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Abstract

With increasing deployment of multiple agents in complex, dynamic settings, there

is an increasing need to respond to failures that occur in the agents coordination.

In particular, there is need to detect and diagnose coordination failures—failures

to maintain relationships between agents. We refer to this type of diagnosis as

social diagnosis. Previous approaches to diagnosis in multi-agent settings have either

ignored failures in coordination, or utilized heuristic approaches which do not scale

up as the number of agents (and their interactions) increases.

This dissertation offers a comprehensive and principled approach to social diagno-

sis. We use a model-based diagnosis (MBD) approach. Here, a model of a diagnosed

system is used to simulate the behavior of the system given the operational context

(typically, the system’s inputs), and to pinpoint possible failing components within

the system. MBD has been difficult to apply to diagnosing coordination failures,

because of the challenges in constructing a model of coordination, and the lack of

appropriate (scalable) diagnosis algorithms.

In the first part of this dissertation we formally show how to construct a model of

agent coordination, and use it to formally define the two key variant social diagnosis

problems: the Consistency-based diagnosis problem, and the abductive diagnosis

problem. We show that these are NP-Hard problems. We then build on known

methods in constraint-satisfaction problems, to provide several algorithms for social

diagnosis in centralized and distributed settings. The algorithms—whose analytical

guarantees vary in terms of completeness and correctness—are evaluated empiri-

cally, in experiments carried out with teams of physical robots. We examined the

computational requirements of the algorithms (i.e., their run-time and bandwidth

usage), and the correctness of the diagnoses produced. We find that in general, a

trade-off exists between computational costs and the correctness of the diagnosis.

In the second part of the dissertation, we focus on a particular type of coordi-

nation failures—disagreements—which are of particular interest when talking about

teams. We examine the design space of disagreement diagnosis algorithms for a more

complex class of situated agents (compared to the first part). We distinguish two

phases of diagnosis: (i) the selection of the diagnosing agents; and (ii) the diagnosis

of the global team state (by the selected agents). We provide alternative algorithms

for these phases, and empirically evaluate their communications and run-time re-

quirements. The results show that centralizing the disambiguation process is a key

factor in improving communications, but is not a determining factor in run-time.

ix



On the other hand, explicit reasoning about the different agents is a key factor in

determining run-time.

Based on this conclusion we follow two principles in reducing the communica-

tions and the computations in large-scale teams. First, we modify the algorithms

such that they communicate partial information that is most relevant to the diag-

nosis. Second, we enable diagnosis of only a limited number of representative agents

instead of diagnosing all others. These principles yield a novel diagnosis method

which significantly reduces the runtime, while keeping communications overhead to

a minimum.
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Chapter 1

Introduction

With increasing deployment of robotic and agent teams in complex, dynamic

settings, there is an increasing need to also be able to respond to failures

that occur in multi-agent teams [Jennings, 1995, Tambe, 1997, Parker, 1998,

Kaminka and Tambe, 2000]. One type of failure of particular interest in multi-agent

systems is a coordination fault, where agents come to disagree on salient aspects of

their joint task.

There is thus a particular need to be able to detect and diagnose the causes for co-

ordination faults that may occur, in order to facilitate recovery and reestablishment

of collaboration, e.g., by negotiations [Kraus et al., 1998]. This type of diagnosis

is called social diagnosis, since it focuses on finding causes for failures to maintain

social relationships [Kaminka and Tambe, 2000], i.e., coordination failures.

Unfortunately, social diagnosis has not been adequately addressed in previ-

ous work regarding diagnosis in multi-agent settings. Some previous investi-

gations focus solely on detection, without diagnosis [Kaminka and Tambe, 2000,

Poutakidis et al., 2002]. Others take a heuristic approach which can fail with-

out providing a correct diagnosis [Kaminka and Tambe, 1998]. Others still

take a causal-model approach, in which possible faults are specified in ad-

vance [Klein and Dellarocas, 1999, Horling et al., 1999, Dellarocas and Klein, 2000,

Horling et al., 2001]; this approach does not scale as the number of possible interac-

tions increases. Thus social diagnosis remains an open challenge in several aspects.

First, a significant body of work exists on principled, model-based diagnosis

(MBD) in artificial intelligence, but remains untapped in multi-agent systems. MBD

tackles the problem of identifying faulty components in a system by observation

[Reiter, 1987, de Kleer and Williams, 1987, Davis and Hamscher, 1988]. It relies on

a model of the diagnosed system to detect failures and to pinpoint possible fail-
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ing components within the system. While MBD has been applied on diagnosis in

multi-agent and distributed systems (e.g., [Fröhlich et al., 1997, Roos et al., 2003a,

Lamperti and Zanella, 2003]), it was always used to diagnose intra-agent failures,

rather than coordination failures (which take place inter-agent). MBD has been

difficult to apply on diagnosing coordination failures, because of the challenges in

constructing a model of coordination, and the lack of appropriate (scalable) diagnosis

algorithms.

In the first part of this dissertation we formally show how to construct a model

of agent coordination, and use it to formally define the two key variant social di-

agnosis problems: Consistency-based diagnosis, and abductive diagnosis. We show

that these are NP-Hard problems. We then build on known methods in constraint-

satisfaction problems, to provide several algorithms for social diagnosis in centralized

and distributed settings. The algorithms—whose analytical guarantees vary in terms

of completeness and correctness—are evaluated empirically, in experiments carried

out with teams of physical robots. We examined the computational requirements

of the algorithms (i.e., their run-time and bandwidth usage), and the correctness

of the diagnoses produced. We found that in general, a trade-off exists between

computational costs and the correctness of the diagnosis.

In the second part of the dissertation, we focus on a particular type of coordina-

tion failure—disagreements—which is of particular interest in teams. We examine

the design space of disagreement diagnosis algorithms for a more complex class of

situated agents (compared to the first part). We distinguish two phases of diagnosis:

(i) selection of the diagnosing agents; and (ii) diagnosis of the global team state (by

the selected agents). We provide alternative algorithms for these phases, and empir-

ically evaluate their communications and run-time requirements. The results show

that centralizing the disambiguation process is a key factor in improving commu-

nications, but is not a determining factor in run-time. On the other hand, explicit

reasoning about the different agents is a key factor in determining run-time.

Based on this conclusion we follow two principles in reducing the communica-

tions and the computations in large-scale teams. First, we modify the algorithms

such that they communicate partial information that is most relevant to the diag-

nosis. Second, we enable diagnosis of only a limited number of representative agents

instead of diagnosing all the others. These principles yield a novel diagnosis method

which significantly reduces the runtime, while keeping communications overhead to

a minimum.
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1.1 Motivation

Coordination (e.g., on a joint plan or goal) is a key to establishment and maintenance

of teamwork [Cohen and Levesque, 1991, Jennings, 1995, Grosz and Kraus, 1996,

Tambe, 1997]. The Joint Intentions framework [Cohen and Levesque, 1991] focuses

on agreement (mutual belief) in a team’s joint goal. The SharedPlans framework

[Grosz and Kraus, 1996] relies on an intentional attitude, in which an individual

agent’s intention is directed towards a group’s joint action. This includes mutual

belief and agreement among the teammates in a complete recipe including many

actions. Similarly, the Joint Responsibility model [Jennings, 1995] establishes the

team-members mutual belief in a specific recipe as a corner-stone for their collabo-

ration.

There exist several architectures for building agents, using ideas from team-

work theories; coordination on specific features of the agents’ internal states

plays a critical role in all. GRATE∗ implements the joint responsibility model

[Jennings, 1995] in industrial agent systems. STEAM [Tambe, 1997] and TEAM-

CORE [Pynadath et al., 1999] use ideas from both Joint Intentions and Shared-

Plans, and add reactive team plans which are selected or deselected by a team

or sub-team. BITE [Kaminka et al., 2004] follows in this tradition, and additionally

allows for a variety of coordination-synchronization protocols to be used interchange-

ably, in controlling physical robots.

In all of these architectures, despite all efforts, application in complex, dy-

namic settings, can sometimes lead to coordination failures among team-members,

e.g., due to sensing failures, or different interpretations of sensor readings

[Kaminka and Tambe, 1998, Dellarocas and Klein, 2000]. The function of a diag-

nosis process is to go from the detection of the coordination fault (where an alarm is

raised when a coordination fault occurs), to the fault identification, where the causes

for the coordination fault are discovered. Such failures could be a result of differ-

ences in sensor readings or interpretation, in sensor malfunctions, or communication

difficulties.

Diagnosis is an essential step beyond the detection of the failures. Mere detection

of a failure does not necessarily lead to its resolution. First, because the agents that

caused a fault are not necessarily those that detected it, and may thus be unaware of

it. Therefore, they may not be able to replan around it. Second, even if somehow an

undiagnosed (though detected) fault manages to temporarily overcome the failure—

it may still continue to occur in various forms, if its causes are not resolved, e.g., via
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negotiations [Kraus et al., 1998]. In dynamic domains, such as a RoboCup soccer

game, it may indeed be more effective (for a short while) to simply replan rather

than engage in diagnosis (if the cost of replanning is cheaper than diagnosis, and if

it is possible without knowing the causes for the coordination fault). However, even

in such settings, it often makes sense to use the diagnosis post-hoc to discover the

reasons for any failures; for instance, in conducting a post-game analysis.

1.2 Contributions

While the problem of detection has been addressed in the literature, e.g.,

[Kaminka and Tambe, 1998, Poutakidis et al., 2002, Klein and Dellarocas, 1999],

diagnosis of coordination faults remains an open issue. The contribution of this

dissertation is by formalizing social diagnosis and by providing centralized and dis-

tributed algorithms to compute diagnosis in small and large scale teams.

In this thesis we focus on diagnosis algorithms that produce a set of hypothesized

faulty agents. We do not address probabilities on the type of the faults of the agents,

nor on the type or amount of the faulty agents. For instance, we do not prefer a

diagnosis which hypothesizes a single faulty agent over a diagnosis that hypothesizes

multiple faulty agents. In addition, we do not address problems like how to repair

the faults automatically or how to recover the system. This pioneer thesis lays the

foundations to the diagnosis problem in teams of multi-agent systems.

Social diagnosis is an open challenge in several aspects. First, this problem has

not been formalized in terms of MBD. Second, most of the work done on this subject

presents centralized algorithms; however, multi-agent systems are distributed sys-

tems therefore distributed diagnosis is more appropriate. Third, unlike centralized

systems, in multi-agent systems questions like which agent makes the diagnosis, and

how it disambiguates the agent’s state, have not been addressed. A design space for

social diagnosis algorithms that tackles these questions is necessary. Our last chal-

lenge is examining social diagnosis in large-scale teams. Algorithms for small teams,

may not be appropriate for teams with a large number of agents since they can be

computationally expensive in practice, in terms of communications and run-time.

In the next sections we will describe each one of these challenges in detail.
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1.2.1 Formalizing Social Diagnosis

MBD is increasingly being applied in distributed and multi-agent systems (e.g.,

[Fröhlich et al., 1997, Roos et al., 2003a, Lamperti and Zanella, 2003]). However,

while successfully addressing key challenges, MBD has been difficult to apply on

diagnosing coordination failures [Micalizio et al., 2004]. This is because many such

failures take place at the boundaries between the agent and their environment, in-

cluding other agents. For instance, in a team, an agent may send a message that

another agent, due to a broken radio, did not receive. As a result, the two agents

come to disagree on an action to be taken. Lacking an omniscient diagnoser that

knows of the sending of the message, the receiver has no way to detect and diagnose

its fault, since the context—the message that can be fed into a model of the radio

of both agents—is unobservable to the diagnoser.

Surprisingly, it is still often possible to detect and diagnose coordination failures,

given the actions of agents, and the coordination constraints that should ideally hold

between them. In the example above, knowing that the two agents should be in

agreement as to their actions, and seeing that their actions are not in agreement, is

sufficient to (1) show that a coordination failure has occurred; and (2) to propose

several possible diagnoses for it (e.g., the first agent did not send a message, the

second agent did not receive it, etc.).

This thesis takes a first step towards addressing the open challenge of formalizing

diagnosis of coordination (inter-agent) failures in terms of model-based techniques.

We model the coordination between agents as a graph of concurrence and mutual

exclusion constraints on agents’ actions. The diagnosis process begins with an ob-

servation of the agents’ actions and inferring, by comparing the minimal number of

agents that deviate from the expected coordination (i.e., a minimal set of emphab-

normal agents) to the coordination model. We argue that this minimality criteria is

inherent to diagnosis of multi-agent systems, and that it must be treated separately

from classic criteria, such as minimality in number of failing components within the

system.

The formalization presented in Chapter 4, allows definition of both consistency-

based and abductive diagnosis problems, and points at several approaches to their

solution. While the formalization does not commit to centralized or distributed

diagnosis settings, the initial methods we provide are centralized. For consistency-

based diagnosis, we show that we can map the minimal vertex cover to the problem of

computing the coordination diagnosis. For abductive diagnosis, we take an approach
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based on satisfiability. Both of these problems are thus NP-Hard.

1.2.2 Distributed Social Diagnosis

Previous work in diagnosis of coordination failures has focused on centralized

methods for such diagnosis [Lamperti and Zanella, 2003, Micalizio et al., 2004,

Ardissono et al., 2005]. Unfortunately, centralized methods suffer from key limi-

tations: First, they can be computationally expensive in practice, in terms of com-

munications and run-time. Second, they rely on a single diagnoser, and thus risk a

single point of failure. Moreover, this assumes no communication limitations, e.g.,

range. Finally, they do not necessarily exploit the different knowledge of different

agents; e.g., an intended receiver faces difficulty detecting that a message to it was

lost, where the sender may do it more readily. Indeed, distributed methods that

have been proposed, e.g., [Roos et al., 2003b] do not address coordination failures.

In Chapter 5 we present distributed algorithms to compute abductive social diag-

nosis based on the formalism presented in Chapter 4. We show that modeling the

coordination as a constraint graph brings to bear solution methods from distributed

constraint satisfaction (DisCSP) literature, as solutions to the constraint graph form

the basis for diagnoses.

We present five distributed model-based diagnosis algorithms to compute the

diagnosis, based on DisCSP algorithms. While the reasoning behind all this is the

same as outlined above, the algorithms differ from each other with respect to their

expected run-time (based on DisCSP literature) and their completeness of the diag-

noses (based on whether they find all or a single DisCSP solution). Two of the algo-

rithms (based on synchronous backtracking) are expensive, but compute a complete

set of minimal diagnoses . One algorithm, (asynchronous backtracking) is expected

to be computationally cheaper, and guarantees computing a single diagnosis (though

not necessarily minimal). The last two algorithms (distributed stochastic search and

distributed breakout search) are local search algorithms that are not guaranteed to

find a diagnosis, but are known to be highly effective (and cheapest of the above) in

solving DisCSPs in practice [Yokoo and Hirayama, 2000, Zhang et al., 2005].

We evaluated the use of these algorithms in comprehensive experiments with a

team of physical and simulated Sony AIBO robots, experiencing systematic coor-

dination failures. We examined the computational requirements of the algorithms

(i.e., their run-time and bandwidth usage), and the correctness of the diagnoses pro-

duced. We find that in general, synchronous backtracking methods that compute
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the entire space of minimal diagnoses are naturally more expensive than others,

though they produced better diagnosis results. However, a surprising result is that

the local search algorithms (which typically outperforms asynchronous backtracking

methods in DisCSPs) show only mediocre results, both in terms of the quality of

the diagnosis, as well as in terms of computational requirements.

1.2.3 A Design Space for Social Diagnosis

Naive implementations of social diagnosis processes can require significant computa-

tion and communications, which prohibits them from being effective as the number of

agents is scaled up, or the number of failures to diagnose increases. Previous work did

not rigorously address this concern [Dellarocas and Klein, 2000, Horling et al., 1999,

Fröhlich et al., 1997, Roos et al., 2001, Roos et al., 2003b, Roos et al., 2004]. In

Chapter 7, we seek to examine in depth the communication and computation re-

quirements of social diagnosis.

To explore these phases concretely, we focus on teams of situated (behavior-

based) agents [Firby, 1987, Newell, 1990, Mataric, 1998, Tambe, 1998]. Also, we

focus on one kind of coordination faults—disagreements between teammates. The

control process of such agents and faults is relatively simple to model, and we can

therefore focus on the core communications and computational requirements of the

diagnosis.

We distinguish two phases of social diagnosis: (i) the selection of the diagnosing

agents; and (ii) the diagnosis of the team state (by the selected agents). We pro-

vide alternative algorithms for these phases, and combine them in different ways,

to present six diagnosis methods, corresponding to different design decisions. We

then examine the runtime and communication complexity and empirically evaluate

these parameters in diagnosing thousands of systematically-generated failure cases,

occurring in a team of behavior-based agents in two different complex domains.

We draw general lessons about the design of social diagnosis algorithms from the

empirical results. Specifically, the results show that centralizing the disambigua-

tion process is a key factor in dramatically improving communications efficiency,

but is not a determining factor in runtime efficiency. On the other hand, explicit

reasoning about other agents is a key factor in determining runtime: Agents that

reason explicitly about others incur significant computational costs, though they

are sometimes able to reduce the amount of communications. These results contrast

with previous work in disagreement detection, in which distributed algorithms re-
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duce communications (and to some extent, runtime) by reasoning about other agents

[Kaminka and Tambe, 1998].

1.2.4 Social Diagnosis in Large-Scale Teams

In large scale teams the problem of high communication and computation over-

head becomes much more serious, since most of the social diagnosis methods are

exponential. In addition, in large multi-agent systems it is necessary to reduce the

communication due to security, bandwidth limitations, and reliability concerns.

Unfortunately, previous works of diagnosing multi-agent systems do not ad-

dress large-scale teams, in which both communications and runtime must be tightly

managed. Some rely on fault models and exceptions (e.g., [Horling et al., 2001,

Micalizio et al., 2004]), which explode combinatorially as the number of agent rela-

tions grow. Previous work on large-scale systems did not address social diagnosis,

instead it focused on fault detection [Kaminka and Bowling, 2002], or coordination

[Durfee, 2001, Scerri et al., 2005a, Scerri et al., 2005b].

We seek to enable social diagnosis in large-scale teams of behavior-based agents.

Since we want to examine the communication and computation, we focus on teams

of situated (behavior-based) agents and on disagreement faults between teammates.

We first develop techniques which use communications earlier in the diagnosis pro-

cess (compared to the algorithms presents in Chapter 7), in an attempt to stave off

both the runtime associated with the generation of the diagnostic hypotheses, as

well as later communications. These techniques include: (i) using initial queries to

alleviate diagnostic reasoning (behavior querying); (ii) using communications in

light-weight behavior recognition to focus on relevant beliefs that may be in conflict

(shared beliefs).

These “communicate early” techniques enable a third method (grouping) in

which the diagnosed agents are divided into groups based on their selected behavior

and their role, such that all members of a group are in agreement, and at least one

disagreement fault exists between any two groups. Then, only representative agents

of each group are diagnosed, and the results are used for others in their group.

By using grouping, we limit the required communication and computation which is

done only among the representative agents, and thus make the approach applicable

to large teams.

We empirically examine these techniques in two domains through thousands of

tests, measuring the number of messages, and reasoning runtime. We find that
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behavior querying reduces both runtime and communications. However, the

shared beliefs technique does not scale well. Moreover, when combined, these

techniques do not reduce communications nor runtime. Surprisingly, however, the

grouping method (which is enabled by this disappointing combination), results in a

diagnosis process which is highly scalable in both communication and computation.

1.3 Publications

Subsets of the results that appear in this dissertation were published in the proceed-

ings of the following refereed journals, conferences and workshops:

Formal Model of Social Diagnosis:

• [Kalech and Kaminka, 2005b] Kalech, M. Kaminka, A. G., Towards Model-

Based Diagnosis of Coordination Failures, the Twenty National Conference on

Artificial Intelligence (AAAI-05), 2005. An earlier version appeared in the

Sixteenth International Workshop on Principles of Diagnosis (DX-05), 2005

Distributed Social Diagnosis:

• [Kalech and Kaminka, 2006a] Kalech, M. Kaminka, A. G. Meisels, A. Elmaliah,

Y., Diagnosis of Multi-Robot Coordination Failures Using Distributed CSP

Algorithms, The Twenty-First National Conference on Artificial Intelligence

(AAAI-06), 2006. An earlier version appeared in The 3rd Monet Workshop on

Model-Based Systems, The 17th European Conference on Artificial Intelligence

(ECAI-06), 2006

Design Space for Social Diagnosis:

• [Kalech and Kaminka, 2003] Kalech, M. Kaminka, A. G. On the Design of

Social Diagnosis Algorithms for multi-agent Teams, the Seventeenth Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco 2003

• [Kalech and Kaminka, 2006b] Kalech, M. Kaminka, On the Design of Co-

ordination Diagnosis Algorithms for Teams of Situated Agents, accepted to

Artificial Intelligence Journal (in revision), 2006
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Social Diagnosis for large-scale Teams:

• [Kalech and Kaminka, 2005b] Kalech, M. Kaminka, A. G., Diagnosing a

Team of Agents: Scaling-Up, the Fourth International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS-05), 2005 An earlier

version appeared in the Fifteenth International Workshop on Principles of Di-

agnosis (DX-04), 2004

• [Kalech and Kaminka, 2006c] Kalech, M. Kaminka, A. G., Coordination Di-

agnosis Algorithms for Teams of Situated Agents: Scaling-Up, Autonomous

Agents and multi-agent Systems (JAAMAS) (submitted), 2006

1.4 Dissertation Organization: An Overview

This dissertation is constructed of ten chapters, organized in two main parts. This

chapter constitutes the introduction to this thesis, while the next chapter surveys

the related work.

The first part I, introduces model-based diagnosis (Chapter 3) which is used

as the basis for this thesis. Then in Chapter 4 we present the formalism of social

diagnosis in terms of model-based diagnosis. Social diagnosis is formalized both

in consistency-based approach as well as an abductive approach. Based on this

formalism, in Chapter 5 we continue to develop a distributed approach for the social

diagnosis using distributed CSP algorithms. Chapter 6 brings this part to the end

by evaluating the distributed algorithms in terms of communication, run-time and

correctness.

The second part II focuses on disagreement faults in teams of situated agents.

Chapter 7 draws lessons about a design space for social diagnosis algorithms, for

such teams. Then, Chapter 8 copes with teams with a large number of agents. For

such teams the algorithms which are presented in Chapter 7 could not be scaled.

Chapter 9 evaluates the algorithms presented in Chapters 7 and 8. Chapter 10

summarizes this work and presents new directions for future work.
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Chapter 2

Related Work

The work presented in this thesis touches on different areas of related research.

These are discussed in separate sections below. Section 2.1 addresses previous in-

vestigations in diagnosis of distributed systems and multi agent systems. Sections

2.2 and 2.3 focus on related work in distributed diagnosis and diagnosis of large-

scale systems correspondingly. Section 2.4 presents several heuristic approaches to

diagnosis and Section 2.5 summarizes.

2.1 Diagnosis of Distributed and Multi-Agent

Systems

While diagnosis of a single-agent system is relatively well understood and known

to be computationally difficult [Hamscher et al., 1992], diagnosis of distributed sys-

tems and multi-agent systems remain an open area of research. Two approaches in

this area have been explored in the literature: a fault-based approach that models

the predicted faults of the system, and a model-based approach that models the

system’s normal operation. Most of the work in these approaches does not explore

the diagnosis of coordination failures.

