graph [8], finding an Euler cycle in a
graph [9] and solving various combinatorial optimization problems [5]. A small
sized pheromone can only include local data and is not very suitable for problems
such as finding a shortest path in a graph where global data sharing is needed.
In the sequel we consider the effect of using larger pheromones, i.e. storing more
data in the nodes, on the efficiency of multiagent search.

4 Large pheromones

We suggest a new model of communication which we call large pheromones. Un-
like conventional pheromones, we cancel the restriction on the amount of data
that can be stored in each node, and consider the effect of this increased storage
on the performance of the search algorithm. At the extreme, we assume that an
agent can write its entire knowledge base (e.g. a complete list of nodes and edges
known to that agent) at each of the nodes. With today’s hardware capabilities
and computer architecture this is a reasonable assumption. With pheromones,
we already assume that each agent has the necessary hardware devices to allow
reading and writing data in the environment. We also assume that there is a
storage device in each of the nodes. Given that a storage device is installed in
each node it is not reasonable to limit the size of the storage device as with
current technology memory is very cheap. For example, it is not un realistic to
assume, say, one megabyte of memory at a node which can store a graph of tens
of thousands of nodes. We can also assume that the time to read and write data
from the large pheromones can be omitted when considering the traveling time
of the agents. This additional data storage in the large pheromones paradigm can



5

help the agent to solve the problem faster and much more efficiently. However,
large memory is not always available, e.g. in a system of nanorobots within a
hostile environment, where only a very limited use of the environment is pos-
sible. Hence, we also consider a more modest memory capacity of the storage
devices in the nodes. In that case, given the limited memory capacities and the
entire knowledge base, we will address the question of selecting the most relevant
portion of the knowledge for storing at the nodes.

4.1 Spreading data with large pheromones

With such large capacities of memory in each node, we present the following com-
munication paradigm between the agents in general and in exploring unknown
environments in particular. Each agent maintains a database with a partial graph
that is known to it. Similarly, each node holds a database with a partial graph
that is ’known’ to it, i.e., knowledge that was written to it by the agents. When-
ever an agent reaches a node, it merges the data known to it with the data that
is written in that node. The agent then writes the combined data in that node
and updates its own database according to the new data that was obtained.
We call this the data-merge operation. In this way data will be spread out very
fast as long as agents visit many nodes in many areas of the graph and perform
data-merge operations at all the nodes that they visit. For example, assume that
agent A visits node n and write its knowledge in that node. After a while, agent
B visits node n. Agent B will read the information in the node and will merge it
with its own knowledge. After merging the knowledge, both agent B and node
n hold the information gathered by both agent A and agent B.

If we assume a limited memory capacity of the nodes then the data-merge
operation has two stages. First, the agent merges its own data with the data that
is written in the node. Then the agent erases the previous pheromone and applies
a selection algorithm to determine the most informative portion of the data for
writing in the node. This selection algorithm is of course domain dependent.

5 MAPHA* with large pheromones

we no present our new version for MAPHA* where the large pheromones model is
employed. When the large pheromones model is employed there is no centralized
entity and each agent activates the high-level A* on its own, based on the partial
knowledge of the graph that is known to it at any point of time. Thus each agent
keeps its own open-list of nodes and chooses to expand the best node from that
open-list. If, neighbors of that node are not known to the agent, then, as with
single agent PHA*, the agent will navigate to that target node with the help
of a low-level navigation algorithm. When the large pheromones paradigm is
employed then at each node that a navigating agent visits, it performs a data-
merge operation. Its own knowledge is added to the node and knowledge about
nodes that were not known to the agent is now learned by the agent. This might
have a positive effect on the open-list and the high-level A* that is activated by



6

this agent. For example, suppose that agent A choose to expand node t from
front of the open-list, and this node was not yet explored by agent A. Thus,
agent A should now navigate to that node. On its way to t, agent A visits node
n. Suppose that another agent, B, already explored node t and later wrote that
data in node n while visiting it. When agent A reaches node n and performs a
data-merge operation, it learns about node t. Therefore, agent A does not need
to continue the navigation to node t and that node can be expanded by agent A
immediately.

If we only assume a limited memory capacity of the nodes then after the
agent merges its data with data from the pheromone it will have to decide which
are the most relevant nodes to write back to the pheromone. We have tried many
variants and found out that the best performance was achieved by writing data
about nodes that are closest to the current node.

Note that PHA* as well as MAPHA* with large pheromones are deterministic
algorithms that are designed to work only in a static environments where the
structure of the graph is stable throughout the search. If the graph is dynamic
and changes during the search then a probabilistic approach would probably be
a better choice.