2.1.1 Fault-Based Approach

Dellarocas and Klein [Klein and Dellarocas, 1999, Dellarocas and Klein, 2000] re-

port on a system of domain-independent exceptions handling services. A first com-

ponent contains a knowledge base of generic exceptions. A second component con-

tains a decision tree of diagnoses; the diagnosing process is done by traversing down
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the tree by asking queries about the relevant problem. A third component is re-

sponsible for seeking a solution to the exception, based on a resolution knowledge

base. This approach transfers the failure-handling responsibility from the agent to

an external system, to alleviate the load on each agent designer (which would now

be freed of the responsibility of implementing an exception-handling system in each

agent). However, in contrast to our work, communication and runtime concerns are

not addressed. In their system sentinel agents monitor the agents in the multi-agent

system and proactively query agents about their status. They do not mention the

monitoring method and when a querying is necessary, but both of those actions have

a large impact on communication and computation complexity.

Similarly, Horling et al. [Horling et al., 1999] uses a fault-model of failures and

diagnoses to detect and respond to multi-agent failures. In this model a set of pre-

defined diagnoses are stored in acyclic graph’s nodes. When a fault is detected a

suitable node is triggered and according to the fault characters the node activates

other nodes along the graph. The advantage of Horling’s fault-model system over

Dellarocas and Klein’s system is the use of a learning algorithm that can be employed

to maintain structure as time passes. As with Dellarocas and Klein, Horling’s work

does not explicitly address communication complexity.

Based on the discrete-event system approach [Sampath et al., 1995,

Sampath et al., 1996], Pencolé et al. [Pencolé et al., 2002] and Lamperti and

Zanella [Lamperti and Zanella, 2003] that uses a fault-model approach, where the

distributed system is modeled as a discrete event system, and the faults are modeled

in advance. The diagnoser infers unobservable faulty events by computing possible

paths in the discrete event system that match observable events. A common theme

in all of these is that they require pre-enumeration of faulty interactions among

system entities. However, in multi-agent systems, these are not necessarily known in

advance since they depend on the specific run-time conditions of the environment,

and the actions taken by the agents.

2.1.2 Consistency-Based Approach

Fröhlich et al. [Fröhlich et al., 1997] and Letia and Netin [Letia and Netin, 1999,

Letia et al., 2000] suggest dividing a spatially distributed system into regions, each

under the responsibility of a diagnosing agent. If the fault depends on two

regions the agents that are responsible for those regions cooperate in making

the diagnosis. This method is inappropriate for dynamic team settings, where
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agents cannot pre-select their communication partners. Similarly, Roos et al.

[Roos et al., 2002, Roos et al., 2003b, Roos et al., 2004] analyze a model-based di-

agnosis method for spatially distributed knowledge. But, their method assumes

that there are no conflicts between the knowledge of the different agents, i.e., that

no coordination failure occurs.

Roos et al. [Roos et al., 2001] address semantically distributed systems, where

the knowledge is distributed among the agents. Each agent is an expert in a certain

problem domain. In this system, if each agent makes diagnosis separately the diagno-

sis will be incomplete since the dependencies between the agents are not diagnosed.

Roos et al. suggest to maintain the dependencies between the agents. Each agent

will diagnose its own domain and the related dependencies of its domain. The com-

munication links are fixed, such that each failure is diagnosed strictly by the agents

that are associated with its communication link. Biteus et al. [Biteus et al., 2006]

expand this approach to compute even minimal cardinality diagnosis.

Roos et al., Fröhlich at al. and Biteus at al. assume that each diagnoser agent

knows the context of its sub-system and so it may make the diagnosis. However, the

interactions among system entities, in multi-agent teams, are not known in advance

since they depend on the specific conditions of the environment in runtime and the

appropriate actions assigned by the agents [Micalizio et al., 2004]. We can solve

this problem by keeping all the possible interactions between the agents, however,

as Roos et al. point out this may cause a large communication complexity, especially

in a large system, since the number of candidate diagnoses is exponential (in the

number of dependencies).

2.1.3 Modeling as Constraint Satisfaction Problem

Only a few researchers use CSP methods to practically diagnose a system. Wotawa

[Wotawa, 2004] makes use of the corresponding representation of the environmental

models as constraint satisfaction problems. He shows how this representation can

be used directly to derive explanations and diagnoses. For this goal, he models the

system using the cause-effect model, such that different solutions for the CSP are

actually different explanations for the system, and the diagnoses are derived from

them.

Sachenbacher and Williams [Sachenbacher and Williams, 2004] extend this

model to cope with constraint optimization problems over lattices, and with

semiring-CSPs. Here again, a satisfaction of constraints signifies an explanation
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to a fault.

In contrast to both works, we use constraints to model the ideal coordination

relationships. Thus the diagnosis algorithm goal is to diagnose the violated con-

straints.

2.2 Distributed Diagnosis

Micalizio et al. [Micalizio et al., 2004] combine a discrete-event system approach and

a causal model approach to detect and diagnose failures in multi-robot system. Once

a failed action is detected in the discrete-event system, the diagnoser continues to

diagnose the reason for the failure by finding the causes for the failure in a database

of diagnosis rules. Although their model is of a distributed multi-robot system, a

centralized diagnoser makes the diagnosis. In contrast to this, we present a diagnosis

computation in a distributed fashion.

Ardissono et al. [Ardissono et al., 2005] divide the system into sub-systems

where every agent is responsible for its own sub-system. Instead of letting the agents

compute the global diagnosis by exchanging information, the agents send only nec-

essary information to a central diagnostic service by request. A central diagnoser

may be able to solve coordination failures (although they did not mention it in their

paper). In contrast, some of the methods we report on here are distributed, and

thus avoid the shortcomings of centralized methods.

Provan [Provan, 2002] proposes a diagnosis for distributed systems where every

sub-system computes a local diagnosis. Then by using communication the sub-

systems compute a global diagnosis. This approach is based on a structure-based

diagnosis framework of Darwiche [Darwiche, 1998], where each sub-system is mod-

eled as a component in a decomposition graph and the edges between the components

represent the relations between the components. One drawback of this approach is

that we must be able to model the distributed system in a decomposition hierarchy

graph. This is impossible in multi-agent system since the interactions among system

entities are not known in advance since they depend on the specific conditions of

the environment in runtime and the appropriate actions assigned by the agents.

Recently Daigle at al. [Daigle et al., 2006] presented a distributed diagnosis ap-

proach of coupled mobile robots. They modeled the robots with a qualitative tem-

poral causal graph, where each robot is followed by a local diagnoser. Once the

diagnoser detects a residual between the model and the actual values, it builds a set
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of local measurements to isolate the fault. By cooperation the diagnosers compute

the minimal set of joint measurements. In this work the authors did not address min-

imal communication and computation in finding the joint measurements. Also, they

did not mention a team of more than two agents, where the challenge of minimizing

communication and computation becomes more relevant.

2.3 Large-Scale Teams

Some works address diagnosing a team of agents, but none of them consider the

problem of large-scale teams. For instance, Fröhlich et al. [Fröhlich et al., 1997]

and Roos et al. [Roos et al., 2002, Roos et al., 2003b, Roos et al., 2004] (described

in section 2.1) assume the communication links are fixed, such that each failure is

diagnosed strictly by the agents that are associated with its communication link.

In contrast to this assumption; however, in teams the interactions among system

entities are not necessarily known in advance since they depend on the specific

conditions of the environment at runtime, and the appropriate actions assigned by

the agents [Micalizio et al., 2004]. It is impossible to address this by keeping all

the possible interactions between the agents since it may increase communication

complexity, especially in large systems, since the number of candidate diagnoses is

exponential (in the number of dependencies).

A number of previous works address scalability in multi-agent systems, but do

not consider diagnosis. The most related area of work deals with failure detec-

tion, rather than diagnosis. Kaminka and Bowling [Kaminka and Bowling, 2002]

and later Kaminka [Kaminka and Frenkel, 2005, Kaminka, 2006] addresses large-

scale teams, and their detection capabilities can complement ours by triggering the

diagnosis methods we present once a failure has been detected. They show that only

specific key agents in a team must be monitored to detect failures, similarly to our

use of representative agents for diagnosis (in the grouping method in section 8.3).

Scerri et al. [Scerri et al., 2005a, Scerri et al., 2005b] address tasks of team coor-

dination among the members of large teams. Specifically, they developed algorithms

meeting the requirements of large teams for planning, sharing information and task

allocation—but not diagnosis. They achieve the scalability by organizing all mem-

bers into an associated network, which is similarly the using of grouping in social

diagnosis. The associated network is performed at the initialization and remains

static during the execution.
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Durfee [Durfee, 2001] discusses heuristic methods for reducing the knowledge

that agents use in coordination. The methods are based on hierarchies and abstrac-

tions which depend on the task environments and collective behavior of the team. As

the former work to this work also addresses large-scale teams but does not consider

the diagnosis problem.

2.4 Diagnosis by Heuristical Approaches

A closely-related work to ours is reported by Kaminka and Tambe

[Kaminka and Tambe, 1998, Kaminka and Tambe, 2000]. This previous inves-

tigation provides guarantees on detection of disagreements, but only presents

a heuristic approach to diagnosis, which indeed does not always succeed. The

algorithms we present here succeed in the same examples where the previous

heuristic approach fails.

Brodie et al. [Brodie et al., 2001, Brodie et al., 2002] tries to minimize commu-

nication costs in computer networks. They use probes which are sent through the

network in order to query remote nodes. By combining the results of different probes,

failing nodes can be identified and isolated. Thus Brodie et al.’s work essentially

determines the liveliness status of agents, while our work focuses on fine-grain diag-

nosis of causes for disagreements, in terms of contradictory beliefs held by different

agents.

Parker [Parker, 1998] reports on a behavior-based architecture which is very ro-

bust and is able to recover from failures by having robots take over tasks from failing

teammates. This is done using continuous communications, but without an explicit

diagnosis process such as those described in this dissertation.

2.5 Summary

To summarize, while in distributed systems every sub-system is controlled separately

considering the pre-defined dependencies with the other sub-systems, in multi-

agent systems, the dependencies are not necessarily known in advance since they

depend on the specific conditions of the environment in runtime. In addition, the

agent-based approach of diagnosing distributed systems, assumes that the diagnosing

agents are external to the system, and so they know the input and output of the

system—the basis for making a diagnosis. However, in multi-agent system the agents
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are part of the system, and so the input and output are subjective by the point of

view of each diagnosing agent. Therefore, the diagnoser must take it into account

while computing the diagnosis.

While most of the literature of diagnosing distributed systems and multi-agent

systems does not address the problem of coordination failures, in this dissertation we

address the following challenges, which have not been addressed in previous work:

1. Allowing model-based diagnosis of coordination failures.

2. Centralized and distributed diagnosis methods.

3. The exploration of a design space for coordination diagnosis algorithms.

4. Coordination failure diagnosis in teams with many agents.
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Part I

Model-Based Social Diagnosis
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Coordination among teammates (e.g., on a joint plan or goal) is a

key factor/component to establishment and maintenance of teamwork

[Cohen and Levesque, 1991, Jennings, 1995, Grosz and Kraus, 1996, Tambe, 1997].

For instance, in RoboCup the players must coordinate the attack and the de-

fense ([Matsubara et al., 1998]). In disaster rescue, where teams composed of

agents assisted response vehicles, robots and people may enable more rapid

crisis response ([Tambe et al., 2005]). Moreover, in an attack squadron the

scouts must be in coordination with the attackers (e.g. in the ModSAF domain

[Kaminka and Tambe, 1998]). Unfortunately, coordination may fail due to sensing

failures, different interpretations of sensor readings or intermittent communication

failures, etc. In this part we address failures in coordination and propose diagnosis

methods to detect and isolate such failures.

The idea of diagnosis is to go from fault detection (where an alarm is raised

when a fault occurs), to fault identification, where the causes for the fault are dis-

covered. In diagnosis of coordination failures we go a step beyond the detection of

the fault [Kaminka and Tambe, 2000] to isolate the faulty agents and specifically

identify the faulty sensors that caused the failure. Once the failures are known, then

the agents can be negotiated and argued about, to resolve the coordination failures

e.g., [Kraus et al., 1998]. Diagnosis is a necessary process since detecting a failure

does not always lead to a solution since it is possible that the failed agents do not

know that they caused the failure. Also, in case that the failure is in a sensor, we

may want to fix it before continuing the original plan in order to prevent the same

failure in the future.

To illustrate, assume a group of robotic space explorers, whose goal is to slowly

creep on a newly-discovered alien. To capture the alien, they must approach it from

all sides in alternating steps: A bit from the left, then from the right, then again from

the left, etc (Figure 2.1). To do this in a coordinated manner, the robots divide into

sub-teams of three that spread around the alien, each with a sub-team leader (Ci)

and two followers (Di), that move in formation using cameras to maintain distances

and angles. A mission commander (B) directs the sub-team leaders, alternating

commands for them to go and stop, as needed.

The robots must coordinate all throughout their mission. The sub-team leaders

are coordinated with each other via the mission commanders’ commands; and each

sub-team’s leader is coordinated with its followers using vision. Once a coordination

failure is detected, the mission must be suspended, in order to diagnose the failing
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Figure 2.1: Example: Robotic space explorers tackling an alien.

robots and then reestablish collaboration.

A coordination failure could happen due to intermittent communication failures

(between the mission commander and sub-team leaders) or due to a vision failure

(a sub-team leader and its followers). Multiple failures could happen at the same

time, for instance, assume the commander sent a message to the leader of the left

sub-team to go and concurrently to the leader of the right sub-team to stop. Both of

them did not receive the message due to communication failure. Concurrently the

followers of the leader of the left sub-team stopped since, due to a failure in their

vision, they thought that their leader stopped. The goal of the diagnosis process is

to find the space of the possibilities over which the agents failed.

This part formalizes the coordination diagnosis process as a model-based diagno-

sis method. It is organized as follows: Chapter 3 is an introduction to model-based

diagnosis. In this chapter we introduce the notions of consistency-based diagnosis

as well as abductive diagnosis. Chapter 4 formalizes the coordination diagnosis in

terms of consistency-based and abductive diagnoses. Chapter 5 focuses on abduc-

tive diagnosis by presenting distributed methods to compute the diagnosis based

on distributed constraint satisfaction problem algorithms. Chapter 6 presents the

experiments for the coordination diagnosis algorithms and provides a discussion to

summarize the advantages and disadvantages of the different methods.
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Chapter 3

Introduction to Model-Based

Diagnosis

Model-based diagnosis (MBD) is an area of Artificial Intelligence which tackles the

problem of identifying faulty components in a system by observation. As the basis

of this approach, we distinguish between the actual system and the model of the

system. The model describes either how the system is supposed to behave (what is

the correct behavior), or the relationship between faults and symptoms (what is the

faulty behavior), or possibly both. The diagnoser observes the actual behavior of the

system and predicts its behavior by the model. Discrepancies between the observa-

tion and the prediction—symptoms—are used as the input for diagnosis algorithms

which produce a set of possible faults that can have explain such symptoms.

Many of the early works [de Kleer and Sussman, 1980, Davis, 1984] start from

the assumption that the model of the system contain information about the correct

behavior solely. The task of diagnosis then is to identify which components of the

system are faulty, in the sense that their normal behavior is inconsistent with the

observations. This approach, known as consistency-based diagnosis, was formalized

by Reiter [Reiter, 1987].

Other researchers [Peng and Reggia, 1990] adopt a different approach which in-

volve describing objective knowledge about the causal relationships between faults

and symptoms [Bylander, 1990]. They thus exploited the causal model of a sys-

tem, containing explicit information about which faults can occur. This approach

is known as abductive diagnosis [Cox and Pietrzykowski, 1987]. In the following

sections we will outline the these approaches, which are the basis of the work

we present in this thesis; for an in depth account of these and other works, see
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[Hamscher et al., 1992].

3.1 Consistency-Based Diagnosis

In consistency-based approach we model the correct behavior of the systems, then

find the discrepancies given a context. Let us formalize the notion of consistency-

based diagnosis using Reiter’s formalism [Reiter, 1987]. In order to define the di-

agnostic problem we introduce some notions. SD is a description of the system

behavior in firstorder logic. It can be divided in two parts: the components descrip-

tion, which states the behavior of the individual components (usually expressing

some relations between their input and output variables), and the system structure,

which states how the components are connected together (usually equating an out-

put of a component with an input of another one). COMPS is a set of components;

in particular each component is associated with a constant c (the component name),

where ab(c) is an unary predicate which is true when component c is faulty. Thus

the description of a component’s behavior is always conditioned by the premise that

the component must not be behaving abnormally. If a component c is behaving

abnormally (that is, if ab(c) holds) then we can say nothing about how it behaves.

OBS is the set of observations that have been made on the system, represented by

first-order sentences.

A diagnosis is necessary, when the observations are not consistent with the as-

sumption that the whole system is behaving correctly.

Definition 3.1.1. Diagnosis Problem. Given {SD, COMPS, OBS} the diagnosis

problem (DP) arises when

SD ∪ {¬AB(COMPSi)|COMPSi ∈ COMPS} ∪OBS ` ⊥

At this point it comes natural to define a diagnosis as follows:

Definition 3.1.2. A consistency-based diagnosis is a minimal set ∆ ⊆ COMPS
such that:

SD
⋃
{AB(COMPSi)|COMPSi ∈ ∆}

⋃
{¬AB(COMPSi)|COMPSi ∈ COMPS −∆}

⋃
OBS 0 ⊥

Diagnosis ∆ is a set of components, which when considered abnormal, cause the

system description with the other components and the observation to be consistent.

If asserting abnormality for some components restores consistency, then we can

conclude that those components were responsible for the original inconsistency. We

are interested in minimal diagnosis, meaning, no proper subset of it is a diagnosis.
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3.2 Abductive Diagnosis

Diagnosis can be characterized as a process of generating explanations for a set

of observations in a given context. In consistency-based a diagnosis explains an

observation if it does not contradict it. On the other hand, in abductive diagnosis

the explanation notion is stronger. A diagnosis explains an observation if it directly

supports it [Console and Torasso, 1991].

Reasoning by abduction is the process of inferring the causes from their effects.

The abduction rule is used in common sense reasoning, nevertheless it is not logically

correct, since it is true that if B holds then it may have been caused by A, but it

is also true that B may hold independently from A. Abductive reasoning is typical

in medical diagnosis, where one tries to infer the causes of the symptoms from

the symptoms themselves, and from “rules” stating the cause effect relationships

between diseases and their manifestations.

In model-based diagnosis such kind of knowledge can be represented in a causal

model of the system to diagnose. In first-order logic a causal model is described by

implicational rules. Some predicates represent faults that can occur in the system

and are thus declared to be abducible. They are the causes by which we want to

explain the symptoms [Luca console, 1990, Console et al., 1991].

Based on the formalism presented in consistency based approach, in abductive

diagnosis normal behaviors as well as the faulty behaviors must be represented by

the description of the system SD. The diagnosis must explain the specific faulty

behaviors. An abductive diagnosis is a minimal set of assignments of the behavior

modes to the components (normal and faulty), that is both consistent with the

system description and the observation.

Formally, in addition to the based condition of consistency based diagnosis

(SD
⋃

∆
⋃

OBS 0 ⊥), we must add one more condition that the the diagnosis

must entail the observation [Console et al., 1989]:

Definition 3.2.1. An abductive diagnosis is a minimal set ∆ such that:

SD
⋃

∆
⋃

OBS 0 ⊥

SD
⋃

∆ |= OBS

This diagnosis is stronger than the consistency-based diagnosis, and supplies

more information on the faulty modes of the system. The price is that the fault

modes must be defined apriori. This requirement is not satisfied in many systems
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and so abductive diagnosis in such systems cannot be complete (i.e. will not generate

all explanations).
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Chapter 4

Social Diagnosis Formalism

In the previous chapter we presented two approaches for model-based diagno-

sis the consistency-based approach and abductive approach. Implementing these

approaches in social diagnosis is not an easy task, since while in a single sys-

tem the context and the observation are known to the diagnoser, in multi-

agent system this assumption is not always correct. This is because many fail-

ures take place at the boundaries between the agent and their environment, in-

cluding other agents. In addition, many diagnosis methods for distributed sys-

tems [Pencolé et al., 2002, Lamperti and Zanella, 2003] and multi-agent systems

[Fröhlich et al., 1997, Roos and Witteveen, 2005], distinguish between the starting

points of the inputs (context) and the ending points of the outputs (observations).

Then the diagnosis problem is to find a set of abnormal components that explain

the observations given the context. However, in social diagnosis the observations

depend on the the expected coordination between the agents and not on a given

context.

Surprisingly, it is still often possible to detect and diagnose coordination fail-

ures, given the actions of agents (observations), and the coordination constraints

that should ideally hold between them. In this sense, the diagnosis problem is to

find a minimal set of abnormal agents which explain the observations given the

coordination constraints between them.

We adopt a model-based diagnosis approach to diagnose the agents and the

coordination failures. In model-based diagnosis of a single agent, the diagnoser

uses a model of the agent to generate expectations which are compared to the

observations, in order to form diagnoses [Davis and Hamscher, 1988, Reiter, 1987,

de Kleer and Williams, 1987]. In model-based multi-agents diagnosis, the diagnoser

models the coordination between the agents. The goal of the diagnosis is to diagnose

25



the failures in the coordination by detecting deviation of the observation from the

model’s predictions.

The chapter is organized as follows: Section 4.1 formalizes the model of a single

agent and the model of a team coordination. Section 4.2 presents the coordination as

constraints between the agents. Based on this formalism we define the coordination

diagnosis problem. Section 4.3 defines the diagnosis by consistency based approach

and Section 4.4 defines it by abductive based approach.

4.1 Coordinated multi-agent Systems

In order to base our model on MBD, we will present a model of a single agent and

a model of the coordination between the agents.

4.1.1 The Agent Model

An agent is an entity that perceives its environment through sensors and takes ac-

tions upon its environment using actuators. Obviously, there are many different

possible models that can be used to describe agents. Our focus is on the coordi-

nation of multiple agents through their actuators and their sensors, and thus we

will use a simplified model, of completely reactive agents, composed only of sensor

and actuator components. The connections between the sensors and actuators are

described logically.

Definition 4.1.1. An agent is a pair 〈CMP, CON〉 of components CMP , and

connections CON . CMP is a pair 〈SEN, ACT 〉 where SEN is a set of boolean

variables representing the sensors and ACT is a set of boolean variables representing

the actions. CON is a set of logical consequence statements, where the literals of

SEN are on the left side of consequences, and the literals of ACT are on the right

side.

At any time, the agent may sense through a number of sensors, but may only

select one action. Thus multiple literals in SEN may be true, but at any time exactly

one literal of ACT must be true. To enforce this, we apply a completeness formula

(i.e. ACT1 ∨ . . . ∨ ACT|ACT |) and a set of mutual-exclusion formulas ∀i, j¬(ACTi ∧
ACTj).

Example 4.1.1. Following the example presented in the introduction to this part,

suppose we model a sub-team leader robot who approaches to the alien. The robot has
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two sensor components, one is a radio sensor with two message values {go, found}
and the other is a camera sensor which indicates if the wounded is found. The

actions of the robot {GO,WAIT} are selected based on the sensor readings: Once

the robot receives a go message from the commander it selects the action GO. It

will switch to the action WAIT upon capture the alien (via its camera), or upon

receiving a message that it was captured (by someone else).

We represent this agent as follows:

SEN = {SENradio go, SENradio found, SENcamera found}
ACT = {GO, WAIT}
CON = {SENradio go ∧ ¬SENcamera found ⇒ GO,

SENradio found ∨ SENcamera found ⇒ WAIT}

In addition we should verify that only one action is selected by the agent, using

the following completeness and mutual-exclusion axioms:

WAIT ∨GO

¬(WAIT ∧GO)

4.1.2 A Model of Coordination

The multi-agent systems of interest to us are composed of several agents, which (by

design) are to satisfy certain coordination constraints. We call this type of system a

team, to distinguish it from general multi-agent systems in which it is possible that

no coordination constraints exist.

Definition 4.1.2. A team T is a set of agents. T = {A1...An} where Ai is an

agent. Given a team T , AS represents the set of the action literals of the agents.

Formally, let ACTi be the set of actions of agent Ai then AS =
⋃n

i=1 ACTi, where

ASij represents the j’th boolean action variable of agent Ai. As a shorthand, we

use ASi to denote the boolean action literal of agent Ai whose value is true. We call

ASi the active selection of agent Ai.

The actions of agents in a team are coordinated. We utilize two coordina-

tion primitives—concurrence and mutual exclusion—to define the coordination con-

straints. Concurrence states that two specific actions must be taken jointly, at the

same time. Mutual exclusion states the opposite, i.e., that two specific actions may

not be taken at the same time.
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Definition 4.1.3. A concurrence coordination (CCRN) constraint between two ac-

tions of different agents mandates that the two actions must be true concurrently.

Logically, we represent this constraint in a DNF (disjunctive normal form). For two

actions ASix and ASjy (action x of agent Ai and action y of agent Aj) as follows:

CCRN(ASix, ASjy) ⇒ (ASix ∧ ASjy) ∨ (¬ASix ∧ ¬ASjy)

Definition 4.1.4. A mutual exclusion coordination MUEX constraint between two

actions of different agents mandates that they cannot be true concurrently. Logically,

for two actions ASix and ASjy (action x of agent Ai and action y of agent Aj) as

follows

MUEX(ASix, ASjy) ⇒ (ASix ∧ ¬ASjy) ∨
(¬ASix ∧ ASjy) ∨
(¬ASix ∧ ¬ASjy)

Once we defined the coordination types, we can model the coordination between

the agents formally with a set of coordination constraints, defining a graph:

Definition 4.1.5. A coordination graph for a team T is an undirected graph

CG = {V, E}, where the vertices set V represents the boolean variables of the actions

of the agents, and the set of edges E is the set of coordination constraints between

the actions. We use CGm to refer to the m’th constraint within E. CG(ASix, ASjy)

denotes the constraint relating ASix and ASjy. CGm is considered true if the con-

straint holds and false otherwise.

Example 4.1.2. Figure 4.1 presents a coordination graph. The concurrence con-

straints are represented by solid lines, and the mutual exclusion constraints are rep-

resented by dashed lines. Following the example presented in the introduction to this

part, assume a team of four agents {B, C1, D1, D2}. B is the commander robot, C1

is the leader of the sub-team {C1, D1, D2} (as described in Example 4.1.1) and D1

and D2 are the followers.

The commander robot has two command actions {GO, STOP} to direct the sub-

team leader. There are concurrence coordination constraints between the commands

of the commander and the actions taken by the sub-team leader. The followers have
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vision sensors which enable them to follow the leader by two actions {FOLLOW,

FREE}. Once the sub-team leader goes they should follow it. We take care of the

following coordination by concurrence coordination constraint between the commands

of the commander and the actions of the sub-team leader. In addition a mutual

exclusion coordination constraint is defined to prevent the followers from continuing

to freely move after the sub-team leader stops. In this example, we could easily change

this mutual exclusion coordination with a concurrence coordination by replacing the

{FREE} action to {STOP} action. Then we could define the coordination between

the {STOP} action of the whole team as a concurrence coordination. However, in

general, where the followers have more than only two actions, it may be not possible

to reduce mutual-exclusion to a series of concurrence between pairs of other actions.

V = {ASBSTOP
, ASBGO

, ASC1STOP
, ASC1GO

,

ASD1FOLLOW
, ASD1FREE

, ASD2FOLLOW
, ASD2FREE

}
E = {CCRN(ASBGO

, ASC1GO
),

CCRN(ASBSTOP
, ASC1STOP

),

CCRN(ASC1GO
, ASD1FOLLOW

),

CCRN(ASC1GO
, ASD2FOLLOW

),

MUEX(ASC1STOP
, ASD1FREE

),

MUEX(ASC1STOP
, ASD2FREE

),

Given a coordination graph CG and a team T , we can define a multi-agent

system description as a set of implications from the normality of the agents to the

satisfaction of the coordination constraints. This is the final piece in formalizing a

normally-functioning multi-agent system.

Definition 4.1.6. A multi agent system description (MASD) is a set of implications

from the normality of agents in a team T to CG. The meaning of the predicate AB(.)

is that the corresponding agent is considered abnormal (failing).

MASD = {¬AB(Ai) ∧ ¬AB(Aj) ⇒ CG(ASix, ASjy)

|CG(ASix, ASjy) ∈ CG ∧ Ai, Aj ∈ T}

29



 

FOLLOW 

FREE 

FOLLOW 

FREE 

D1 D2 

B 

GO STOP 

GO STOP 

C1 

Figure 4.1: The coordination graph for team {B, C1, D1, D2}.

This definition enforces the dependency between the perfection, or in terms of

model-based diagnosis, the normality of the agents and the correctness of the co-

ordination among the team. For instance, if the commander and the leader of the

sub-team are undamaged, then the coordination between them is expected to be

correct. In other words, the concurrence constraints between their actions are cor-

rect.

4.2 Diagnosis of Coordination Faults

A fault in the coordination of a multi-agent system may be the result of a fault in one

of the sensors or other agent components 1 Given a MASD and a set of normality

assumptions, it is possible to infer that a fault exists (and to generate hypotheses as

to its identity), by checking whether the observed actions of the agents satisfy the

MASD.

Let us formalize the coordination diagnosis in terms of model based diagnosis:

Definition 4.2.1. Coordination Diagnosis Problem. Given {T, MASD,AS} where

T is a team of agents {A1...An}, MASD is a multi agent system description defined

over T (Definition 4.1.6), and AS is the set of the actions of the agents (Definition

4.1.2), then the coordination diagnosis problem (CDP) arises when

1It may also be the result of a fault in the environment, e.g., when a message is lost in transit.

This is treated as a fault in the receiver.
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MASD ∪ {¬AB(Ai)|Ai ∈ T} ∪ AS ` ⊥
We use the following example to illustrate.

Example 4.2.1. Suppose we are given the following MASD, T , and AS (only the

true literals in AS are shown):

T = {A1, A2, A3, A4, A5, A6}
MASD = {¬AB(A1) ∧ ¬AB(A4) ⇒ MUEX(AS11, AS41),

¬AB(A1) ∧ ¬AB(A2) ⇒ CCRN(AS12, AS21),

¬AB(A1) ∧ ¬AB(A6) ⇒ CCRN(AS12, AS61),

¬AB(A2) ∧ ¬AB(A3) ⇒ CCRN(AS22, AS31),

¬AB(A2) ∧ ¬AB(A5) ⇒ CCRN(AS22, AS51),

¬AB(A2) ∧ ¬AB(A6) ⇒ CCRN(AS21, AS61),

¬AB(A3) ∧ ¬AB(A4) ⇒ MUEX(AS32, AS42),

¬AB(A3) ∧ ¬AB(A5) ⇒ CCRN(AS31, AS51)}
AS = {AS11, AS21, AS31, AS41, AS51, AS61}

Figure 4.2 shows the coordination graph for this CDP (gray vertexes represent

the active selection of the agents). Assuming all the agents are not abnormal, the

actions of the agents are not consistent with the coordination graph. For instance,

the actions AS11 = true and AS41 = true causes an inconsistency in CG1, as it

produces a false value of MUEX(AS11, AS41), though, MUEX(AS11, AS41) should

be true, given the normality assumptions ¬AB(A1),¬AB(A4). On the other hand, if

the actions AS12, AS21, AS32, AS41, AS52, AS61 were true (implying that the other

actions were false), they would have been consistent with the coordination graph.

Given a CDP , the goal of the coordination diagnosis process is to determine a

minimal set of abnormal agents whose selection and subsequent setting of the AB(.)

clause would eliminate the inconsistency (consistency-based diagnosis, Section 4.3),

or explain it (abductive diagnosis, Section 4.4). A coordination diagnosis (a set of

abnormal agents) is minimal, iff no proper subset of it is a coordination diagnosis.

Once the set of such abnormal agents is found, the diagnoser infers the abnormal

components (in our case, sensors) within the abnormal agents. This is done us-

ing straightforward back-chaining through the set CON (definition 4.1.1) of logical

consequence statements connecting sensors to actions.
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Figure 4.2: The coordination graph and active selection (gray vertexes) of the team

T = {A1, A2, A3, A4, A5, A6}.

4.3 Consistency-Based Coordination Diagnosis

We begin by defining consistency-based coordination diagnosis.

Definition 4.3.1. A consistency-based global coordination diagnosis (CGCD) is a

minimal set ∆ ⊆ T such that:

MASD
⋃
{AB(Ai)|Ai ∈ ∆}

⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS 0 ⊥

The first step in this process to determine which agents are in conflict:

Definition 4.3.2. Two agents a and b are called conflict pair 〈a, b〉, if there exist a

constraint CGi that relates a and b and whose value is false.

∀a, b ∈ T, ∃i, j, k s.t.¬CGi(ASaj, ASbk) ⇒ 〈a, b〉

Definition 4.3.3. A local conflict set is a set of all conflict pairs in the system, and

is denoted by LC.
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Example 4.3.1. LC in the graph of example 4.2.1 is: LC = {〈A1, A4〉, 〈A1, A2〉,
〈A1, A6〉, 〈A2, A3〉, 〈A2, A5〉}, since the coordination constraints between the actions

of these agent pairs were violated.

The local conflict set forms the basis for the CGCD, because for each conflict

pair, at least one of the agents is abnormal. However, CGCD is not a simple

combination of all agents in the LC pairs, as arbitrary selection of agents may lead

to diagnosis sets that are themselves inconsistent. For instance, treating each pair

in the computed LC in Example 4.3.1 by itself, produces the following subset of

possible diagnoses:

〈A1, A2〉 ⇒ {AB(A1),¬AB(A2)}
〈A1, A2〉 ⇒ {¬AB(A1), AB(A2)}
〈A1, A4〉 ⇒ {AB(A1),¬AB(A4)}
〈A1, A4〉 ⇒ {¬AB(A1), AB(A4)}

It is easy to see that combining these diagnoses may produce inconsistency. For

instance, combining the first and last implications would produce the set {AB(A1),

¬AB(A2), ¬AB(A1), AB(A4)}, which contains both AB(A2) and ¬AB(A2).

Therefore, we cannot diagnose every conflict pair by itself and then combine the

results. Rather, we should compute the diagnoses sets ∆ considering the dependen-

cies between the conflict pairs. To do this, we should look for the abnormal agent(s)

in every conflict pair.

We achieve this goal by generating a hitting-set of agents, selecting at least one

agent as abnormal from every conflict pair, such that the resulting agents cover

between them all conflict pairs. We want to maintain a minimal number of such

agents. This is somewhat similar to Reiter’s HS-Tree [Reiter, 1987], or de Kleer

and Williams’ technique [de Kleer and Williams, 1987]. It is also related to minimal

model techniques used in non-monotonic reasoning [Olivetti, 1992, Niemelä, 1996].

We achieve this goal by transforming the conflict set into a graph, and finding

the vertex cover for this graph. Let us define a conflict graph:

Definition 4.3.4. A conflict graph CONG = {V ′, E ′} is a graph generated by the

conflict pairs where E ′ is a set of the conflict pairs and V ′ is a set of the agents

involved in the conflict pairs.
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In order to compute the diagnosis we run an algorithm to find a minimal vertex

cover—a set of vertices that involve all edges. A vertex cover set is guaranteed to

be a diagnosis since all the edges, namely the conflict pairs, are covered by this set,

namely by a set of abnormal agents. We are looking for all the possible minimal

vertex cover sets, since the diagnosis contains all the possibilities of abnormal agents.

Minimal vertex covers guarantee minimal diagnosis, since a vertex cover is minimal

only if no proper subset of it is a vertex cover.

Algorithm CONSISTENCY_BASED_COORDINATION_DIAGNOSIS (Algorithm 1) sum-

marizes the process of computing the coordination diagnosis in a consistency based

approach. In line 1 we initialize ∆ — a set of all diagnosis sets. Then in lines 2–4

we go over the constraints (edges) in the coordination graph (definition 4.1.5) and

check for each one of them if it produces a conflict (definition 4.3.2). In case of a

conflict, the conflict pair is added to a local conflict set (definition 4.3.3). Once all

the conflict pairs where found, we build in line 5 a conflict graph (definition 4.3.4)

and then compute the vertex cover sets in all sizes (lines 6–7). A vertex cover set

is added to ∆ as a new diagnosis if it is not a superset of an existing diagnosis. If

the vertex cover set is a subset of an existing diagnosis then it replaces the diagnosis

since it is minimal (lines 8–14).

Algorithm 1 CONSISTENCY BASED COORDINATION DIAGNOSIS

(input: coordination graph CG

output: diagnoses set ∆)
1: ∆ ← ∅
2: for all CGi ∈ CG do

3: if ∃j, k s.t.¬CGi(ASaj , ASbk) ⇒ 〈a, b〉 then

4: LC ← LC ∪ {〈a, b〉}
5: build CONG from LC

6: for all m where m = {1...|V ′| ∈ CONG} do

7: for all vertex cover vc in size m do

8: if vc ⊂ ∆x ∈ ∆ then

9: remove ∆x from ∆

10: ∆ ← ∆ ∪ {vc}
11: if vc ⊇ ∆x ∈ ∆ then

12: continue

13: else

14: ∆ ← ∆ ∪ {vc}
15: return ∆
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Example 4.3.2. Figure 4.3 presents the graph of the conflict pairs that were com-

puted in example 4.3.1. The vertex cover set of size one is empty, for size two it

is V C1 = {A1, A2}, and there are two sets of size three: V C2 = {A1, A3, A5} and

V C3 = {A2, A4, A6} (there are more vertex cover sets which are superset of V C1),

it is unnecessary to continue to check the vertex cover in size four and more since

every such vertex cover will be a superset of the formers. By building the vertex cover

sets we obtain the global coordination diagnosis, ∆1 = {A1, A2}, ∆2 = {A1, A3, A5},
∆3 = {A2, A4, A6}}.
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Figure 4.3: A graph of the conflict pairs in example 4.3.1.

Let us prove the correctness of computing the diagnosis by vertex cover.

Theorem 1: the set of vertex cover over conflict graph CONG (definition 4.3.4)

is a complete set of consistency-based global coordination diagnoses CGCD (defini-

tion 4.3.1).

Proof: By contradiction. Assume for contradiction that a consistency-based

global coordination diagnosis ∆x is not a vertex cover over CONG. According to

definition 4.3.1, ∆x contains only abnormal agents therefore ∀Ai ∈ ∆x ⇒ Ai ∈
CONG. According to definition 4.3.1 the abnormal agents in ∆x explain all the

conflicts, i.e., they are involved in all the edges in CONG and so they must be

vertex cover, contrary to our assumption. ¤
Determining a minimal vertex cover is known to be NP-Complete. The problem

of determining the set of all minimal vertex covers is NP-Hard [Skiena, 1990]. A
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simple O(2|V
′|) exact algorithm for its solution is to find all the possible vertex

covers in size one, then continue to find the possible vertex cover in size two, under

the condition that it is not a superset of a previous vertex cover, and so on up to the

max size of the graph. The complexity of computing the CGCD is thus the same

as in single-agent diagnosis methods, e.g., [de Kleer and Williams, 1987]. We now

prove that consistency based global coordination diagnosis is NP-hard.

Theorem 2: CGCD (consistency based global coordination diagnosis) is NP-

Hard.

We can prove it by a reduction from ”Independent set” which is a known NP-hard

problem. First we re-cast the definition of CGCD (4.3.1) as a decision problem2.

Definition 4.3.5. CGCD : Given a set of variables {X1, ..., Xn}, and a set of domain

{D1, ..., Dm} for each variable with initial value {Dw1 , ..., Dwn} corresponding to the

variables (parallel to AS in definition 4.1.2), and given a set of constraints between

the variables in the forms:

1. Xi = Dyi
⇒ Xj = Dzj

(parallel to CCRN in definition 4.1.3)

2. Xi = Dyi
⇒ Xj 6= Dzj

(parallel to MUEX in definition 4.1.4)

Given k1 > 0. Do there exist at most k1 variables such that ignoring these k1

variables and their constraints will satisfy the constraints that are associates with

the rest of the variables (n− k1)?

As in the original definition of CGCD (definition 4.3.1) here we look for a diag-

nosis set of k1 variables (that represent the abnormal agents) we can ignore so the

rest of the normal agents are consistent with the actions (AS) and the multi-agent

system description (MASD).

Definition 4.3.6. Independent Set Problem ISP: Given a graph G = (V,E) and

k2 > 0. Do there exist a set of at least k2 vertices such that no pair of vertices

defines an edge of E?

We will show a reduction from ISP to CGCD, ISP ≺ CGCD:

Construction: Given a graph G = (V, E) in ISP , we build |V | variables

(n = |V |) {X1, ..., Xn} with domain {0, 1} in CGCD, we initialize all the variables

with the value 1. Also, for every edge between Vi and Vj in ISP we build a

constraint Xi = 1 ⇒ Xj 6= 1 in CGCD. k1 ≤ n− k2.

2Joint credit for this proof to Efrat Manistersky.

36



Example 4.3.3. Given a graph G = (V, E) and k2 = 3.:

 
 

V2 V1

V4 V5

V3

Figure 4.4: Construction.

The construction is:

{X1 = 1, X2 = 1, X3 = 1, X4, = 1, X5 = 1}
X1 = 1 ⇒ X2 6= 1

X1 = 1 ⇒ X4 6= 1

X1 = 1 ⇒ X5 6= 1

X2 = 1 ⇒ X1 6= 1

X2 = 1 ⇒ X3 6= 1

X2 = 1 ⇒ X4 6= 1

X3 = 1 ⇒ X2 6= 1

X4 = 1 ⇒ X1 6= 1

X4 = 1 ⇒ X2 6= 1

X5 = 1 ⇒ X1 6= 1

p = 2

We should prove that there is an independent set ≥ k2 in G ⇔ there is a set of

variables ≤ k1 in {X1, ..., Xn}, such that ignoring their values and the constraints

associated with them will satisfy the rest of the constraints.

Proof:

1. ⇒
Assume an independent set of size ≥ k2 in G. This implies that there is a

set of ≥ k2 variables that there are no constraints between them (and so they

37



satisfy the constraints). Consequently, the number of variables that must be

ignored in order to satisfy the constraints that are not associated with them,

is ≤ n− k2.

2. ⇐
Assume a set of variables ≤ k1 in {X1, ..., Xn}, such that ignoring them and

the constraints associated with them, will satisfy the rest of the constraints.

This implies that there are at least n − k1 variables with value 1, which do

not violate the constraints. By construction, there are at least n− k1 vertexes

with no edge connect them. Consequently, there is an independent set of size

≥ n− k1.

¤
A disadvantage of the consistency-based approach is that it may produce diag-

noses that are unsound, in the sense that while they eliminate the inconsistency,

they do not explain it. Intuitively, such diagnoses correspond to eliminating the

abnormal agents from consideration, rather than suggesting that they change their

actions. For such diagnoses, there may be no actions that the abnormal agents could

take that would be consistent with the MASD.

For instance, in Example 4.3.2 the diagnosis set {A1, A2} represents a minimal

set of abnormal agents, but changing their actions (A11 = false, A12 = true, A21 =

false, A22 = true) will leave the system inconsistent, with CCRN(AS12, AS21) =

false. On the other hand, changing the actions of the agents in the other diagnoses

({A1, A3, A5}, {A2, A4, A6}) will eliminate the inconsistency.

4.4 Abductive Coordination Diagnosis

The implication is that stronger conditions on the solution sets may be needed. Such

conditions correspond to abductive diagnosis, in which changing the actions of the

abnormal agents entails the coordination graph:

Definition 4.4.1. An abductive global coordination diagnosis (AGCD) is a minimal

set ∆ ⊆ T such that:

MASD
⋃
{AB(Ai)|Ai ∈ ∆}

⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS 0 ⊥

and,

{AB(Ai)|Ai ∈ ∆}
⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS ⇒ CG
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where, we make the active selection of agent Ai (definition 4.1.2), ASi, false, and

force Ai to choose a different action,

AB(Ai) ⇒ ¬ASi ∧ (ASi1 ∨ . . . ∨ ASi|ACT |)

The first condition in definition 4.4.1 is exactly as in definition 4.3.1 (i.e., CGCD)

to satisfy the consistency requirement. The second condition requires that for any

abnormal agents found, it will be possible to change their active selection, in order

to entail the coordination graph and thus satisfy the coordination constraints. Note

that the entailment here is of the coordination graph, not the full MASD.

The unsound diagnosis set {A1, A2}, given by the consistency-based approach,

will not pass this second condition, since the alternative actions of agent A1 and

of agent A2 do not entail the coordination graph as shown in Figure 4.5 (the new

violated constraints are marked with X).
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Figure 4.5: The coordination graph and active selection (gray circles) of the team

T = {A1, A2, A3, A4, A5, A6} after changed their values.

In order to satisfy definition 4.4.1, the diagnosis process needs to go beyond

pinpointing suspect agents, to verifying that by changing their actions, coordination

will be restored. Thus in contrast with consistency-based approach, we do not

utilize conflict pairs to compute the diagnoses, but instead examine all action literals
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assignments that entail the coordination graph, i.e., all actions which will satisfy the

coordination constraints. Formally:

Definition 4.4.2. CG solution (S): given a coordination graph CG (definition

4.1.5), CG solution (S) is a set of assignments to the agents’ actions (AS ) which

satisfy the coordination constraints in CG.

Once the entire CG solutions were found, the process compares the existing truth

values to the CG solutions, and computes a minimal set of changes.

Algorithm ABDUCTIVE_BASED_COORDINATION_DIAGNOSIS (Algorithm 2) summa-

rizes the process of computing the coordination diagnosis in an abductive based

approach. In lines 1–2 we initialize ∆ (a set of all diagnosis sets) and S (a set of

all CG solution sets). Then in 3 we compute the CG solutions and initialize S with

these sets, where Si is the i’th CG solution set. This task is of course very hard,

but will be discussed later. From line 4 we go over the CG solutions and check for

each one of them, in line 6, if the active selection of agent Ai (as ASi was defined

in definition 4.1.2) is consistent with the solution. If it is not consistent, the agent

which selects this inconsistent value (Ai) is added to a new diagnosis set ∆new. Once

the active selections of all the agents were checked, ∆new is added to ∆ as a new

diagnosis if it is not a superset of an existing diagnosis. If ∆new is a subset of an

existing diagnosis then it replaces the diagnosis since it is minimal (lines 9–15).

Example 4.4.1. Let us compute the AGCD of the coordination graph in Exam-

ple 4.2.1. Table 4.1 presents the CG solutions for the actions of agents A1 . . . A6.