6 Experiments

We have implemented the algorithms described above and performed experi-
ments on Delaunay graphs [6] which are derived from Delaunay triangulations.
Delaunay graphs simulate Roadmap graphs which are real physical graphs.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10 12 14 16

S
ea

rc
h 

ti
m

e

Number of agents

Partial pheromone, 10 nodes
Partial pheromone, 20 nodes

Full phermone:static data only
Full pheromone: static and dynamic data

Full communication

Fig. 1. MAPHA* with large pheromones, 500 nodes



7

Figure 1 illustrates the time elapsed as a function of the number of agents
that were used to find the shortest path with different versions of MAPHA* on
Delaunay graph with 500 nodes. Since we assume constant speed, the time is re-
ported as the distance traveled by the agents until the solution was found. Every
data point (here and in all the other experiments) corresponds to an average of
250 different pairs of initial and goal nodes, that were picked at random. There
are 5 curves in the figure. The bottom curve corresponds to the best version
of MAPHA* with full communication from [2, 3] and is used as a benchmark.
Other curves show the overall time cost of different versions of MAPHA* with
large pheromones. The top two curves show the results where we only assumed a
limited memory capacity at the nodes. In particular, in the top curve. 10 nodes
were allowed to be written and the second curve allowed 20 nodes to be written
at each pheromone. As explained above, the nodes selected to be memorized
are those closest to the current node. The rest of the curves assume unlimited
data capacity and thus the entire graph can be written at each node. The third
curve, “Full pheromones: static data only” shows the case where only static data
about the graph was used. Finally, the forth curve, “Full pheromone: static and
dynamic data” uses the most powerful pheromone available i.e. unlimited data
capacity of the pheromones and both static data about the graph as well as
dynamic data about behaviors of other agents.

The results show a clear phenomenon. As the pheromone becomes larger
and includes more knowledge a significant improvement in the overall time is
obtained. This parametric effect is achieved even though no explicit control is
forced by a centralized supervisor.

The figure clearly shows that all the versions that use the large pheromones
paradigm with unlimited memory capacity keep most of the potential of the full
knowledge sharing paradigm. Their performance is rather close to the perfor-
mance of the full communication version. This means that with large pheromones,
data is spread to other agents rather fast and it is almost as good as full com-
munication and full knowledge sharing. This is true even for the simple version
which includes static data only.

Dynamic data, with knowledge about routes, tasks and decisions of other
agents further improved the performance. It seems that using it only in the
low level did not significantly improve the case were only static data was used.
However, adding dynamic data to the high level adds a lot of strength to this
algorithm and this last version is almost as good as full communication model.

We have experimented with other sizes of graphs and on sparse and dense
graphs and obtained similar results.

7 Conclusions and Future Work

We introduced the notion of large pheromones as a communication paradigm
in multi-agent systems. We showed that in current technology this paradigm
is reasonable and cheap to implement. We used the PHA* algorithm as a test
case for this paradigm. Results were very encouraging as data is indeed spread



8

out quite efficiently in all the variations that we checked and the behavior of a
multi-agent system is almost as good as with full-communication model.

The question is in what domains small pheromones are not sufficient and
large pheromones are needed. We believe that large pheromones are needed in
any domain where global data from different areas of the environment is critical
to the decision making of all agents at all times. In that case smaller pheromones
will not do the job. Our problem of activating A* in a physical environment is
an example for this. Since A* expands nodes in a global best-first search order
local data is not enough for this as shown in figure 1.

For another example, consider a team of fireman agents that have to extin-
guish fire. The general geometrical structure of the fire is very important as it
might cause agents to move to different locations. A counter-example might be a
group of agents who are trying to explore and map unknown territories. When-
ever an agent reaches a new node, it learns new valuable information. Thus,
when locally realizing that there is a nearby unexplored area, moving to that
area is always beneficial. Knowledge of other areas of the environments is not so
crucial at every point of time. Similarly, the works in [8, 9, 5] need local data to
improve their efficiency and thus very small pheromones were enough.

Future work will proceed by applying this paradigm to other problems. In-
deed we are currently implementing these ideas to multi-agent fire detecting.
Preliminary results look promising. Also, A mathematical analysis of spreading
data should be figured out, providing a better insights and bounds on achievable
performance.

References

1. R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality
of A*. Journal of the Association for Computing Machinery, 32(3):505–536, 1985.

2. A. Felner, R. Stern, A. Ben-Yair, S. Kraus, and N. Netanyahu. Pha*: Finding
the shortest path with a* in unknown physical environments. Journal of Artificial
Intelligence Research, 21:631–679, 2004.

3. A. Felner, R. Stern, and S. Kraus. PHA*: Performing A* in unknown physical
environments. In Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, pages 240–247, Bologna, Italy, 2002.

4. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, SCC-4(2):100–107, 1968.

5. V. Maniezzo M. Dorigo and A. Colorni. The ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26(1):29–41, 1994.

6. A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations, Concepts, and Appli-
cations of Voronoi Diagrams. Wiley, Chichester, UK, 1992.

7. A. Wagner and A. M. Bruckstein. ANTS: Agents, networks, trees, and subgraphs.
Future Generation Computer Systems Journal, 16(8):915–926, 2000.

8. V. Yanovski, I. A. Wagner, and A. M. Bruckstein. Vertex-ant-walk: A robust method
for efficient exploration of faulty graphs. Annals of Mathematics and Artificial
Intelligence, 31(1-4):99–112, 2001.



9

9. V. M. Yanovski, I. A. Wagner, and A. M. Bruckstein. A distributed ant algorithm
for efficiently patrolling a network. Algorithmica, 37:165–186, 2003.