There are only two such solutions. In order to find the minimal AGCD, we should

compare the actions of the agents with the solutions and point out the agents that

deviate. Consider the actions in Example 4.2.1 (where AS11, AS21, AS31, AS41,

AS51, AS61 are true, and the other action literals are false). Then, in the first so-

lution S1 AS11 = false, but actually the action taken by A1 is AS11 = true. We

thus mark action AS11 as faulty. The second value of S1 is AS12 = true, but ac-

tually AS12 = false, so we again mark this as faulty, and so on for each one of

the actions. For the first solution in the solutions table we got the following faulty

actions: AS11, AS12, AS31, AS32, AS51, AS52. From this list, we can determine the

abnormal agents by finding the agents whose actions are faulty. We thus conclude

that a minimal AGCD is ∆1 = {A1, A3, A5} for S1. From the second solution S2, we

similarly find ∆2 = {A2, A4, A6}. Setting these agents to abnormal, and thus forcing

them to select different actions, would satisfy the coordination constraints.
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Algorithm 2 ABDUCTIVE BASED COORDINATION DIAGNOSIS

(input: coordination graph CG

output: diagnoses set ∆)
1: ∆ ← ∅
2: S ← ∅
3: initialize S with all CG solutions

4: for all Si ∈ S do

5: ∆new ← ∅
6: for all ASj , j ∈ {1 . . . n} do

7: if {ASj}
⋃

Si ` ⊥ then

8: ∆new ← ∆new ∪ {Aj}
9: if ∆new ⊂ ∆x ∈ ∆ then

10: remove ∆x from ∆

11: ∆ ← ∆ ∪∆new

12: if ∆new ⊇ ∆x ∈ ∆ then

13: continue

14: else

15: ∆ ← ∆ ∪∆new

16: return ∆

# A1 A2 A3 A4 A5 A6

1 2 1 2 1 2 1 2 1 2 1 2

S1 0 1 1 0 0 1 1 0 0 1 1 0

S2 1 0 0 1 1 0 0 1 1 0 0 1

Table 4.1: Coordination-satisfying actions in Example 6.

Obviously, we should consider only the minimal AGCD. We fulfill this require-

ment by comparing every new hypothesized coordination diagnosis to the former

coordination diagnoses, and checking whether it is a subset, a superset, or different

than the former diagnoses.

Example 4.4.2. Assume T = {A1, A2, A3}. Every agent has two actions D =

{1, 2}. The constraints between their actions are very simple, A1 and A2 should

perform the same action concurrently (CCRN(AS11, AS21), CCRN(AS12, AS22))

and A3 is free to select either action 1 or action 2 does not matter which action

was selected by A1 and A2. Table 4.2 presents the CG solutions for their actions.

Consider the actions taken by the agents are: AS12 = true, AS21 = true, AS32 =

true (the other actions are false). Comparing the actual actions to the CG solutions
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in Table 4.2 entails the following diagnoses (corresponding to the order of the CG

solutions):

∆1 = {A1}

∆2 = {A1, A3}

∆3 = {A2, A3}

∆4 = {A2}

However, ∆1 ⊆ ∆2 and ∆4 ⊆ ∆3, therefore the minimal diagnosis sets are only ∆1

and ∆4.

# A1 A2 A3

1 2 1 2 1 2

S1 1 0 1 0 0 1

S2 1 0 1 0 1 0

S3 0 1 0 1 1 0

S4 0 1 0 1 0 1

Table 4.2: Coordination-satisfying actions in Example 7.

Let us analyze the complexity of abductive based global coordination diagnosis.

Theorem 3: AGCD (abductive based global coordination diagnosis) is NP-

hard.

We can prove it by using again the reduction from ”Independent set” as we used

to prove that CGCD is NP-hard (Theorem 2). First we re-cast the definition of

AGCD (4.4.1) as a decision problem3.

Definition 4.4.3. AGCD : Given a set of variables {X1, ..., Xn}, and a set of domain

{D1, ..., Dm} for each variable with initial value {Dw1 , ..., Dwn} correspondingly to

the variables (parallel to AS in definition 4.1.2), and given a set of constraints

between the variables in the forms:

1. Xi = Dyi
⇒ Xj = Dzj

(parallel to CCRN in definition 4.1.3)

2. Xi = Dyi
⇒ Xj 6= Dzj

(parallel to MUEX in definition 4.1.4)

Given k1 > 0. Do there exist at most k1 variables such that changing their value

will satisfy the set of the constraints?

3Joint credit for this proof to Efrat Manistersky.
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As in the original definition of AGCD (definition 4.4.1) here we look for a di-

agnosis set of k1 variables that represent the abnormal agents, such that changing

their value will cause to satisfy the constraints.

The decision problem is presented almost in the same way as in Theorem 2, but

while in CGCD we require the ignoring of k1 variables and the constraints associated

with them, here, in AGCD, we require the changing of the value of k1 variables.

The rest of the reduction is the same as the reduction we presented in Theorem 2.

Thus the AGCD problem is essentially that of finding all CG solution sets, an

NP-Hard problem. A detailed discussion of satisfiability, and the rich literature

offering efficient exact and approximate solution methods is well beyond the scope

of this dissertation. However, we point at two diagnosis-specific mechanisms that

can potentially be used to alleviate computational load in our case:

1. Ordered binary decision diagram (OBDD) [Bryant, 1992] can be

used to efficiently reason about diagnosis-satisfying assignments

[Torasso and Torta, 2003]. By restricting the representation, boolean

manipulation becomes much simpler computationally. We can compactly

represent the coordination graph using OBDDs (an off-line construction

process), and then truth assignments can be computed in linear time in many

cases.

2. Assumption-based truth maintenance systems (ATMS) [de Kleer, 1986] can be

used to build the satisfying assignments incrementally. They exploit the fact

that it is unnecessary to check all the assignments since the legal assignments

depend each on the other. For instance, assume a concurrence coordination

between a and b and between b and c:

((a ∧ b) ∨ (¬a ∧ ¬b))
∧

((b ∧ c) ∨ (¬b ∧ ¬c))

Instead of computing the full truth table of a, b and c, (23), we can use an

ATMS, which given these justifications will provide only two assignments:

(a = true, b = true, c = true) or (a = false, b = false, c = false).

The abductive approach has some advantages over consistency-based approach:

1. It computes a sound and complete diagnosis, in contrast to consistency-based

approach which computes only a complete diagnosis.
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2. It finds also a solution to the fault by proposing a satisfaction to the coordi-

nation constraints.

3. It also enables to find the consistency assignments of the coordination graph

in off-line, then in on-line the diagnosis is given in a linear time, while the

process of the consistency-based approach must computed online.

Despite these advantages, consistency-based approach has an important benefit

considering the complexity. In the worst case the complexity of the abductive ap-

proach is O(kn) while k represents the size of the variables domain and n the size of

the team, while the complexity of the first approach in the worst case is O(2n). In

addition, the runtime of computing the vertex cover set is reduced as the number

of conflicts is reduced. Finally, every vertex cover that is found reduces the size of

the graph for the continuing computing of other vertex cover set in larger size. For

instance, if a was found as a vertex cover in a graph V = {a, b, c, d}, then when

we look for vertex cover sets in size two, we will compute it only in the subgraph

V = {b, c, d}.
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Chapter 5

Distributed Social Diagnosis

In the previous chapter we focused on centralized methods for diagnosis of coordina-

tion failures. Unfortunately, centralized methods suffer from key limitations: First,

they can be computationally expensive in practice, in terms of communications and

run-time. Second, they rely on a single diagnoser, and thus risk a single point of

failure. Moreover, this assumes no communication limitations, e.g., range. Finally,

they do not not necessarily exploit the different knowledge of different agents; e.g.,

an intended receiver faces difficulty detecting that a message to it was lost, where

the sender may do it more readily.

In the following chapter we focus on abductive coordination diagnosis utilizing

distributed model-based diagnosis algorithms to compute the diagnosis, based on

distributed CSP algorithms. While the reasoning behind all is the same as outlined

above, the algorithms differ from each other with respect to their expected run-time

(based on DisCSP literature) and their completeness of the diagnoses.

We present a distributed approach, where the agents find the CG solutions (see

definition 4.4.2) and compute the abductive coordination diagnosis by exchanging

information with each other. As in the centralized approach, computing the diagno-

sis is done by finding the CG solutions, and contrasting these with actual values. As

far as we know, there is no existing algorithm which finds a minimal CG solutions

(in terms of minimal diagnosis), where no proper subset of the changed values could

also satisfy the constraints. Thus the minimality goal is preserved only for some

algorithms (see below).

In the next two sections we propose five distributed algorithms to find CG solu-

tions and compute the diagnosis. All the algorithms use communication, therefore

they work only in nonpermanent communication breakdowns. In permanent com-

munication breakdowns neither distributed nor centralized approach will work. In
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Section 5.1 we present two algorithms for computing a complete set of minimal di-

agnoses, and in Section 5.2 we present three algorithms for computing an incomplete

diagnosis which is not guaranteed to be minimal. As we shall see, these can offer an

attractive alternative, despite their lack of guarantees.

5.1 Algorithms for Complete Minimal Diagnoses

In order to compute a complete set of minimal diagnoses, the agents must compute

the whole CG solution space of the system. We use a synchronous backtracking

algorithm (SBT) to compute the CG solutions [Yokoo et al., 1998]. This algorithm

is based on a distributed depth-first search. The agents are arranged in a static

order. Every agent sends its possible values to its next agent. The receiving agent

checks the compatibility of the former assignments with every value of its domain,

separately. It returns backward a nogood message upon inconsistency, or the partial

assignments to the next agent, upon consistency.

Example 5.1.1. Let us demonstrate it by simplifying the example given in the in-

troduction to this part. Focusing on a case with a single team, T = {B, C1, D1, D2},
where D1, D2 are followers, C1 is a sub-team leader, and B is a mission commander,

we define the domain of the agents to be the actions go (g) or stop (s), d = {g, s}.
The coordination constraints between the agents are:

CCRN: 〈C1 = g, D1 = g〉, 〈C1 = g, D2 = g〉

MUEX: 〈B = s, C1 = g〉, 〈B = g, C1 = s〉

The appropriate coordination graph is presented in Figure (Figure 5.1).

Assume the agents are arranged in an alphabetic order. B sends the possible

values of its domain to C1. C1 checks for each one of them whether it is consistent

with its possible values. For the value B = g only C1 = g is consistent and for

the value B = s only C1 = s is consistent. C1 continues to forward the partial

consistent values to D1, which adds its consistent values and produces the following

partial consistent values: S1 = {g, g, g} and S2 = {s, s, s} (corresponding to the

order of the agents (B, C1, D1)). D2 receives S1 and S2 from D1 and accomplishes

the computing of the CG solutions S1 = (g, g, g, g) and S2 = (s, s, s, s) (corresponding

to the order of the agents (B, C1, D1, D2)).
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Figure 5.1: Coordination graph for mission commander B, sub-team leader C1, and

the two followers (version 1).

In a system where the constraints between the agents are static, i.e. they do

not change dynamically, the agents could compute all the CG solutions in advance

(offline). During run-time, every agent keeps a copy of all CG solutions, using them

to compute the diagnosis. We denote this method SBT OFF. On the other hand,

in systems where the constraints can change dynamically, the agents must compute

the CG solutions, as well as the diagnosis, online. We denote this SBT ON.

During diagnosis, every agent reports to the other agents the indexes of the CG

solution database in which that agent found an inconsistency. Every agent collects

this information from the others and computes the diagnoses by dividing the agents

according to the reported indexes. So as to produce minimal diagnoses, if a diagnosis

set is a superset of another diagnosis, it is dropped.

Algorithm DISTRIBUTED_COORDINATION_DIAGNOSIS (Algorithm 3) summarizes

the process of computing the coordination diagnosis in a distributed approach. The

algorithm gets the index of the agent who runs the algorithm (current). In lines

1–2 we initialize ∆—a set of all diagnosis sets and S—a set of all CG solution

sets. Then in line 3 we compute the CG solutions and initialize S with these sets,

where Si denotes the i’th CG solution set. In line 4 we initialize INDX, a set of

the indexes of the CG solution database in which agents found an inconsistency.

INDXi ∈ INDX denotes the indexes of agent Ai. In lines 5–7 the agent that runs

this algorithm (Acurrent) builds its INDXcurrent by checking the consistency of each

CG solution with its current value (AScurrent). If an inconsistency is found, the index

of the CG solution is added to INDXcurrent. Then it sends the set of the indexes of
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the inconsistency to the other agents and receives from them the same information

(lines 8–10). By receiving this set, the current agent goes over the indexes in which

the sender agent (Ai) found an inconsistency, and add it as abnormal agent to the

diagnosis set ∆j with the same index j (lines 11–12). In this way we verify that

∆j contains all the agents that found inconsistency with the j’th CG solution. The

current agent makes the same sort to ∆j also for its own indexes INDXcurrent (lines

13–14). Finally, in lines 15–20 the agent verifies minimal diagnosis by dropping

superset diagnoses.

Algorithm 3 DISTRIBUTED COORDINATION DIAGNOSIS

(input: integer current

output: diagnoses set ∆)
1: ∆ ← ∅
2: S ← ∅
3: initialize S with all CG solutions

4: INDX ← ∅
5: for all Si ∈ S do

6: if {AScurrent}
⋃

Si ` ⊥ then

7: INDXcurrent ← INDXcurrent ∪ {i}
8: for all Ai ∈ T , i ∈ {1 . . . n} (i 6= current) do

9: send INDXcurrent to Ai

10: receive INDXi from Ai

11: for all j, j ∈ INDXi do

12: ∆j ← ∆j ∪ {Ai}
13: for all j, j ∈ INDXcurrent do

14: ∆j ← ∆j ∪ {Acurrent}
15: for all ∆i ∈ ∆, i ∈ {1 . . . |∆| − 1} do

16: for all ∆j ∈ ∆, j ∈ {i . . . |∆|} do

17: if ∆i ⊂ ∆j then

18: remove ∆j from ∆

19: if ∆i ⊇ ∆j then

20: remove ∆i from ∆

21: return ∆

Example 5.1.2. As computed in example 5.1.1 the CG solutions for the coordination

graph are: S1 = (g, g, g, g) and S2 = (s, s, s, s) (corresponding to the order of the

agents (B,C1, D1, D2)). Assume that follower D1 failed due to a failure in its vision,

which caused it to select the action stop (s). The agents exchange the CG solution
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indexes in which they found an inconsistency. B sends index 2 since its current

value is g which is not equal to its expected value in CG solutions S2. In the same

manner, C1 sends index 2, D1 sends index 1 and D2 sends index 2. Once an agent

accepts this information from all the others, it divides them according to the indexes,

to form two diagnoses: ∆1 = {D1} and ∆2 = {B, C1, D2}.

In the same manner, we address also of cases where the minimal diagnosis is a

subset of another diagnosis.

Example 5.1.3. Assume the coordination constraints between the agents in the team

presented in example 5.1.1 are as the following:

CCRN: 〈C1 = g, D1 = g〉, 〈C1 = g, D2 = g〉

MUEX: 〈B = s, C1 = g〉

The appropriate coordination graph is presented in Figure (Figure 5.2).
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Figure 5.2: Coordination graph for mission commander B, sub-team leader C1, and

the two followers (version 2).

CG solution S3 = (g, s, s, s) also satisfy the team variables. Then the indexes

sent by the agents are as the following:

B : 2

C1 : 2, 3

D1 : 1
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Diagnosis communication computation

SBT ON O((kn) + (n2m)) O((kn) + (nm + m2))

SBT OFF O(n2m) O(nm + m2)

Table 5.1: The worst case complexity of communication and computation for

SBT ON and SBT OFF.

D2 : 2, 3

Dividing the agents according to the indexes produces the following diagnoses: ∆1 =

{D1}, ∆2 = {B,C1, D2} and ∆3 = {C1, D2}. However, ∆3 ⊆ ∆2 and so ∆2 is

dropped. Then the final minimal diagnosis sets are: ∆1 = {D1} and ∆3 = {C1, D2}.

The first stage of building the CG solution database, involves an exponential

number of messages and its computation is also exponential in the number of agents.

Assume n is the number of agents and k represents the size of the variables domain.

The first agent communicates its variables to the second agent, which also communi-

cates to the next agent the possible combinations of its variables with the variables

of the former agent—k2. The i’th agent communicates ki combinations of the for-

mer agents with its own variables. As a result, the worst case complexity of the

communication is the sum of all possible combinations of the n agents or O(kn).

SBT is a synchronous process since agents do not make computations in parallel,

therefore, the worst case complexity of the computation is exactly as in centralized

approach O(kn).

However, the second stage of the diagnosis process itself entails only the exchang-

ing of the indexes of the CG solutions in which the agents found an inconsistency.

Assume the size of the CG solution database is m, then the communication com-

plexity is only O(n2m). The rest of the complexity of computation is linear in the

number of agents since every agent goes over the indexes of the other agents in

order to sort them to diagnosis sets—O(nm). However, in order to guarantee min-

imal diagnosis the agent goes over the diagnosis sets polynomially and so the final

complexity in the worst case is O(nm + m2).

Table 5.1 summarizes the online communication and communication worst case

complexities of SBT ON and SBT OFF. In systems where the constraints are static

(SBT OFF), these costs are most delegated to offline processes. However, where

constraints change dynamically, the agents must compute all the CG solutions dy-

namically, and these computational costs are incurred during runtime.

Indeed, distributed CSP literature recognizes the computational costs
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of SBT because it runs synchronously, and offers cheaper alternatives

[Yokoo and Hirayama, 2000]. In addition, SBT has drawback in some domains,

e.g. wireless communication which has limited range, because there are technical

limitations which allow certain local communication but not global communications

[Davin and Modi, 2005].

5.2 Non-Minimal Diagnosis

One alternative taken by many distributed CSP algorithms is to settle for computing

only one solution to a given CSP. However, for diagnosis, this means that the results

are not guaranteed to be minimal. Moreover, since only one of possibly many diag-

noses would be produced, the result may not even be correct. But, since the system

is distributed, we can use distributed algorithms to compute the CG solution, and

thus reduce the runtime and communication load. As in SBT, once a CG solution

is found, the agents compute the diagnosis by comparing their current values to

the expected values in the CG solution. The deviant agents are suspected as the

abnormal agents, and will be added to the diagnosis set. We examine three dis-

tributed CSP algorithms: Asynchronous backtracking, distributed stochastic search

and distributed breakout algorithm.

5.2.1 Asynchronous Backtracking (ABT)

The asynchronous backtracking algorithm is a distributed, asynchronous version of

a backtracking algorithm (SBT). In ABT, the priority order of agents’ variables

is fixed, and each agent communicates its value assignment to neighboring agents

with lower priority via ok? messages. Each agent maintains an agentview, the cur-

rent value assignment of higher priority neighboring agents. An agent changes its

assignment if its current value assignment is not consistent with the assignments

in the agentview. If there exists no value that is consistent with the agentview,

the agent generates a new constraint (called a nogood), and communicates the

nogood to a lower priority agent in the agentview, thus the higher priority agent

changes its value considering the accepted nogood (for detailed description see

[Yokoo and Hirayama, 2000]).

Example 5.2.1. Assume a team with coordination constraints as presented in exam-

ple 5.1.1. Assume also two failures: B stops while the sub-team leader C1 continues

to go, concurrently one of the followers (D1) follows the leader while the other (D2)
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stops ({B = s, C1 = g, D1 = g, D2 = s}). The priority between the agents is ar-

ranged in alphabetic order. C1 sends ok? message with its current value g to its lower

priority neighbor B. D1 and D2 send ok? with their values (g, s, correspondingly) to

C1 (Figure 5.3(a), the arrows represent the communication links). The agentview

of B is {C1 = g} and so it changes its value to g to satisfy the constraints with

C1. C1 could not find consistent value with its agentview {D1 = g,D2 = s}, and

so it sends nogood to the lower priority agent in its agentview—D1 (bold line in

Figure 5.3(b)). D1 adds this nogood constraint 〈D1 = g,D2 = s〉 to its constraints

database and requests from D2 to add a constraint link between them (dashed line

in Figure 5.3(c)). Now, D1 changes its value to g in order to be consistent with its

new agentview D2 = g (Figure 5.3(c)), and sends ok? with its new value to C1, and

a solution is found ({B = g, C1 = g, D1 = g,D2 = g}).

ABT is complete in terms of CSP. It always finds a solution if one exists, and

terminates if no solution exists, so we are guaranteed to find one diagnosis. However,

still it has three drawbacks, first, we cannot be sure in advance which agents will

communicate with each other, since an agent that detects a nogood constraint with

non–neighboring agent adds communication channel to it (as added between D2 and

D1 in Example 5.2.1). Second, in SBT at the end of the diagnosis process each one

of the agents has the entire minimal diagnosis sets, but here, in ABT, each agent

may have only a portion of the diagnosis, related only to its agentview. Third, once

a CG solution is found, the agents do not know that the search was completed. The

next algorithms copes with some of these drawbacks.

5.2.2 Distributed Stochastic Search Algorithm (DSA).

In contrast to ABT, DSA is synchronous in that all processes proceed in synchro-

nized steps. The agents go through a sequence of steps until a termination threshold

is met (for example, limited number of cycles). In each step, an agent sends its cur-

rent variable value to its neighboring agents, and concurrently receives the values

from the neighbors. It then decides stochastically, whether to keep its current value

or change to a new one. This is done based on a pre-defined strategy that depends

on the possibility to reduce violated constraints. The most critical step of DSA is

for an agent to decide the next value, based on its current state and its perceived

states of the neighboring agents. The decision strategy we utilized is the following:

If the agent cannot find a new value to improve its current state (reduces viola-

tions), it will not change its current value; if there exists such a value that improves

52



 

B1=sC1=g

D1=g

D2=s 

ok?, (C1=g) 

ok?, (D2=s) 

ok?, (D1=g) 

(a) Sending ok? messages.

 

B1=gC1=g 

D1=g

D2=s 

nogood, (D1=g, D2=s) 

(b) C1 sends nogood to D1.

add link 

 

B1=gC1=g 

D1=g

D2=g 

(c) D2 agrees to the request of D1 and adds a constraint link to D1.

Figure 5.3: ABT process in team T = {B, C1, D1, D2}.

its state, the agent may change to the new value with probability p, or keep the

current value unchanged with probability 1− p. This continues until a termination

threshold is reached (i.e., a certain number of cycles) (for detailed description see

[Zhang et al., 2005]).

Example 5.2.2. Assume a team with coordination constraints and failures as de-

scribed in example 5.2.1. The values of the agents’ variables are {B = s, C1 =

g, D1 = g, D2 = s}. Each agent sends its value to its neighbors (Figure 5.4(a)),
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then the agents compute the number of violated constraints with their neighbors. B

has one violation with C1 and it can improve it by changing its value to g. C1 has

two violations (with B and D2) and it could reduce it to only one violation with D1

by changing its value to s. D1 has no violations and D2 has one violation with C1

that could be solved by changing its value to g. Assume the probability to change

value is p = 70%, and in the first cycle every agent, except D1 (which could not

improve its current state), decides to change its value. Then their new values are

{B = g, C1 = s,D1 = g, D2 = g}. The agents communicate again their new value

to their neighboring agents (Figure 5.4(b)); now all the agents can reduce their vi-

olations. Assume, in the second cycle only B and C1 change their values. Then

after receiving the new values ({B = s, C1 = g, D1 = g, D2 = g}), D1 and D2 have

no violation, c1 has one violation with B but no violation with D1 and D2, so C1,

D1 and D2 should not change their values since they can not improve their current

state. However, B can improve it by changing its value to g, indeed it changes it

and a CG solution is found. The agents communicate their new values in the last

time since the termination condition of number of cycles is defined in advance to be

3 (Figure 5.4(c)).

One drawback of this algorithm is that it is incomplete, namely, it could find a so-

lution before the threshold is met, although the agents will continue to communicate

until the threshold will be met. To further complicate the issue, the threshold may

be met before a solution is found although one exists. For example, in Example 5.2.2

if the threshold was set to 2 then no solution would be found. However, it copes with

some disadvantages of ABT. First we know in advance the communication channels

of every agent (neighboring agents) and they are not changed dynamically. Second,

if an agent is diagnosed as abnormal, this diagnosis is known to the abnormal agent

and its neighboring agents. Third, the termination threshold is known to all the

agents.

5.2.3 Distributed Breakout Algorithm (DBA)

The breakout algorithm is also a local search method equipped with an innovative

scheme of escaping local minima for CSP. As in DSA, (i) an agent communicates

only with its neighbors, (ii) each step is synchronized, and (iii) the agents go through

a sequence of steps until a termination threshold is met. However, local minima are

addressed non-stochastically.
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(a) Cycle 1: agents send values to their neighboring agents.
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(b) Cycle 2: agents send values to their neighboring agents.
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D2=g 

D1=g 

B=s 
C1=g 

(c) Cycle 3: agents send values to their neighboring agents.

Figure 5.4: DSA process in team T = {B, C1, D1, D2}.

Every agent first assigns a weight of one to all the constraints with its neigh-

bors. Then, at each step, every agent exchanges its current variable value with its

neighbors, and then computes the improvement (possible weight reduction) based on

the recorded values of its neighbors. To avoid simultaneous variable changes among

neighboring agents, before changing the value, the agents exchange the expected

improvement. After collecting the expected improvement of the neighbors only the

agent having the maximal improvement has the right to alter its current value. If
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some agents have the same improvement value, the one with the lowest identifier

will change its value. An agent continues the process of value and improvement ex-

changing, until no weight-reducing variable can be found. At that point, it reaches

a local minimum if a constraint violation still exists. Then, the agent tries to es-

cape from the local minimum by increasing the weights of all violated constraints

by one and proceeds as before. This weight change forces some of the agents to

alter their values to satisfy the violated constraints (for detailed description see

[Hirayama and Yokoo, 2005]).

Example 5.2.3. Assume a team with coordination constraints and failures as de-

scribed in example 11. The values of the agents’ variables are {B = s, C1 = g, D1 =

g, D2 = s}. Each agent sends its value to its neighbors, then the agents compute the

number of violated constraints with their neighbors and the expected improvement by

changing its value (Figure 5.5(a)). B has one violation with C1 and it can improve

it by changing its value to g. C1 has two violations (with B and D2) and it could

improve it by one by changing its value to s. D1 has no violations and D2 has one

violation with C1 that could be solved by changing its value to g (Figure 5.5(b)). Af-

ter exchanging the improvement values, B, c1 and D2 observe that they can improve

their value by one. Consequently, only B changes its value since it has the lowest

identifier (Figure 5.5(c)). The same process is done again. Agents exchange their

values, only D2 could improve its current state by changing its value to g (c1 has

one violation but its other two links are satisfied). The agents exchange this infor-

mation (Figure 5.5(d)) and only D2 changes its value and a CG solution is found.

In Figure 5.5(e) the agents continue to exchange information without changing their

values (since a solution was found and no improvement exist) until the termination

condition is met.

DBA is also incomplete, so we are not guaranteed to find a diagnosis. But,

since it is a local search method we are expected to reduce the communication and

computation significantly, compared to SBT. In addition, it has the same advantages

as DSA:

1. An agent communicates only with its neighboring agents.

2. If an agent is diagnosed as abnormal, this diagnosis is known to the abnormal

agent and its neighboring agents.

3. The termination threshold is known to all the agents.
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(a) Cycle 1: agents send values to their neighboring agents.
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(b) Cycle 2: agents exchange their improvement by chang-

ing the current value.
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(c) Cycle 3: agents send values to their neighboring agents.
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(d) Cycle 4: agents exchange their improvement by chang-

ing the current value.
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(e) Cycle 5: agents send values to their neighboring agents.

Figure 5.5: DBA process in team T = {B,C1, D1, D2}.
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Chapter 6

Coordination Diagnosis:

Experiments and Discussion

This chapter evaluates the distributed diagnosis algorithms we presented, in terms of

computation and communication. In addition, we examine, for every algorithm, the

trade-off between its computational costs and its ability to produce correct diagnosis.

Table 6.1 summarizes the attributes of the different algorithms, in terms of the

minimality of the diagnosis and completeness. SBT ON and SBT OFF look for the

whole CG solution space and so they guarantee complete diagnosis and minimality,

in contrast to the algorithms that find only one CG solution (AST,DSA,DBA).

However, ABT like the complete algorithms, guarantees a complete CG solution, in

contrast to the local search algorithms (DSA and DBA) that do not necessarily find

even one CG solution.

We created laboratory versions of the space exploration example described pre-

viously. We evaluated every algorithm in different size groups: four robots, seven

robots and ten robots. In the experiments for four robots, the group consisted of

Algorithm number of complete complete minimal

diagnoses CG solution diagnosis diagnosis

SBT ON all yes yes yes

SBT OFF all yes yes yes

ABT 1 yes no no

DSA 1 no no no

DBA 1 no no no

Table 6.1: The minimality and completeness of the diagnosis algorithms.
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a mission commander and a sub-team consisting of one sub-team leader and two

followers. The group of seven robots consisted of a mission commander and two

sub-teams, and the group of ten robots consisted of a mission commander and three

sub-teams.

In order to evaluate the algorithms on a representative and diverse set of prob-

lems, a wide set of combination of potential failures was selected. First, we generated

all single-faults possible (1–7 in the list below). Note that we assume all follow-

ers/leaders are the same, so it does not matter which follower/leader has failed.

Then we created double-fault combinations (8–12), and a quadruple failure (13).

For the experiments with a single team, only the experiments marked with a star

are possible:

1. A follower thinks that the leader stops, although the leader continues to go

(*).

2. A follower thinks that the leader started to go although it actually did not (*).

3. A sub-team leader thinks that it got a message from the mission commander

to stop, although the message was not sent (*).

4. A sub-team leader thinks that it got a message from the mission commander

to go, but the message was not sent (*).

5. The mission commander sent a message to the sub-team leaders, but only some

of them received it.

6. A follower stops because of an individual technical problem (nothing to do

with coordination) (*).

7. A leader stops because of an individual technical problem (nothing to do with

coordination) (*).

8. Failure 1 above, in two different followers (*).

9. Failure 2 above, in two different followers (*).

10. Failures 3 and 4 above (one in each sub-team).

11. Failure 5 above for two sub-team leaders.

12. Failure 6 above for two different followers (*).
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13. Failure 9 above (twice, for two different followers), and failure 10 above (twice,

for two different sub-team leaders).

Failures 6 and 7 reflect a local fault but not a coordination fault, since the action

values of the robots in the group remain the same. In particular, although the robot

stopped, it did not select the ”stop” action; it believes that its current action should

be ”go”, but actually it stopped due to technical problem. For these failures, we

expect the diagnosis process to find that the agents’ values satisfy the constraints

and therefore the agents will continue to diagnose the fault locally. This process is

beyond the scope of this thesis.

To evaluate the performance of the algorithms from a computational perspective,

two independent measures of performance were used. We measured communication

load in terms of the total number of messages sent [Lynch, 1996]. We also measured

runtime in terms of non-concurrent constraint checks (cycles) [Meisels et al., 2002,

Zivan and Meisels, 2006]. Every agent holds a counter of computation steps. Every

message carries the value of the sending agents counter. When an agent receives a

message it updates its counter to the largest value between its own counter and the

counter value carried by the message. By reporting the cost of the search as the

largest counter held by some agent at the end of the search, we achieve a measure

of concurrent search effort.

Each of the test-case failures is different, and for all algorithms other than DSA,

a single run is sufficient to determine the results, since no randomization takes

place, and no noise is involved in the observations or deterministic decisions of the

algorithms. However, for DSA (which is a stochastic algorithm), results may change

between runs, even starting with the same initial conditions. For DSA, we therefore

run every experiment 30 times and takes the average. The termination threshold for

DSA and DBA was set to the number of robots in the team (below we will present

results using a lower—fixed—termination threshold).

Experiments with four robots were carried out on Sony Aibo robots (Figure

6.1). These experiments were then repeated using the Player/Stage software package

[Gerkey et al., 2003] simulator, a popular and practical development tool for robotics

(Figure 6.2). We verified that the results of the physical and simulated robots

(group of four) were identical, and then continued the experiments in larger groups

in simulation. Experiments using the DSA were all carried out using the simulator

(because of the need for a significant number of repeated trials).

In Table 6.2 we present the results of a single test (test #7) for a team of seven
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Algorithm Diagnoses Messages Runtime % Failed robots

SBT OFF {4,7,8,9},{0,5,6} 42 30 0

SBT ON {4,7,8,9},{0,5,6} 256 700 0

DBA {0,5,6} 108 113 0

ABT {0,5,6} 18 7 0

DSA {0,4} 108 114 28.6

Table 6.2: results of diagnosing a specific failure case (test #7). The ground truth

diagnosis in this case is {0, 5, 6}.

agents. The first column reports the method used. The second column shows the

diagnosis results. The third column presents the number of messages sent. The next

column summarize runtime in terms of non-concurrent constraint checks, and the

last column reports the percentage of robots that failed to find a solution to the

DisCSP. The ground truth diagnosis in this case is {0, 5, 6} (the numbers identify

the robots), i.e., the robots {0, 5, 6} caused to the failure.

For instance, the diagnosis sets computed by SBT methods are {4, 7, 8, 9} and

{0, 5, 6}. DBA and ABT compute only the second diagnosis set since they compute

only a single diagnosis and DSA failed to compute a diagnosis at all (it is incomplete).

The total number of messages sent by agents in DBA is 108 and the number of non-

concurrent constraint checks is 113. DSA reports on 28.6% of the agents that failed

to compute a solution, the other methods succeed to compute a diagnosis (although

DBA is also incomplete in this case the agents found a solution).

The results of the communication load and the runtime are presented in Figure

6.4 and Figure 6.3, respectively. The x axis shows the diagnosis algorithm and the y

axis presents the total number of messages sent (Figure 6.4) and the runtime (Figure

6.3). For each algorithm, three bars are shown, one for each of the group sizes. Each

bar represents the average results across the different failures.

As expected, computing all the CG solutions online (SBT ON) is expensive in

terms of both communication as well as computation. Obviously, computing the

CG solutions offline (SBT OFF) and then finding the diagnosis online, improves the

efficiency significantly. SBT OFF is even better than the local search algorithms,

DSA and DBA, although it computes a complete set of diagnoses and not a single

one. The reason for this is that in SBT OFF the agents communicate only the

indexes of the inconsistent CG solutions, but the solutions are computed offline.

DSA and DBA present equal values in the number of messages (Figure 6.4),
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Figure 6.1: Sony Aibo robots capturing a mock alien.

Figure 6.2: Screen shot of Stage simulator in action.

since in both algorithms every cycle the agents communicate their values to their

neighboring agents and they have the same termination threshold on the number of

cycles. However, considering the time cycles DBA uses less constraint checks than

DSA since in DSA the gents change their values stochastically. It is possible that
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an agent does not change its value although it should have changed it. Because of

this, its neighbors must again check the constraints between them.

Surprisingly, ABT outperforms DSA and DBA. These results are surprising in

light of previous research that showed that the local search algorithms are more

efficient than ABT [Zhang et al., 2005]. This has to do with the likely state of a

multi-agent system after a coordination failure. In a team that was in coordination

and then failed, the selected actions of most agents are likely going to be close to

the CG solution. This enables ABT to find a CG solution in only a few steps. On

the other hand, in DSA and DBA the search may proceed towards a different part

of the space; also, the termination threshold may cause DSA and DBA to continue

running needlessly (see below for experiments with a reduced threshold).
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Figure 6.3: Average number of cycles in different diagnosis methods.

In order to further evaluate the diagnosis algorithms we examine also the cor-

rectness of the diagnoses they produce. SBT ON and SBT OFF produce a complete

set of minimal diagnoses. However, the other algorithms produce only a single diag-

nosis. This diagnosis is not guaranteed to be minimal and thus to correctly explain

the fault(s). In this sense, ABT is better than DSA and DBA, since it is complete
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Figure 6.4: Average number of messages in different diagnosis methods.

and so guarantees to find a diagnosis if one exists (although its minimality is not

guaranteed).

We examine three factors in diagnosis correctness (Table 6.3): (i) the percentage

of robots that failed to find a solution to the DisCSP, even if some of their peers

did (here the diagnosis did not completely fail); (ii) the percentage of experiments

in which the group failed to compute a diagnosis; and (iii) the percentage of ex-

periments in which the computed diagnosis did not match the correct explanation

of the failure(s). Obviously, ABT always succeeds to compute a diagnosis, because

it is complete, and therefore the number of failed robots and failures in computing

the diagnosis is zero. DSA and DBA are based on local search and are incomplete;

some robots failed to compute a diagnosis in 8% of cases in DSA and in 5% of the

cases in DBA, and all failed to compute even a single diagnosis in 33% in DSA

and in 20% in DBA. Obviously DBA presents better results than DSA since in

DSA the agents change their values stochastically in contrast to DBA where we are

guaranteed that only one agent changes its value in a conflict between two agents.

The three algorithms generate diagnoses that do not match the correct explanation

(ABT: 28%, DSA: 46%, DBA: 29%), since they compute only a single diagnosis and
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Diagnosis % failed % diagnosis % incorrect

robots failures diagnosis

ABT 0 0 28

DSA 8 33 46

DBA 5 20 29

Table 6.3: Diagnosis failures and correctness measures, for ABT, DSA and DBA.

4 agents 7 agents 10 agents

# messages 25 30 46

runtime 23 23 23

Table 6.4: DSA and DBA with a threshold of 2 cycles: Number of messages and

runtime in cycles. Each data point in DSA is an average of 30 trials.

not a complete set of all the diagnoses.

The results of DSA and DBA are affected by the termination threshold, which

determines how long the search runs. To evaluate the effect of this factor, we reran

the above experiments for DSA and DBA with a threshold of two cycles instead of

a threshold depends on the number of robots in the team. Table 6.4 summarizes

the results of the number of messages and runtime (DSA and DBA shows the same

results). Comparing these results to the results presented in Figures 6.4 and 6.3,

shows a significant improvement especially in terms of constraint checks because

the agents operated constraint checks only twice. However, as shown in Table 6.5

compared to running with non-fixed threshold (Table 6.3), diagnosis quality has

deteriorated further.

Diagnosis %failed %diagnosis %incorrect

robots failures diagnosis

DSA 23 49 56

DBA 12 34 41

Table 6.5: Threshold of 2 Cycles: Average percentage of the recorded failures.

One lesson—expected to some degree—is that there exists trade-off between the

effectiveness of the algorithms in terms of communication and computation and the

correctness of the diagnosis that the algorithms produce. Algorithms that produce

only a single diagnosis cannot always provide the correct diagnosis (ABT: in 28% of

experiments, DSA: 46% and DBA: 29%). The correct diagnosis is not predictable
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and the only way to create it is by generating the whole diagnosis, as in SBT OFF

and SBT ON. However, as shown in Figure 6.4 and Figure 6.3, SBT ON is very

expensive in terms of communication and computation, and SBT OFF is applicable

only in systems where the constraints are static and defined in advance.

However, there are two surprises. First, ABT outperforms DSA and DBA in

terms of constraint checks and communications, in contrast to results in distributed

CSP. We believe that this is a general result in the use of ABT for coordination

diagnosis, because when there are only few failures at a time, ABT determines in

a few steps a close solution to the CSP (and based on it, a diagnosis), compared

to the local search behavior of DSA and DBA. Second, ABT outperforms DSA and

DBA in terms of the diagnosis results: ABT provides a guarantee to find a diagnosis

(DSA and DBA do not), and empirically returns the correct diagnosis much more

often than the local search algorithms.
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Part II

Design Space for Social Diagnosis

Algorithms

67



In the previous part we formalized social diagnosis for simple reactive and focused

on the difference between centralized and distributed approaches. In this part we

draw lessons about a design space for social diagnosis algorithms specialized for more

complete agents. We examine diagnosis algorithms in small teams and in large-scale

teams.

We focus on disagreement faults in teams of situated-agents (behavior-

based agents). Because of their frequent use in practice [Tambe, 1997,

Matsubara et al., 1998, Pynadath et al., 1999]. Behavior-based agents are a good

platform to diagnose disagreement faults in depth, so that we will be able to diag-

nose the specific disagreements in the behaviors and beliefs of the agents.

To illustrate the problem of diagnosis of disagreements in team of situated-agents,

we use an example, originally reported in [Kaminka and Tambe, 2000]. Here, a team

of synthetic pilot agents is flying through a virtual battlefield. When reaching a

waypoint, they must divide into scouts (who move forward) and attackers (who wait

behind). Kaminka and Tambe report on a failure case where the attackers detect

the way-point and land, while a scout fails to detect way-point.

A diagnosis system, running on at least one of the agents, must now isolate

possible explanations for the disagreement, of which the real cause (agents differ

in their belief that the way-point was detected) is but one. Unfortunately, since

each agent is potentially unsure of what its team-members are doing, the number

of possible explanations can be quite large, which entails (i) significant computation

requirements (to compute the hypotheses), and (ii) significant use of communica-

tions (to communicate the hypotheses). For instance, for a hypothetical team of

eight attackers and eight scouts experiencing a similar failure, we found that 585

messages would have been sent in such a diagnosis process. Furthermore, having

each agent simply report its internal beliefs to the others, is also infeasible; the

agents cannot simply dump the entire contents of their memory—all their beliefs—

to their teammates. Indeed, it has been long recognized that multi-agent systems

techniques requiring high bandwidth are not likely to scale in the number of agents

[Jennings, 1995, Scerri et al., 2005c].

To address these challenges, in Chapter 7 we present a design space for coordi-

nation diagnosis algorithms, distinguishing several phases in the diagnosis process,

and providing alternative algorithms for each phase. In Chapter 8 we present novel

techniques that enable scalability in three ways. First, we use communications early

in the diagnosis process, to stave off unneeded reasoning, which ultimately leads to
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unneeded communications. Second, we use light-weight (and inaccurate) behavior

recognition to focus the diagnostic reasoning on beliefs of agents that might be in

conflict. Finally, we propose diagnosing only a limited number of representative

agents (instead of all the agents). Chapter 9 presents an experimental evaluation of

the basic algorithms (presented in Chapter 7) as well as their scalable versions (pre-

sented in Chapter 8) large-scale teams in terms of computation and communication,

in different domains, in thousands of trials.
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Chapter 7

Social Diagnosis Algorithms for

Teams of Situated Agents

In this chapter we seek to draw lessons about the design space of social diagnosis

algorithms. We distinguish two phases of social diagnosis: (i) selecting who will

carry out the diagnosis; (ii) having the selected agent(s) generate and disambiguate

diagnosis hypotheses, where a diagnosis hypothesis is a set of conflicting beliefs, and

the agents that disagree about them (i.e., that hold these beliefs). These phases can

be distinguished for any social diagnosis process.

To explore these phases concretely, we focus on disagreement faults in teams

of situated (behavior-based) agents [Firby, 1987, Newell, 1990, Mataric, 1998,

Tambe, 1998]. The control process of such agents is relatively simple to model,

and we can therefore focus on the core communications and computational require-

ments of the diagnosis of disagreement faults. We provide alternative algorithms for

these phases, and combine them in different ways, to present six diagnosis methods,

corresponding to different design decisions.

This chapter is organized as follows: Section 7.1 presents the architecture of

behavior-based agents. In particular, we formalize the notions of belief, behavior,

behavior hierarchy, team etc. Based on these definitions we continue to formalize

the diagnosis problem by defining disagreement, conflicts and diagnosis. Section 7.2

presents the disambiguating diagnosis hypotheses phase and Section 7.3 presents the

diagnosing agent selection phase.
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7.1 Building Blocks for Diagnosis of Situated

Agents

Behavior-based agents dynamically switch between alternative behaviors (control

modules, see Definition 7.1.1 below). Their selection of a controller is done as a

result of examining their own internal beliefs, which are influenced by the external

world. In such teams we expect to have faults due to the differences between the

beliefs of the agents, e.g. because of their different sensing of the external world

[Kaminka and Tambe, 1998, Kaminka and Tambe, 2000].

Definition 7.1.1. A behavior is a tuple BHV = 〈V AL, PRE, TER, ACT 〉, where

V AL is the identifier of the behavior, PRE and TER are sets of logic propositions

respectively representing the pre-conditions (which, when satisfied, allow the behav-

ior to be selected), and termination conditions (which terminate its selection if the

conditions are satisfied), correspondingly. ACT stands for the actions associated

with the behavior, which are executed (possibly in sequence, or repeatedly) once the

behavior selected.

We model an agent as having a decomposition hierarchy of behavior nodes orga-

nized in an acyclic graph:

Definition 7.1.2. A behavior hierarchy is a directed acyclic graph of behaviors

BH = (V, E), where V represents the behavior nodes and E represents decompo-

sition relations between the behaviors. An edge 〈b1, b2〉 ∈ E denotes that b2 is a

possible decomposition of b1. We then refer to b2 as a child of b1.

At any given time, the agent is controlled by a top-to-bottom path through the

hierarchy, root-to-leaf:

Definition 7.1.3. A behavior path is a path of behaviors through the hierarchy,

root-to-leaf, organized in a set BP = {b1...bh}, where bi represents behavior b in

depth (level) i in the hierarchy. Only one behavior in each level of the hierarchy can

be part of a behavior path.

Example 7.1.1. This example is taken from ModSAF, an application involving a

virtual battlefield environment with synthetic helicopter pilots. In the example, a

team of synthetic pilot agents is divided into two: scouts and attackers. In the

beginning all teammates fly in formation looking for a specific way-point (a given

position), where the scouts move forward towards the enemy, while the attackers
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land and wait for a signal. Once a signal is sent to the attackers, they take off and

fly in formation toward the scouts who await the attackers.

Figures 7.1 and 7.2 describe portions of the behavior hierarchies of the attacker

and scout, respectively. A selection of the path of behaviors {Execute Mission,Wait

Point,Fly Route} is possible by a scout only if the pre-condition of the behaviors

in this path: battle-point scouted=false is satisfied, and the behavior path will be

deselected when the termination-condition battle-point scouted=true will be satisfied.

Once selecting this behavior path by the scout it will execute the action speed=200.

In this example we do not assume a pre-defined sequence of the behavior paths, i.e.

any behavior path can potentially be selected at any point. The selection of other

behavior path does not depend on the previous behavior path but on the satisfaction

of the termination condition of the previous behavior path and the pre-conditions of

the new behavior path. In section 7.2.2 we will address pre-defined precedence of

behavior paths.

VAL: Join Scout VAL: Wait Point 
PRE: battle point scouted=false 
TER: battle point scouted=true 
 

VAL: Just Wait 
ACT: speed = 0 

VAL: Fly Route 
ACT: speed = 200 

VAL: Execute Mission 
 

VAL: Fly Flight 
PRE: way point found=false 
TER: way point found=true 

Figure 7.1: attacker’s behaviors hierarchy tree (portion).

An agent uses a copy of the behavior hierarchy to track its current selections.

Using its sensors it determines its beliefs and selects the behavior path which its

pre-conditions are satisfied by its beliefs.

Definition 7.1.4. The current state of an agent is a pair 〈BP, BL〉 where BP

represents its selected behavior path and BL the set of its beliefs. A belief is a pair

〈p, v〉, where p is a proposition and v ∈ {true, false} is its truth value.
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VAL: Join Scout VAL: Wait Point 
PRE: battle point scouted=false 
TER: battle point scouted=true 
 

VAL: Just Wait 
ACT: speed = 0 

VAL: Fly Route 
ACT: speed = 200 

VAL: Execute Mission 
 

VAL: Fly Flight 
PRE: way point found=false 
TER: way point found=true 

Figure 7.2: scout’s behavior hierarchy tree (portion).

Example 7.1.2. In Figure 7.1 the behavior path of an attacker that is waiting after

detecting the way point is: BP={Execute Mission, Wait Point, Just Wait} and it

executes a landing action (speed=0). The beliefs set that lead the attacker to select

this behavior path is BL={battle point scouted=false}.

Definition 7.1.5. A team T = {a1...an} is a set of n agents, and B is a set of agents’

beliefs B = {b1, ..., bn}, where bi is a set of q beliefs of agent ai: bi = {bi1 , ..., biq}.

We follow the convention of agent teamwork architectures, where agents co-

ordinate through the joint selection and deselection of team behaviors, by using

communications or other means of synchronization [Jennings, 1995, Tambe, 1997,

Kaminka and Frenkel, 2005]. In other words, while each agent executes its own be-

havior hierarchy, selection of team behaviors within the hierarchy is synchronized.

Team behaviors, typically at higher-levels of the hierarchy, serve to synchronize high-

level tasks, while at lower-levels of the hierarchy agents select individual (and often

different) behaviors which control their execution of their own individual role. Team

behaviors are represented by boxes in Figures 7.1 and 7.2.

Definition 7.1.6. A team behavior is a behavior which is to be selected and de-

selected jointly for all the team: ∀i, j ∈ T , Idix = Idjx , where T is a team, and Idix

is the identifier of team behavior node x of behavior hierarchy of agent ai.

Disagreement between team-members is manifested by selection of different team
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behaviors, by different agents, at the same time, i.e. by synchronization failures

[Kaminka and Tambe, 2000]:

Definition 7.1.7. A disagreement exists when the following condition holds: ∃i, j ∈
T , such that tb ∈ BPi ∧ tb /∈ BPj, where T is a team, tb is a team behavior, and

BPi represents the behavior path of agent ai.

Example 7.1.3. Suppose a team of one scout and three attackers T =

{S, A1, A2, A3} (see Figures 7.1 and 7.2 for their behavior hierarchies). A disagree-

ment (coordination fault) occurs if attacker A1 selects to wait BP={Execute Mission,

Wait Point, Just Wait}, while the scout S selects to fly in formation BP={Execute

Mission, Fly Flight, Fly Route}. The fault occurs due to the selection of Fly flight

by the scout, in contrast with the selection of the behavior Wait Point by attacker

A1.

Disagreements can be detected by socially-attentive monitoring

[Kaminka and Tambe, 2000]. In this process all the agents monitor certain

key agents using a behavior recognition algorithm. Once a monitor agent cannot

find a matching between its own behavior and the behavior of the monitored key

agent, it concludes that there is a fault. Since team behaviors are to be jointly

selected (as discussed above), such a disagreement can be traced to a difference

in the satisfaction of the relevant pre-conditions and termination conditions, e.g.,

agent A believes P , while agent B believes ¬P , causing them to select different

behaviors. In the diagnosis process we investigate these conflicting beliefs:

Definition 7.1.8. Conflicting beliefs are a pair of two equal belief propositions, of

different agents, which have contradictory values. 〈bix , bjy〉 where (i 6= j)∧(p ∈ bix =

p ∈ bjy) ∧ (v ∈ bix 6= v ∈ bjy).

It is these conflicting beliefs which the diagnosis process seeks to discover:

Definition 7.1.9. A diagnosis for a disagreement is a set of conflicting beliefs D =

{d1...dm} that accounts for the disagreement.

Example 7.1.4. In Example 7.1.3, the belief of scout S is the pre-conditions of its

behavior (BP={Execute Mission, Fly Flight, Fly Route}), e.g. 〈way point found,

false〉. The beliefs of attacker A1 are the termination conditions of its previous

behavior (BP={Execute Mission, Fly Flight, Fly Route}) and the pre-conditions of

its current behavior (BP={Execute Mission, Wait Point, Just Wait}), e.g. 〈way
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point found, true〉 and 〈battle point scouted, false〉. A diagnosis may be that S

believes that the waypoint was not yet found, while A1 believes that it was, i.e.,

D={way point foundS=false, way point foundA1=true}.

7.2 Disambiguating Diagnosis Hypotheses

The design space of diagnosis algorithm is composed of two dimensions: First, the

selection of one or more team-members to carry out the diagnosis (in the centralized

case, only one, and in the distributed case, all or many); and second, the process by

which the selected diagnosing agents disambigurate diagnosis hypotheses to arrive

at the correct diagnosis. The algorithms used for selecting the diagnosing agents

may depend on the diagnosis process selected in the second phase (disambiguation),

and so for clarity of presentation, this section will first discuss the second phase;

The next section (Section 7.3) discusses alternatives for agent selection.

Let us assume for now that one or more agents have been selected to carry out the

diagnosis process. The agents must now identify the beliefs of their peers and then

find the disagreements. we present two options: (i) the agents report their status

to the diagnosing agents (Section 7.2.1); (ii) the diagnosing agents actively query

agents as to the state of their beliefs 7.2.2. Obviously, these methods do not exhaust

the range of options for diagnoser selection and diagnosis methods. For instance,

there are some methods to utilize queries for the diagnosis process. However, we

chose these methods since they highlight the extremes of the design space.

7.2.1 Reporting

Perhaps the simplest algorithm for detecting the beliefs of team-members to have

all team-members send their relevant beliefs to the diagnosing agent (the diagnosing

agent can inform the team-members of the detection of a disagreement to trigger this

communication). In order to prevent flooding the diagnosing agent with irrelevant

information, each team-member sends only beliefs that are potentially relevant to

the diagnosis, i.e., only the beliefs that are associated with its currently selected

behavior path.

Upon receiving the relevant beliefs from all agents, the generation of the diagnosis

proceeds simply by comparing all beliefs of team-members to find conflicting beliefs

(e.g., agent A believes P , while agent B believes ¬P ). Since the beliefs of the

other agents are known with certainty (based on the communications), the resulting

75



diagnosis must be the correct one. However, having all agents send their beliefs may

severely impact network load.

The procedure FIND_CONTRADICTION (Algorithm 4), gets a set of agents’ beliefs

B (Definition 7.1.5) and returns a diagnosis D (Definition 7.1.9).

Algorithm 4 FIND CONTRADICTION

(input: set of agents’ beliefs B

output: diagnoses set ∆)
1: D ← ∅
2: for all bi ∈ B do

3: for all bj ∈ B where i < j do

4: for all bix ∈ bi do

5: for all bjy ∈ bj do

6: compare between the beliefs bix and bjy

7: if 〈bix , bjy〉 are conflicting beliefs (Definition 7.1.8) then

8: D = D ∪ 〈bix , bjy〉
9: return D

In the first line we initialize ∆—a set of diagnosis. In lines 2–3 the diagnosing

agent goes over the belief sets of every pair of agents, in order to compare between

their beliefs (bi is the belief set of agent ai and bj is the belief set of agent aj). Then in

lines 4–5 the diagnosing agent goes over the beliefs in the set of agent ai, comparing

it to the belief set of agent aj. In lines 6–8, the diagnosing agent compares between

every pair of beliefs. If they have the same proposition but different truth values, it

add these conflicting beliefs to the diagnosis set D, associated with their agents.

Let us analyze the runtime and communications complexity of Algorithm 4. Let

n denotes the number of agents, m denotes the number of behaviors in a worst-case

behavior hierarchy. Let b denotes the maximum number of beliefs per behavior, in-

cluding both the pre-conditions and termination conditions. The agent is controlled

by a top-to-bottom path through the hierarchy, root-to-leaf, where its maximum

length is the height of a worst-case (degenerate) tree O(m), and the total number

of its beliefs (through the path) is therefore O(mb). The agents send their beliefs

to the diagnosing agent. Under the assumption that each belief message is identical

in size; the total number of messages in the worst case is equal to the total number

of beliefs communicated by the agents, O(nmb) (in the best case the complexity is

O(n log mb) since the high of the behaviors tree is log m). The diagnosing agent

compares each agent’s beliefs with the others’, therefore the runtime complexity in
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the worst case is O(n2m2b2).

The complexity of this process can be improved by arranging the beliefs in a

sorted order. Instead of comparing between the beliefs in double loop (lines 3–4

in Algorithm 4), we could first sort the beliefs (before the loop process) according

to the propositions, and then compare between the beliefs, linearly. The sorting

process for each agent is O(mb log(mb)) and for n agents is O(nmb log(mb)). Once

the beliefs are sorted the complexity of the comparison process is O(n2mb). So, the

total complexity in the worst case is O(nmb log(mb) + n2mb). In teams where the

number of agents is scaled-up we expect that n > mb so the complexity is O(n2bm).

Example 7.2.1. Example (7.1.1, Figures 7.1 and 7.2) assume the scout was chosen

to make the diagnosis then the attackers send their beliefs after the transference

from {Execute Mission, Fly Flight, Fly Route} to {Execute Mission, Wait Point,

Fly Route}, to the scout. See in Figure 7.1 that the beliefs of A1 and A2 are:

{way point found=true ∧ battle point scouted=false}, a total of four beliefs were

sent by communication. The belief of the scout is: {way point found=false}. Once

the scout has the beliefs of all the agents, it compares between them and finds the

contradiction. In our example, the diagnosis is that the attackers’ belief is: {way

point found=true}, in contrast to the scout’s belief: {way point found=false}.

7.2.2 Querying

In the previous algorithm the agents send all the beliefs that are associated with their

behaviors. However, some of these beliefs may not be necessary for the diagnosis. We

thus propose a novel selective monitoring algorithm, in which the diagnosing agent

controls the communications, by initiating targeted queries which are intended to

minimize the amount of communications. To do this, the diagnosing agent builds

hypotheses as to the possible beliefs held by each agent, and then queries the agents

as necessary to disambiguate these hypotheses.

Querying proceeds in three stages (Figure 7.3):

1. Behavior recognition: the diagnoser observes its peers and uses a behav-

ior recognition process (see below) to identify their possibly-selected behavior

paths, based on their observed actions.

2. Belief recognition: based on the hypothesized behavior paths it further

hypothesizes the beliefs held by the teammates (which led them to select these

behavior paths, by enabling sets of preconditions and termination conditions).
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3. Querying: the diagnoser queries the diagnosed agents as needed to disam-

biguate between these belief hypotheses.

Once it knows about the relevant beliefs of each agent, it compares these beliefs

to detect contradictory beliefs which explain the disagreement in behavior selection.

Figure 7.3: Querying process for a single agent.

Behavior Recognition

This process begins with RESL, a previously-published behavior recognition algo-

rithm [Kaminka and Tambe, 2000], presented here briefly as a reminder. Under the

assumption that each agent has knowledge of all the possible behavior paths available

to each team-member, i.e., their behavior path library (an assumption commonly

made in plan recognition), each observing agent creates a copy of the fully-expanded

behavior hierarchy for each of its teammates. It then matches observed actions with

the actions associated with each behavior. If a behavior matches, it is tagged. All

tagged behaviors propagate their tags up the tree to their parents (and down to their

children) such as to tag entire matching paths: These signify behavior recognition

(plan recognition) hypotheses that are consistent with the observed actions of the

team-member.

Example 7.2.2. In Example 7.1.1 (Figures 7.1 and 7.2), a scout and two attackers

are teammates carrying out a mission. They had flown in formation (Fly Flight
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behavior) for a while, when the attackers, say A1 and A2, landed (Wait Point behav-

ior), while the scout continued to fly since it still did not find the way-point and so

continued to execute the Fly Flight behavior.

Suppose A1 monitors A2 and the scout. It recognizes that the scout’s speed is 200,

so it can hypothesize (according to the above behavior recognition algorithm) that the

scout is executing either: {Execute Mission, Fly Flight, Fly Route} or {Execute

Mission, Wait Point, Fly Route}. In addition, A1 concludes that A2 is executing

{Execute Mission, Wait Point, Just Wait} since its speed is 0. A1 can not detect

the fault, since its own behavior matches A2’s behavior and one of the behavior

hypotheses of the scout. On the other hand, once the scout monitors A1 and A2,

it recognizes that their speed is 0, so it concludes that they are executing {Execute

Mission, Wait Point, Just Wait}, in contrast to its own behavior {Execute Mission,

Fly Flight, Fly Route}. It can conclude that there is a fault: A1 and A2 selected

{Execute Mission, Wait Point, Just Wait}, while it selected {Execute Mission, Fly

Flight, Fly Route}.

The next phase is to identify the reasons for the difference in the selection of the

behaviors. The diagnosing agent should disambiguate the correct behavior path of

each teammate among its behavior path hypotheses, and the beliefs that account

for its selection. These steps are discussed in the next section (Section 7.2.2).

Belief Recognition

Once hypotheses for the selected behavior path of an agent are known to the ob-

server, it may infer the possible beliefs of the observed agent by examining the

pre-conditions and the termination conditions of each hypothesized behavior path.

To do this, the observer must keep track of the last known behavior path(s) hypoth-

esized to have been selected by the observed agent. As long as the behaviors remain

the same, the only general conclusion the observer can make is that the termination

conditions for the selected behavior paths have not been met. Thus it can infer that

the observed agent currently believes the negation of the termination conditions of

selected behavior paths.

When the observer recognizes a transition from one behavior path to another, it

may conclude (for the instance in which the transition occurred) that the termination

conditions of the previous behavior path, and the pre-conditions of the new behavior

path are satisfied. In addition, the termination conditions of the new behavior path

must not be satisfied; otherwise this new behavior path would not have been selected.
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Therefore, the beliefs of the observed agent (at the moment of the transition) are:

(termination conditions of last behavior path) ∧ (pre-conditions of current behavior

path) ∧¬ (termination conditions of current behavior path).

We use V t
i to denote the set of behavior path hypotheses of agent ai at time

t. We use PRE(V t
ij
) to denote the set of precondition propositions and their truth

value. We use TER(V t
ij
) to denote the set of termination propositions and their

truth value. F t
i denotes a set of belief hypotheses of agent ai at time t.

The procedure BELIEF_RECOGNITION (Algorithm 5) receives as input the current-

time V t
i (as generated by the behavior recognition process), and the previous behav-

ior path hypothesis set V t−1
i and returns the belief hypotheses set Fi of the same

agent (ai). As mentioned above, the observer has knowledge of the behavior-tree of

the observed agents, so the procedure could get as input the behavior path hypothe-

ses of the observed agents.

Algorithm 5 BELIEF RECOGNITION

(input: V t
i , V t−1

i

output: belief hypotheses set Fi)

1: F t
i ← ∅

2: for all v ∈ V t
i do

3: for all r ∈ V t−1
i do

4: Fi ← Fi ∪ TER(r) ∪ PRE(v) ∪ ¬TER(v)

5: return Fi

In the first line the set of the belief hypotheses is initialized as empty set. In

line 2–3 the diagnosing agent goes over the current behavior hypotheses against the

previous behavior hypotheses. In line 4 it generates the belief hypothesis as a result

of the union of the termination conditions of the previous behavior hypothesis and

the pre-conditions of the current behavior hypothesis and the termination conditions

of the current behavior hypothesis.

Example 7.2.3. Continuing Example 7.2.2, agent A1 can infer the beliefs of the

other agents as follows. As shown above, the behavior path hypotheses of the scout

are: V t
scout = {{Execute Mission, Fly Flight, Fly Route},{Execute Mission, Wait

Point, Fly Route}}. As a result of belief recognition process we obtain its beliefs

hypotheses: Fscout = {{way point found=false},{way point found=true, battle point

scouted=false}}. The first belief hypothesis is derived from the first behavior path

hypothesis while the second belief hypothesis is derived from the second behavior
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path hypothesis. In reference to agent A2, its behavior path hypothesis is VA2 =

{Execute Mission, Wait Point, Just Wait}, therefore its belief is: Fscout = {way

point found=true, battle point scouted=false}.

Let us analyze the runtime and communication complexity of Algorithm 5. As

mentioned above an observer agent infers the beliefs of the other agents by belief

recognition process. The runtime complexity of this process depends on the number

of agent’s beliefs in a single path, the number of behavior path hypotheses, and the

number of agents:

1. The number of agent’s beliefs in a single path. The number of agent’s

beliefs per behavior path in the worst case has already been shown to be O(bm),

where m is the number of behaviors and b is the number of beliefs per behavior.

But through belief recognition we combine the termination conditions of the

previous behavior path with the pre-conditions and termination conditions of

the current behavior path thus the number of beliefs is O(2bm) = O(bm).

Each belief proposition may be true or false, therefore the number of possible

belief combinations per behavior path in the worst case is O(22bm).

2. The number of behavior path hypotheses. Suppose r denotes the number

of behavior path hypotheses in the behavior hierarchy k-ary tree, (where k

designates the branching factor, i.e., the number of children of each behavior).

Then the number of possible paths is limited by the number of leaves. The

number of leaves is at most (m −m/k). It is likely that r ¿ m−m/k since

only a few of the path possibilities of the tree are indeed possible paths for a

certain recognized behavior.

3. The number of agents. This process is repeated for each observed agent so

the runtime complexity in the worst case is: O(nr22bm).

The belief recognition process does not involve any communication so we do not

present the communication complexity for this process.

Targeting Disambiguation Queries

Once belief hypotheses are known, the agent can send targeted queries to specific

agents in order to disambiguate the hypotheses. The queries are selected in a manner

that minimizes the expected number of queries. Intuitively, the agent prefers to ask
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first about propositions whose value, when known with certainty, will approximately

split the hypotheses space.

For instance, suppose there are four hypotheses: H1 = {a, b, c,¬h}, H2 =

{a, b, d,¬k}, H3 = {a, e,¬m}, H4 = {f, g,¬p}. a occurs in three of the four

hypotheses, therefore if the value of a is queried and the response is a = true, then

the three hypotheses that contain a are still active. On the other hand, b appears

only in two of the hypotheses, and so it splits the hypotheses space. If b = true

then hypotheses H1 and H2 are active, and if b = false the two other hypotheses

are active. The other beliefs have one occurrence, therefore, like a, they divide the

space to two unequal parts. In the best case only one hypothesis will be active, but

in the worst case three hypotheses will be active.

Let us analyze the minimal number of queries necessary to disambiguate the

hypotheses. A brute-force approach would have us evaluate the consequences of any

sequence of queries to determine the optimal number of queries, but the computa-

tional complexity of this procedure is combinatorial in the number of beliefs.

Instead, we use a greedy one-step look ahead strategy based on entropy, similarly

to its use in the ”twenty questions” problem. The entropy function is taken from

information theory [Shannon, 1948]:

Entropy(S) ≡
c∑

i=1

−pi log2 pi

Entropy(S) calculates the entropy of belief S. c represents the number of values

of belief S, and pi is the proportion of S belonging to value i. The entropy function

varies between 0 and log2 c. The entropy is close to the minimum (0), when the

distribution of the values of belief S is not uniform. The more the entropy is close

to the maximum, the more the distribution is uniform.

In our case each belief proposition has three possible values: true, false,

don′t care, and the maximal entropy is log2 3 = 1.58 (when the hypotheses space

is distributed uniformly by a belief query). In each step we want to query as to

the belief whose value will split the hypotheses space as uniformly as possible to

different classes. Then, every remaining hypothesis is equally likely, which means

that the next query is expected to leave only 1/3 of the hypotheses. In theory, if

all queries equally divide remaining hypotheses to three groups, there will be only

O(log x) queries, where x is the number of belief hypotheses. In the worst case, a

total of x− 1 queries would be necessary, and in the best case, only one.

Example 7.2.4. In Example 7.2.3, when agent A1 models the others it recognizes
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that A2 has only a single belief hypothesis, so its beliefs are known to A1 without

any query. The scout has two belief hypotheses, therefore only one query is required

to disambiguate between them. The two hypotheses are: {way point found=false}
and {way point found=true, battle point scouted=false}. The probability of way

point found=false as well as of way point found=true is 0.5 since they occur one

time in two hypotheses, the probability of way point found=don’t care is 0, therefore,

E(way point found) = −(−(0.5 log2 0.5)− (0.5 log2 0.5)− (0 log2 0)) = 1. The prob-

ability of battle point scouted=false is 0.5 as well as the probability of battle point

scouted=don’t care (since in the first hypothesis this belief does not appear), and the

probability of battle point scouted=trueis 0. Therefore, E(battle point scouted) =

−(−(0.5 log2 0.5)− (0.5 log2 0.5)− (0 log2 0)) = 1. Both of the belief queries have the

same entropy and therefore one of them is selected as a query to the scout arbitrar-

ily. Assume way point found was selected and the response of the scout is way point

found=true, then A1 can conclude that the correct hypothesis of the scout is {way

point found=true ∧ battle point scouted=false}. Now it can find the diagnosis by

comparing between the beliefs.

Once the belief hypotheses were disambiguated by querying, the diagnosing agent

should compare between the beliefs of the agents. So we should add the runtime

complexity of the comparisons between the beliefs as computed in section 7.2.1:

O((nbm)2). Thus overall runtime complexity of the querying algorithm in the worst

case is: O(nr22bm + (nbm)2).

The communication complexity is influenced by sending targeted queries to spe-

cific agents in order to disambiguate their hypotheses. As described above the

worst-case complexity of the number of queries to one observed agent is the number

of beliefs, O(bm). The queries are sent to all the observed agents, so the messages

transmission complexity in the worst case is: O(nbm).

This complexity is similar to that of reporting algorithm (Section 7.2.1) where

each agent sends its beliefs to the diagnosing agent (O(nbm)). But while in the

reporting algorithm this complexity is O(nb log m) in the best case, here the average

case can be expected to have a reduced number of messages, and in the best case it

could be even one message.

Precedence Between Behaviors

The analysis above assumes any behavior can potentially be selected at any point.

However, in some domains there may be known temporal orderings between behav-
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iors. These eliminate hypotheses from being generated, if they do not agree with

the temporal order in which behaviors can be selected.

VAL: Join Scout VAL: Wait Point 
PRE: battle point scouted=false 
TER: battle point scouted=true 
 

VAL: Just Wait 
ACT: speed = 0 

VAL: Fly Route 
ACT: speed = 200 

VAL: Execute Mission 
 

VAL: Fly Flight 
PRE: way point found=false 
TER: way point found=true 

(a) Attacker

VAL: Join Scout VAL: Wait Point 
PRE: battle point scouted=false 
TER: battle point scouted=true 
 

VAL: Just Wait 
ACT: speed = 0 

VAL: Fly Route 
ACT: speed = 200 

VAL: Execute Mission 
 

VAL: Fly Flight 
PRE: way point found=false 
TER: way point found=true 

(b) Scout

Figure 7.4: Agent behavior hierarchies, with ordering information.

Example 7.2.5. In the ModSAF domain (see Example 7.1.1) suppose the permis-

sible transitions are from Fly Flight to Wait Point and then to Join Scout, as seen

in Figure 7.4—a and 7.4—b (the dashed lines represent possible transitions). Let us

examine the following case: An attacker and a scout fly in formation in Fly Flight

behavior, when a fault is detected. Suppose the scout makes the diagnosis. The at-

tacker’s speed is 200, so the scout can conclude, according to the behavior recognition

process, that observed behavior paths are either {Execute Mission, Fly Flight, Fly

Route} or {Execute Mission, Join Scout, Fly Route}. However, the transition from

Fly Flight to Join Scout is impossible because the attacker could not have gone from

Fly Flight to Join Scout directly without passing through Wait Point. So, with cer-

tainty it concludes that attacker’s behavior path is {Execute Mission, Fly Flight, Fly
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Route}. Obviously, it is better to disambiguate the beliefs of the attacker when we

have only one behavior path hypothesis.

To summarize, we presented two algorithms for generating and disambiguating

social diagnosis hypotheses: reporting, in which all the agents send their beliefs that

are associated with their selected behavior paths to the diagnosing agent, and query-

ing, in which the diagnosing agent models the others by using the belief recognition

process, and disambiguate their beliefs by querying them about certain beliefs. In

the next section we will examine the question of who makes the diagnosis.

7.3 Selecting a Diagnosing Agent

Let us now turn to the first phase of social diagnosis, in which the agents that

will carry out the diagnosis are selected. Several techniques are available. First, a

design-time selection of one of the agents is the most trivial approach. Since the pre-

selected agents do not necessarily know when a failure is detected (a different agent

may have detected the failure), a failure state must be declared by the agents that

have detected the failure, and communicated to the pre-selected agent, such that the

pre-selected agents know to begin their task. A second technique that circumvents

this need is to leave the diagnosis in the hands of those agents that have detected the

failure, and allow them to proceed with the diagnosis without necessarily alerting

the others unless absolutely necessary.

We present a third approach, in which selection of the diagnosing agent is based

on its team-members’ estimate of the number of queries that it will send out in

order to arrive at a diagnosis, i.e., the number of queries that it will send out in the

disambiguation phase of the diagnosis (previous section). The key to this approach

is for each agent to essentially simulate its own reasoning in the second phase, as

well as that of its teammates. Agents can then jointly select the agent with the best

simulated results (i.e., the minimal number of queries).

Surprisingly, all agents can make the same selection without communicating,

using a recursive modeling technique in which each agent models itself through

its model of its teammates. This proceeds as follows. First, each agent uses the

belief recognition algorithm to generate the belief hypotheses space for each team-

member other than itself. To determine its own hypothesis space (as it appears to

its peers), each agent uses recursive modeling, putting itself in the position of each

one of its teammates and running the belief recognition process described above with
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respect to itself. Under the assumption that all agents utilize the same algorithm,

and have access to the same observations, an agent’s recursive model will yield the

same results as the modeling process of its peers. At this point, each team-member

can determine the agent with the minimal number of expected queries by using

the strategy discussed in Section 7.2.2. In order to guarantee an agreement on

the selected agent, each team-member has an ID number, which is determined and

known in advance. In case there are two agents or more with the same minimal

number of expected queries, the agent with the minimal ID is selected. This entire

process is carried out strictly based on team-members’ observations of one another,

with no communications other than an announcement of a disagreement.

As mentioned, this algorithm assumes that all agents have access to the same

observations. We can obtain the same observation for all the agents if we assume

full observation in regard to particular sensors. Full observation could be possible

especially in small teams and/or small physic area. But also in large areas there are

sensors which provide full observation. For instance, a radar has a range of some

kilometers, which enables determine the altitude and speed of a strange objects. In

the ModSAF domain, in which we evaluated our algorithms, this assumption is true

and indeed previous works utilized this assumption in order to make fault detection

and plan recognition in the ModSAF domain [Kaminka and Tambe, 2000]. Obvi-

ously in domain where an agent has only partial observation, we are not guaranteed

to obtain the same observation for all the agents and the agents may disagree on

the the selection of the diagnosing agent.

The procedure MINIMAL_QUERIES_DIAGNOSING_AGENT (Algorithm 6) gets the be-

havior path hypotheses of all the agents in a team T : V t = {V t
i } (that is obtained

by behavior recognition process), and their previous behavior path V t−1 = {V t−1
i }.

For each observed agent it calls to BELIEF_RECOGNITION algorithm which returns

the belief hypotheses set of the observed agent (lines 1–2). For each belief hypothe-

ses the algorithm calculates its estimated number of queries Ni (line 5), and then

returns the agent that has the minimal number of queries.

For instance, suppose there are three agents A, B and C. To determine the

diagnosing agent, A models itself from B’s perspective and considers the belief hy-

potheses that B has about A and C, given A’s and C’s observable actions. A also

uses the belief recognition process described earlier to determine the number of belief

hypotheses available about B’s beliefs, C’s beliefs, etc. It now simulates selecting

queries by each agent, and selects the agent (say, C) with the minimal number of ex-
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Algorithm 6 ESTIMATED OPTIMAL

(input: V t, V t−1

output: agent ai)
1: for all Agents i do

2: Fi ← BELIEF RECOGNITION(V t
i ,V t−1

i )

3: F ← F
⋃

Fi

4: for all Fi ∈ F do

5: Ni ← number of queries based on maximal information gain

6: N ← N
⋃

Ni

7: return {ai ∈ T |min(Ni)}

pected queries. B, and C also run the same process, and under the assumption that

each agent’s actions are equally observable to all, will arrive at the same conclusion.

Example 7.3.1. In Example 7.2.3, the scout models the attackers, and models the

attackers modeling the scout (itself). The belief hypotheses of each one of the at-

tackers are: {way point found=true ∧ battle point scouted=false}, so no query

is requested. The result of belief recognition (by recursive modeling) of the scout

on itself is: {way point found=false} or {way point found=true ∧ battle point

scouted=false}, only a single query is needed. These process is carried out by the

attackers too, and they into the same results. Obviously, in this case the scout is se-

lected to diagnose, since it is expected to send no queries, while if one of the attackers

would be selected it would send one query.
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Chapter 8

Social Diagnosis: Scaling-Up

In this chapter we seek to enable social diagnosis in large-scale teams of behavior-

based agents. We first develop techniques which use communications earlier in the

diagnosis process (compared to previous work), in an attempt to stave off both

the runtime associated with generation of diagnostic hypotheses, as well as later

communications. These techniques include: (i) using initial queries to alleviate

diagnostic reasoning (behavior querying); (ii) using communications in light-

weight behavior recognition to focus on relevant beliefs that may be in conflict

(shared beliefs).

These “communicate early” techniques enable a third method (grouping) in

which the diagnosed agents are divided into groups based on their selected behavior

and their role, such that all members of a group are in agreement, and at least one

disagreement exists between any two groups. Then, only representative agents of

each group are diagnosed, and the results are used for others in their group. By using

grouping, we limit the required communication and computation which is done only

among the representative agents, and thus make the approach applicable to large

teams.

This chapter is organized as follows: We suggest three methods that tackle the

runtime and communication complexities. In Section 8.1 we present the behavior

querying technique which eliminates the behavior recognition process by querying

about the selected behavior path. In Section 8.2 we present the technique shared

beliefs which limits the belief recognition process by inferring only the propositions

of the beliefs, not their value. finally in Section 8.3 we present the grouping

technique which reduces the number of diagnosed agents by grouping together agents

along disagreement lines, and selecting representative agents for diagnosis.
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8.1 Behavior Querying

Generally a behavior is associated with several beliefs through its preconditions and

termination conditions. Thus, each behavior path hypothesis may generate several

belief hypotheses as previously described. Therefore, we expect the number of belief

hypotheses to grow with the number of behavior path hypotheses.

The behavior recognition process is responsible for the growing number of behav-

ior path hypotheses. Using this process, the diagnosing agent infers the hypothesized

behavior paths associated with the action of the observed agents. We can eliminate

the uncertainty in the behavior recognition process by disambiguating the observed

agent’s behavior path using communication, instead of inferring all its behavior path

hypotheses. This goal is achieved by committing early in the diagnosis process to

using communications, querying the observed agent about its behavior path. Once

the diagnosing agent knows the behavior path of the monitored agent, it continues

to build the belief hypotheses that are associated only with that behavior path. The

advantage of this method is that by a single query about the behavior path of the

observed agent, it eliminates all the queries about the belief hypotheses associated

with other (incorrect) behavior path hypotheses.

We predict an improvement in terms of runtime since the behavior querying

method eliminates the belief hypotheses computation of all the behavior path hy-

potheses except for the correct one. So instead of the linear complexity of behavior

recognition (in the number of behaviors in the behavior hierarchy), the number of

behaviors has no effect at all, and the resulting complexity is O(1). We addition-

ally predict an improvement in communications, since using communication early in

the diagnosis process eliminates a large number of belief hypotheses, and so saves

up communication that would have been done lately by disambiguating the correct

beliefs by querying.

8.2 Shared Beliefs

The main factor that causes a high runtime of the querying algorithm is the use

of belief recognition process. For each diagnosed agent, runtime for this process

grows exponentially in the number of beliefs associated with hypothesized recognized

behavior paths. Even if the number of behavior path hypotheses is one, belief

recognition will typically have multiple beliefs associated with it, and thus result in

an exponential number of belief hypotheses.
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The exponential complexity is affected by taking into consideration all the com-

binations between the possible values of every belief proposition (true, false) that

belong to the pre-condition and termination condition of the behavior path hypoth-

esis. As we showed in Section 7.2.2 the number of agent’s beliefs per behavior

path in the worst case is O(bm), where m is the number of behaviors and b is

the number of beliefs per behavior. But through belief recognition we combine the

termination conditions of the previous behavior path with the pre-conditions and

termination conditions of the current behavior path thus the number of beliefs is

O(2bm) = O(bm). Each belief proposition may be true or false, therefore the number

of possible belief combinations per behavior path is O(22bm).

We present a light-weight belief recognition technique whose complexity grows

polynomially with the number of beliefs. The key to this technique is to infer only the

propositions associated with a belief, without hypothesizing their values. In other

words, the key is to infer that an agent has beliefs about p, without inferring what

these beliefs are (i.e., whether the agent believes p or ¬p is true). The diagnosing

agent uses this technique to infer, for each agent, what propositions it holds. Then,

for each pair of agents it queries for the values of propositions that are shared by

the agent, and may thus be in conflict. The diagnosis is the union of the shared

beliefs that were found in conflict.

We use V t to denote the set of behavior path hypotheses of the agents in team

T at time t (V t
i denotes the set of behavior path hypotheses of agent ai). We use

PRE(x) to denote the set of precondition belief propositions, and TER(x) to denote

the set of termination belief propositions, where x ∈ V t
i , i.e., x is a path through

the hierarchy.

The procedure SHARED_BELIEFS (Algorithm 7) receives as input the current-time

V t (as generated by the behavior recognition process), and the previous behavior

path hypotheses set V t−1 and returns the diagnosis D.

In lines 1–2 we initialize ∆—a set of diagnosis and SB—a set of shared beliefs.

In lines 3–4 the diagnosing agent goes over the behavior path hypothesis sets of

every couple of agents, in order to compare between their behavior paths (V t
i is the

behavior path sets of agent ai and V t
j is the behavior path sets of agent aj). Then in

lines 5–6 the diagnosing agent goes over every two certain behavior paths of agents

ai and aj, in order to compare between their associated beliefs.

In lines 7–8 the algorithm unions the belief propositions that are associated with

the behavior path of the observed agents, separately for each agent. The associated
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Algorithm 7 SHARED BELIEFS

(input: V t, V t−1

output: diagnoses set ∆)

1: SB ← ∅
2: D ← ∅
3: for all V t

i ∈ V t do

4: for all V t
j ∈ V t where i 6= j do

5: for all x ∈ V t
i do

6: for all y ∈ V t
j do

7: Fx ← PRE(x) ∪ TER(x) ∪ TER(V t−1
i )

8: Fy ← PRE(y) ∪ TER(y) ∪ TER(V t−1
j )

9: SB = Fx ∩ Fy

10: for all SBi ∈ SB do

11: query agents ai and aj about the values of the proposition SBi

12: if the values of SBi are opposite then

13: D = D ∪ SBi

14: return D

belief propositions of agent ai executing a behavior path V t
i are (i) the preconditions

(PRE(V t
i )); (ii) termination conditions (TER(V t

i )); and (iii) the termination con-

dition of its previous behavior path TER(V t−1
i ) (since it terminated this behavior

path). Then in line 9 the diagnosing agent finds the shared beliefs of the observed

agents by intersecting between their belief propositions. Finally, in lines 10–13 it

goes over through the shared beliefs and for each one of them it disambiguates

its value by querying. If its value was found in conflict between the agents, it is

added to the diagnosis set D.

Example 8.2.1. Assume the preconditions and the termination conditions of the

current behavior of agent A consider propositions p and q and its termination condi-

tions of previous behavior consider propositions r. Those of agent B consider p and s

by the preconditions and termination conditions of current behavior, and proposition

r by termination conditions of previous behavior. p and r are the propositions shared

by agent A and agent B. To determine whether A and B disagree, the diagnosing

agent only needs to send queries about the value of p and r to agents A and B, since

they are the only proposition relevant to both. For instance, a possible diagnosis is

that agent A believes p while agent B believes ¬p (assuming they agree on r).

Assume n denotes the number of agents and r denotes the average number
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of behavior path hypotheses per agent, then the complexity of the algorithm is

O(n2r2b2m2) (bm is the complexity of the number of beliefs b per behavior path

m). On the other hand, the complexity of querying algorithm which uses belief

recognition is O(nrm2b + n2b2m2) (nrm2b is the complexity of belief recognition for

r behavior path hypotheses of n agents, n2b2m2 is the complexity of the comparison

between the beliefs of the agents). The main difference between the algorithms is

that shared beliefs is polynomial in the number of beliefs while belief recognition

is exponential in the number of beliefs. However, in a small number of beliefs the

factor of the comparison between the agents is more significant.

Using this method, we expect that communications will grow with the number

of agents, relative to the querying algorithm since in teams we expect that most

of the beliefs will be shared beliefs, so most of them are suspected.

8.3 Grouping

Regardless of how knowledge of the beliefs of teammates is inferred, the diagnosing

agent must compare between the beliefs of the teammates after inferring those be-

liefs. This comparison is polynomial in the number of agents and in the number of

beliefs. However, in a large-scale team, runtime may be too high in practice.

The grouping method abstracts the observed agents, grouping together agents

that are in a similar state. It then uses a single agent from each group as a repre-

sentative for all agents in its group. To determine the diagnosis, it only compares

the beliefs of these representative agents, significantly reducing the total number of

comparisons.

The process is based on the assumption that two or more agents that have

both the same role in the team and the same behavior path will have the same

beliefs, at least with respect to their selection of role and behavior path. Based on

this assumption only representative agents of each role and behavior path must be

diagnosed.

The grouping method thus relies on behavior querying (Section 8.1) and

shared beliefs (Section 8.2). To determine the different role/behavior path com-

binations, the diagnosing agent first disambiguates the behavior path of each mon-

itored agent using the behavior querying process. It then divides the team to

groups based on their roles and behavior paths; this essentially divides the team

along disagreement lines. It continues with the diagnosis process only for repre-
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sentative agents of each group (hereinafter: representative agents) by the shared

beliefs method (actually it can continue also by querying algorithm, but in Sec-

tion 9.4.2 we will show that the shared beliefs technique is better). Finally, it

uses the results of the diagnosis for the remaining members of the groups.

Example 8.3.1. Assume a team of seven agents T = {a1, a2, a3, a4, a5, a6, a7}, a1,

a2 and a3 have the role r1, a4, a5 ,a6 and a7 have the role r2. Using behavior

querying, the diagnosing agent disambiguates the current behavior path of the ob-

served agents. After this process, it finds that a1, a2, a3, a4 and a5, are in behavior

v1 while a6 and a7 are in behavior v2. By grouping the team according to their se-

lected behavior paths and their roles, the diagnosing agent identifies three sub-groups:

T1 = {a1, a2, a3} (role r1 and behavior path v1); T2 = {a4, a5} (role r2 and behavior

path v1); and T3 = {a6, a7} (r2 and behavior path v2).

Now, the diagnosing agent continues the diagnosis, only considering the rep-

resentative agents a1, a4 and a6 (selected arbitrarily) using the shared beliefs

algorithm. It finds the conflicts represented in the diagnosis set D = {〈a1 : b1, a4 :

¬b1〉, 〈a1 : b2, A6 : ¬b2〉}. The diagnosing agent generalizes this diagnosis to the other

members of the sub-groups D = {〈a1, a2, a3 : b1, a4, a5 : ¬b1〉, 〈a1, a2, a3 : b2, A6, a7 :

¬b2〉}.
We hypothesize that this process will reduce both the number of messages as well

as runtime. The diagnosis process would involve a significantly-reduced number of

agents, as only the group representatives are diagnosed. This number is bounded

from above, by the product of the number of roles in the team and the number

of behavior paths. Assuming s denotes the number of roles and p denotes the

number of behavior paths, then s ∗ p ¿ n and so the whole diagnosis process in

large-scale teams will be significantly faster. Communications will still grow in the

number of agents, since the diagnosing agent has to disambiguate the behavior path

of the agents by behavior querying in order to divide the team to groups, but

again it will grow much slowly in the number of agents related to the querying or

reporting algorithms.

A potential disadvantage of this method lies with its assumption that agents in

the same group will have the same beliefs, an assumption which may not always

be correct. For instance, if the termination condition of a behavior Z is p ∨ q,

then an agent A may terminate this behavior because it believes that p is true (q

is false), while an agent B which has the same role as A, may terminate the same

behavior because it believes that q is true (and p is false). Both of the agents will
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then terminate Z, and may select the same new behavior, although their beliefs are

not the same. However, we believe that this case is rare. It did not occur in our

experiments.
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Chapter 9

Team of Situated Agents:

Evaluation and Discussion

In this chapter we empirically evaluate the algorithms presented in Chapter 7 and

in Chapter 8 in diagnosing thousands of systematically—generated failure cases,

occurring in a team of behavior-based agents in two different complex domains.

In section 9.1 we present six algorithms derived from the design space of social

diagnosis presented in Chapter 7. In section 9.2 we draw general lessons about

the design of social diagnosis algorithms from the empirical results. Specifically,

the results show that centralizing the disambiguation process is a key factor in

dramatically improving communications efficiency, but is not a determining factor

in runtime efficiency. On the other hand, explicit reasoning about other agents is

a key factor in determining runtime: Agents that reason explicitly about others

incur significant computational costs, though they are sometimes able to reduce the

amount of communications.

In section 9.3 we present four algorithms based on the techniques presented in

Chapter 8. In section 9.4 we empirically examine these algorithms. We find that

behavior querying reduces both runtime and communications. However, the

shared beliefs technique does not scale well. Moreover, when combined, these

techniques do not reduce communications nor runtime. Surprisingly, however, the

grouping method (which is enabled by this disappointing combination), results in a

diagnosis process which is highly scalable in both communication and computation.
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9.1 Social Diagnosis Methods for Teams of Situ-

ated Agents

In Chapter 7 we presented a space of social diagnosis algorithms: Each algorithm

operates in two phases, and we presented alternative techniques for each phase. For

the selection of the diagnosing agent, we have the following methods: (i) rely on pre-

selection by the designer; (ii) let the agents that detected the fault do the diagnosis;

or (iii) choose the agent most likely to reduce communications (using the distributed

recursive modeling technique described in Section 7.3). In terms of computing the

diagnosis, two choices are available: Either have all agents communicate their beliefs

to the selected agents (Section 7.2.1), or allow the diagnosing agents to actively

query agents as to the state of their beliefs, while minimizing the number of queries

as described above (Section 7.2.2).

These design alternatives define a space of diagnosis methods, corresponding

to different combinations of the alternative algorithms in each phase. These are

described in detail below. Table 9.1 summarizes the diagnosis possible methods

in this space. The first column represents the algorithms of the selection of the

diagnosing agent. The first row presents the algorithms of computing the diagnosis.

The other cells in the table present the relevant methods according to the diagnosis

space in the column and the row.

query report

pre-selected method 5 method 1,method 3

detectors method 2 N/A

minimal queries method 4 method 6

Table 9.1: Summary of the diagnosis methods in the design space.

Method 1. The first design choice corresponds to arguably the most trivial

diagnosis method, in which all agents are pre-selected to carry out the diagnosis.

When a failure is detected (and is made known to all agents) each agent communi-

cates all its relevant beliefs to the others so that each and every team-member has

a copy of all beliefs, and therefore can do the diagnosis itself.

Method 2. Arguably, only a single agent really needs to have the final diagnosis

in order to begin a recovery process. Thus in method 2, the agents that detected

the disagreement automatically take it upon themselves to carry out the diagnosis,

unbeknownst to each other, and their teammates (who did not detect the disagree-
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ment). Because their teammates may not know of the disagreement, the diagnosing

agents cannot rely on their teammates to report their beliefs without being queried

(in phase 2). Instead, they use the querying algorithm discussed in the previous

section. Thus even other diagnosing agents will be queried.

Method 3. The next design choice corresponds to a diagnosis method in which

the designer pre-selects one of the agents, arbitrarily. When a failure is discovered

(and is made known to all agents), all team-members communicate immediately all

their relevant beliefs to this pre-selected agent. While in method 1 all the agents

make the diagnosis and report their beliefs each other, here only a single pre-defined

agent makes the diagnosis.

Method 4. The fourth method attempts to reduce the communications. It uses

the recursive modeling technique to have all team-members agree on which agent

is to carry out the diagnosis (this requires the detection of the disagreement to be

made known). Once the agent is selected (with no communications), it queries its

teammates as needed.

Method 5. In this method the diagnosing agent is selected in advance by the

designer, in contrast to method 4. It uses the querying method in order to make the

diagnosis.

Method 6. This method uses the selection of the most likely agent to reduce

the communication as basis. However, once this agent is selected, the other agents

do not wait for its queries, and instead report to it.

In principle, there is one more method in which the beliefs of all the agents are

reported to the fault-detecting agents, which make the diagnosis (the empty box

in Table 9.1). But, we did not experiment with this algorithm, since we already

examine methods where the agents report their beliefs to the diagnosing agent(s):

in method 1 they report to all the other agents (all agents are pre-selected), and

in method 3 they report to a single pre-selected agent. A method where all agents

report to some diagnosing agents (here, fault detecting) will be bounded from above

and from below by methods 1 and 3.

Table 9.2 summarizes the phases and the worst-case complexity of the different

methods. Each method is presented in a different row. The first column shows the

method (by #). The next two columns correspond to the different phases of the

diagnosis process. The choice of algorithm is presented in each entry, along with a

marking that signifies the number of agents that execute the selected technique for

the phase in question. The last two columns present the worst-case complexity of
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# Selection Disambiguation Runtime Communication

1 pre-selected (N) N → N reporting O((nbm)2) O(n2bm)

2 detectors (K ≤ N) K → N querying O(nrm2b + (nbm)2) O(n2bm)

3 pre-selected (1) N → 1 reporting O((nbm)2) O(nbm)

4 minimal queries (1) 1 → N querying O(nrm2b + (nbm)2) O(nbm)

5 pre-selected (1) 1 → N querying O(nrm2b + (nbm)2) O(nbm)

6 minimal queries (1) N → 1 reporting O(nrm2b + (nbm)2) O(nbm)

Table 9.2: Summary of evaluated diagnosis methods and their runtime and commu-

nication worst-case complexity.

the runtime and communication, correspondingly.

For instance row 2 should be read as follows: In method 2, the agents selected

to perform the disambiguation are those who detected the disagreement. K such

agents exist (where K is smaller or equal than the total number of agents in the

team, N), and they each execute the querying algorithm, such that K agents query

N agents. In contrast, row 3 indicates that a single pre-selected agent executes the

diagnosis, and it relies on reports from all agents to carry out the diagnosis, such

that N agents report their beliefs to 1 agent.

We can see that the communication complexity of methods 1 and 2 has an n2

factor, in contrast to the other methods, since the diagnosis is carried out by several

agents (up to n).

The runtime complexity divides between methods 1 and 3, and the others. In

methods 1 and 3 the diagnosing agent(s) do not model other agents, but they obtain

their beliefs by reporting, and disambiguate the diagnosis only by comparing between

these beliefs, thus the complexity is polynomial in the number of agents and beliefs.

On the other hand, in methods 2, 4 and 5 the beliefs of the other agents are not

reported to the diagnosing agent, so it infers them by belief recognition process,

which is exponential in the number of beliefs, and then diagnoses by querying.

In method 6 the diagnosing agent makes the diagnosis by reporting algorithm

(whose complexity is similar to that of method 1 and 3). The selection of the diag-

nosing agent uses the MINIMAL_QUERIES_DIAGNOSING_AGENT algorithm. As shown

above, this algorithm uses belief recognition, a process whose complexity is expo-

nential in the number of beliefs.
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9.2 Empirical Evaluation: Design of Social Diag-

nosis

We turn now to an empirical evaluation of the diagnosis methods presented in the

previous section in two domains: One inspired by a real-world application (Mod-

SAF), and one artificial (TEST).

9.2.1 Real-World Domain

We examined the diagnosing methods on teams of behavior-based agents in a sim-

ulation of the ModSAF domain. We performed experiments in which method 1 to

method 6 were systematically tested on different failure cases, while we varied the

number of agents, the roles of the agent and the disagreements between the agents.

1. Number of agents: teams of two to thirty six agents.

2. Roles of agent: for each n agents (1) one attacker and n-1 scouts; (2) n-1

attackers and one scout; (3) n/2 attackers and n/2 scouts.

3. Disagreements: we systematically checked all possible disagreement cases for

all team behavior paths. Thus overall, each method was tested 33,000 times,

or in average 950 trials for every team size.

We detected methods 1–6 on all failure cases. In each test we recorded the

number of messages sent by all the agents, and runtime of the diagnosis process.

For example, in Table 9.3 we present the results of a single test, where one scout

and nineteen attackers fly in formation in Fly Flight behavior, when eight of the

attackers, A1−−A8, transition to the Wait Point behavior while the other attackers

and the scout continue to fly in formation. The diagnosis is that A1−−A8 detected

the way-point (their belief is: way point found=true), while the other agents did not

detect it (their belief is: way point found=false).

The first column in Table 9.3 reports the method used. The second column

presents the number of messages sent reporting on beliefs, or querying about their

truth (one message per belief). The third column reports the number of messages

sent informing agents of the existence of failures (we assume point-to-point commu-

nications). The last columns summarize the runtime of each agent in milliseconds.

For instance, the number of messages reporting on beliefs for method 3 is 46, and

380 failure messages were sent (i.e., all the agents that detected the failure informed
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Method Messages Runtime(msec)

Belief Failure A1–A8,A10–

A19

A9 Scout

1 912 380 2 2 2

2 608 0 23 23 23

3 46 380 0 2 0

4 30 380 20 25 20

5 31 380 0 25 0

6 46 380 21 21 21

Table 9.3: Results of diagnosing a specific failure case: one scout and nineteen

attackers fly in formation in Fly Flight behavior, when eight of the attackers, A1−
−A8, transition to the Wait Point behavior while the other attackers and the scout

continue to fly in formation.

the others). The runtime of all the teammates for method 3 is 0 milliseconds,

except for A9, which was selected in advance to disambiguated the beliefs in this

case, and therefore took 2 milliseconds. On the other hand, the runtime of all the

teammates for method 4 is 20 milliseconds, except for A9, which disambiguated the

beliefs in this case, and therefore took an additional 5 milliseconds (for a total of 25

milliseconds). In this example test, in methods 3 and 5 we selected A9 in advance

to make the diagnosis, since it was also the agent selected by the recursive-modeling

process in methods 4 and 6. Thus we can show the difference in runtime between

these methods.

Figures 9.1 and 9.2 summarize the results of the experiments. In both figures,

the horizontal axis shows the number of agents in the diagnosed team. Figure 9.1

presents the average number of belief messages Each data point (team size) is an

average over 950 runs (failure messages were ignored in the figure, since their effect is

negligible). Figure 9.2 presents the average runtime (in milliseconds) of those same

tests. The runtime of each test was taken as the maximum of any of the agents in

the test.

Both figures show grouping of the evaluated techniques. In Figure 9.1 (number

of messages), methods 3 to 6 show a slow, approximately-linear growth (methods

3 and 6 cover each other), while methods 1 and 2 show a much faster non-linear

growth. In Figure 9.2 (runtime), the grouping is different: Methods 1 and 3 grow

significantly slower than the other methods (they overlap).
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Figure 9.1: ModSAF: Average number of messages per failure case.
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Figure 9.2: ModSAF: Average runtime in milliseconds per failure case.

According to Figure 9.1 the graphs of method 4 and 5 grow slower than the

graphs of method 3 and 6, in contrast to their runtime performance (shown in Table

9.2). The reason for this is that method 4 and 5 use the querying algorithm, while

method 3 and 6 use reporting algorithm. The communication complexity of the

reporting algorithm in the best case is equal to the worst case: O(nbm), since each

agent always sends its own beliefs. On the other hand, while the complexity of the

worst-case of the querying algorithm is O(nbm), but in the best case it is O(1).

Averaged over thousands of tests the results of the querying algorithm are better
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than the reporting algorithm.

There are very small differences in Figure 9.1 between method 4 and method 5,

as well as between method 3 and method 6, despite the fact that in methods 4 and 6

the minimal queries agent makes the diagnosis. The reason for this that the number

of messages is almost the same (when the pre-defined agent, or the minimal queries

agent makes the diagnosis) is that in the ModSAF domain all the agents have almost

the same behavior hierarchy. As a result, the number of belief hypotheses of the

minimal queries diagnosing agent is almost the same as the other agents, and so the

benefits of the minimal queries diagnosing agent are not recognizable. In section

9.2.3, we will examine the benefit of the minimal queries diagnosing agent in more

depth.

The first conclusion we draw from these figures is that runtime is mainly affected

by the choice of a belief recognition process (Figure 9.2, Table 9.2). Methods (here,

methods 1 and 3) that rely on the agents to report their relevant beliefs do not

reason about the hypothesized beliefs of others. Therefore, their runtime is much

smaller than methods (here, methods 2, 4 to 6) which hypothesize about the beliefs of

others (methods 2, 4 and 5 use belief recognition in querying algorithm and method 6

uses belief recognition in selecting the minimal-queries diagnosing agent). However,

as Figure 9.1 shows, the goal of reducing communications is actually achieved, as

methods 4 to 6 do indeed result in less communications then method 3. The question

of whether the cost in runtime is worth the reduction in communications is dependent

on the domain.

We draw a second conclusion from Figure 9.1. Despite the additional savings pro-

vided by the minimal queries diagnosing agent algorithm, the choice of a centralized

diagnosing agent is the main factor in qualitatively reducing the number of mes-

sages sent, as well as in shaping the growth curve as the number of agents is scaled

up. These results contrast sharply with previous work in disagreement detection, in

which distributed algorithms reduce communications [Kaminka and Tambe, 2000].

9.2.2 Evaluation in Controlled Settings

The experiments above were constrained to the parameters of the ModSAF domain,

and thus limit the variance in the complexity of the agents. This section examine the

diagnosis methods in settings where the number of beliefs (b, in Table 9.2), and the

number of behavior path hypotheses (r) are controlled directly. For this aim we built

a domain which simulates team with varied number of behavior-based agents. This
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domain, like the previous one, simulates teamwork in which the agents should agree

on the selection of some pre-defined behaviors, concurrently. During the teamwork

task the agents transition between the behaviors. The application simulates faults

by controlling the selection of the behaviors by the agents, and causing disagreement

in regard to the selected behavior. Unlike the MODSAF domain, in the domain of

the simulated team, we control the number of beliefs and the number of behavior

path hypotheses.

In the first set of experiments, we examine the influence of the number of beliefs

(b in Table 9.2) on the runtime and the communication, of the diagnosis methods.

For this goal, we performed experiments with a fixed number of agents (fifteen) and

behavior path hypotheses (two), while the number of beliefs per behavior is varied

from two to eight. The experiments tested with representative failure cases in a

total number of 42.

The results of the communications in these experiments are presented in Figure

9.3 and that of the runtime are presented in Figure 9.4. Each data point is an average

over six trials. The results in the graphs agree with the presented complexity analysis

in Table 9.2. The communication complexity of all methods is approximately linear

in the number of beliefs as shown in Figure 9.3. However, the growth of methods

4 and 5 is the slowest since the agent selected to carry out the diagnosis sends a

minimal number of queries (querying algorithm), while the graph of method 1 grows

much faster, since all the agents communicate with each other. On the other hand,

Figure 9.4 shows that the runtime of methods 1 and 3 grows slowly and linearly

(their runtime is closed to zero) while the other methods grow exponentially, in the

number of beliefs, as predicted in Table 9.2.

In a second set of experiments, we examine the influence of the number of be-

havior path hypotheses (r in Table 9.2) on the runtime and the communication. In

these tests the number of agents is fixed (thirty) as well as the number of beliefs per

behavior (three), while the number of behavior path hypotheses is varied from two

to ten. The experiments tested with representative failure cases in a total number

of 315.

The results of the communications in the first tests are presented in Figure 9.5.

Each data point is an average over approximately 35 trials. Here again, the results in

the graphs agree with the complexity analysis in Table 9.2. The number of behavior

path hypotheses have no influence on methods 1, 3 and 6, since in these methods the

agents do not use behavior recognition (The graph of method 1 is out of the scope
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Figure 9.3: TEST domain: Average number of messages per failure case when

varying number of beliefs. The number of agents is fixed at fifteen, and the number

of behavior paths hypotheses is fixed at two.

Figure 9.4: TEST domain: Average runtime per failure case when varying number

of beliefs. The number of agents is fixed at fifteen, and the number of behavior

paths hypotheses is fixed at two.

104



of the y axis and it is constant at 3132 messages). However, methods 2, 4 and 5 are

affected by the number of behavior path hypotheses. According to the complexity in

Table 9.2 we expect to obtain a linear curve in the number of messages (Figure 9.5),

and indeed in practice the graphs’ growth is linear. The reason is that the graphs’

growth depends on the partition of the belief hypotheses space. As discussed in

Section 7.2.2, the selected query by the diagnosing agent divides this space. Tt is

bounded from above with the number of beliefs which influences on the graph to be

linear with the number of beliefs. On the other hand it is bounded from below with

the constant one which influences on the graph to be constant with the number of

beliefs. Therefore, the graphs of methods 2, 4 and 5 involve constant, linearly and

logarithmic growths.

Figure 9.5: TEST domain: Average number of messages per failure case when

varying number of behavior path hypotheses. The number of agents is fixed at

thirty, and the number of beliefs is fixed at three.

Figure 9.6 shows the runtime results in these experiments. As expected, the

runtime complexity of methods 2 and 4 to 6 grow quickly as the number of behavior

path hypotheses grows since they use the querying algorithm where the runtime

is affected by the number of hypotheses, while the graphs of method 1 and 3 are

approximately fixed at close to 0 milliseconds, since they use the reporting algorithm

which does not depend on the number of behavior path hypotheses.
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Figure 9.6: TEST domain: Average runtime per failure case when varying number of

behavior path hypotheses. The number of agents is fixed at thirty, and the number

of beliefs is fixed at three.

9.2.3 Minimal-Queries Diagnosing Agent

In a final set of experiments, we examine the efficiency of the selection of the minimal

queries diagnosing agent, by comparing between methods 4 and 5. Both of these

methods use the querying algorithm to make the diagnosis, but while the diagnosing

agent in method 4 is expected to ask the minimal queries, in method 5 it is selected

in advance.

The comparison of these methods in the ModSAF domain yields very little dif-

ference, since the number of the involved beliefs in all behavior path hypotheses of

the agents is almost the same. As a result, any difference between the number of

queries of the minimal queries diagnosing agent and the other agents is very small.

In contrast, in the following experiments, we control the number of beliefs of the

behaviors of each agent separately. The number of agents is fixed (four) as well as the

number of behavior path hypotheses (two), while the number of beliefs per behavior

is varied from two to ten only for a single random agent while it is fixed (three) for

the other agents. We expect that in method 4, this agent will be selected to make

the diagnosis according to the selection of the MINIMAL_QUERIES_DIAGNOSING_AGENT

algorithm (Algorithm 6).
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Figure 9.7 summarizes the communication results in the experiments. Each data

point is an average over six trials. The graph of method 4 shows a fixed number

of messages, independently of the growth of the number of beliefs. The reason is

that in this method the agent with the most number of beliefs is selected to make

the diagnosis, while the other agents are queried for their beliefs (they have the

same number of beliefs in all trials). On the other hand, the graph of method 5 is

dependent on the number of beliefs of the random agent, since the diagnosing agent

is selected randomly and it may be not the minimal queries diagnosing agent, so the

number of sent messages grows. We can see that although the general tendency of

the graph of method 5 is growing up, it decreases in the points of four and eight

beliefs. The reason is that incidentally the diagnosing agent who was randomly

selected has the most number of beliefs so it is predicted to query the minimal

number of queries similarly to the minimal queries diagnosing agent in method 4.

Figure 9.7: TEST domain: Average number of messages per failure case when

varying number of beliefs per behavior for a single random agent. The number of

agents is fixed at four, and the number of behavior path hypotheses is fixed at two.

Figure 9.8 summarizes the runtime results. We can see, as predicted, that both

the runtime of method 4 as well as of method 5 grow exponentially, since both of

them use belief recognition algorithm in the querying algorithm.
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Figure 9.8: TEST domain: Average runtime per failure case when varying number

of beliefs per behavior for a single random agent. The number of agents is fixed at

four, and the number of behavior path hypotheses is fixed at two.

9.3 Diagnosis Methods for Large Teams

In Chapter 8 we presented three techniques which utilize these ideas: (i) behavior

querying (Section 8.1) using targeted queries to alleviate diagnostic reasoning; (ii)

shared beliefs (Section 8.2) using light-weight behavior recognition to focus on

beliefs that may be in conflict; and (iii) grouping (Section 8.3) the agents by their

role and behavior and then diagnosing each group based on representative agents.

In order to evaluate these techniques we present four diagnosis methods based

on these techniques and on the original methods we reported in Section 9.1.

Behavior. The diagnosing agent uses only behavior querying (Section 8.1) in

order to disambiguate the behavior path of the observed agents. Once the

behavior path of each monitored agent is known, the diagnosing agent contin-

ues to diagnose using the remaining phases of the querying algorithm (belief

recognition and querying).

Belief. The diagnosing agent uses behavior recognition in order to build the behav-

ior path hypotheses of the observed agents, then it continues with the shared

beliefs method (Section 8.2) to find the suspect belief conflicts and generate
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the diagnosis.

Behavior+belief. This method combines behavior querying and shared be-

liefs methods. The diagnosing agent uses behavior querying to determine

the behavior path of the observed agent, and then continues to diagnose the

disagreements using the shared beliefs method.

Grouping. The last method adds a grouping technique (Section 8.3) to the behav-

ior+belief combination. Once the behavior path of each monitored agent

is known using behavior querying, it divides the team to groups according

to their role and behavior path, and continues to compute the diagnosis using

shared beliefs method against the representative agents of the groups.

We compare these methods to the original querying algorithm (Section 7.2.2)

and to the reporting method (Section 7.2.1), which relies on complete communi-

cation with no inference other than for the comparison step.

Method Runtime complexity

reporting O(n2b2m2)

querying O(nr22bm + n2b2m2)

behavior O(n22bm + n2b2m2)

belief O(r2n2b2m2)

behavior+belief O(n2b2m2)

grouping O((sp)2b2m2)

Table 9.4: Summary of evaluated diagnosis methods and their runtime worst-case

complexity.

Table 9.4 summarizes the worst-case complexity of the algorithms. The first two

rows describe those methods presented in Section 9.1 (reporting and querying).

The complexity of reporting is affected by the comparison between the beliefs

(b2m2) of n agents (n2). querying also performs the same comparison (n2b2m2),

but first it recognizes the beliefs by behavior recognition (r behavior path hypotheses

of n agents) and belief recognition processes (22bm).

The next four rows present the different methods presented above the table. be-

havior method is exactly as querying except of the using of behavior querying

instead of behavior recognition, and so it has only a single behavior path hypothesis

instead of r. The next algorithm, belief, uses behavior recognition to build the
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behavior path hypotheses (r), then it finds the shared beliefs by comparing between

the belief propositions (bm) of n agents. behavior+belief combines behavior

querying technique instead of behavior recognition in querying algorithm (which

replaces the r behavior path hypotheses by a single one), and shared beliefs

technique instead of belief recognition in querying algorithm (n2b2m2). The last

algorithm, grouping, uses the previous one (behavior+belief) but only on rep-

resentative agents (s ∗ p) instead of the whole group (n).

9.4 Empirical Evaluation of Diagnosis in Large

Teams

In the following sections we will empirically examine the performance of the methods

presented in the previous section through thousands of tests in two domains (Sections

9.4.1 and 9.4.2, resp.).

9.4.1 Simulation of a Real-World Application

In Section 7.1 we describe the use of diagnosis algorithms in a simulation of a real-

world application (ModSAF), a virtual battlefield environment containing teams

of synthetic helicopter pilots. We recreated the agents’ behavior hierarchy in this

domain, and determined their behavior in large-scale settings by simulating disagree-

ments in teams much larger than originally described.

We performed experiments in which we varied the number of synthetic pilots

from 2 to 150 (in jumps of 4). For each team size (n agents), we varied the selected

behavior path of each agent, and the role of the agents (two roles, scouts and attack-

ers). We ran three sets of tests: (1) one attacker and n−1 scouts; (2) n−1 attackers

and one scout; (3) n/2 attackers and n/2 scouts. Overall, for every n agents, we

tested close to 60 failure cases, varying the behavior paths (4 options) selected by

the agents. For each single test we measured the number of messages sent and the

runtime by each one of the diagnosis methods.

Figure 9.9(a) summarizes the results of these experiments. It compares the

different diagnosis methods in terms of the average number of belief messages they

utilize. The X axis shows the number of agents in the diagnosed team and the Y axis

presents the number of messages. Each data point is an average over approximately

60 trials.
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(a) ModSAF domain: number of messages.
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(b) ModSAF domain: runtime.

Figure 9.9: ModSAF domain: Diagnosis runtime and number of messages for 2–150

agents.

The growth of the shared beliefs method (belief) appears similar to that of

the reporting algorithm (reporting). We believe that this is because in teams,
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the behavior paths selected by different agents refer to the same propositions, to a

large degree. Thus the number of shared beliefs (that are then communicated) is

in fact very close to the total number of beliefs (which are all communicated in the

reporting method).

The behavior querying method (behavior) shows limited improvement rel-

ative to the querying algorithm (querying) graph. We believe this is because in

the ModSAF domain there are only few possibilities of behavior path hypotheses and

belief hypotheses, and as mentioned above (section 8.1) the benefit of this method

is in the disambiguation of a high number of behavior path hypotheses and/or belief

hypotheses by a single query about the behavior path of the diagnosed agents.

The combination between behavior querying and shared beliefs methods

(behavior+belief) is worse than behavior querying and better than shared

beliefs alone. The reason is that indeed it saves communication in the beginning

of the diagnosis process by disambiguating the behavior path of the agents by one

query, but then it uses more queries in order to disambiguate between the shared

beliefs.

The grouping method is also better than the querying algorithm as shown

in Figure 9.9(a), since the diagnosis communication is done only against the repre-

sentative agents of the groups. Although the number of the representative agents

is fixed through the tests, communication depends linearly on the number of agents

since each added agent is queried about its behavior path. In an application with

a high number of behavior path hypotheses and/or belief hypotheses we predict a

significant growth in the querying graph in contrast to the grouping graph which

will remain the same (since the communication growth is affected only by the queries

that disambiguate the agents’ behavior path).

Figure 9.9(b) presents the average runtime (in CPU milliseconds) of the different

methods. The runtime of each test is taken as the maximum of any of the agents

in the test. All the curves except grouping grow polynomially as expected from

Table 9.4. Surprisingly, the shared beliefs (belief) method grows much faster

than querying. The reason for this is that the shared beliefs method compares

all the beliefs that are associated with all of the behavior path hypotheses of all the

agents, before disambiguating the beliefs’ values. This is done to determine what

propositions are possibly shared between agents, and may thus be in conflict. On the

other hand, in the querying algorithm, the comparisons are done only between the

beliefs of the agents after that have already been disambiguated, so only the actual
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beliefs of the agents are compared (although the inference preceding the querying is

exponential in the number of beliefs). We can see it also in Table 9.4. The belief

has additional factor r2, the number of behavior path hypotheses, which affects the

runtime.

The combination of the shared beliefs and behavior querying methods

(behavior+belief) shows a slight improvement with respect to shared beliefs

alone (belief), since the comparisons are now done between the beliefs that are

associated with only the behavior path hypothesis of the agents (instead of all the

behavior path hypotheses, as Table 9.4 shows that the factor r2 does not exist in

behavior+belief). However, although Table 9.4 shows that behavior+belief

is better than querying, we should pay attention that the factor bm represents the

worst case. In the behavior+belief algorithm all the hypothesized beliefs (of the

single behavior path) are compared before disambiguating their value, while in the

querying algorithm the diagnosing agent compares the actual beliefs (after they

have been disambiguated).

On the other hand, as expected, the behavior querying method (behavior)

improves the runtime relative to the querying algorithm, since it saves the belief

recognition of all the beliefs that are associated with the behavior path hypotheses

that have not been disambiguated as the correct one. Indeed Table 9.4 shows that

the factor r (number of behavior path hypotheses) does not exist in behavior

querying. However, it is still polynomial in the number of agents, since agents’

beliefs are compared.

Undoubtedly, the significant runtime improvement is in the grouping method,

since its complexity is linear, rather than polynomial, as also evident in Figure 9.9(b).

The reason is that the number of representative agents is fixed by the product of the

number of behavior path hypotheses (p in Table 9.4) and the number of agents’ roles

(s in Table 9.4), so the number of comparisons between their beliefs is bounded, too.

This result is surprising given the reliance of grouping on the behavior+belief

combinations, which do not do well.

The conclusion we draw from these results is that while in general runtime grows

polynomially in the number of agents (because of the comparisons), the grouping

method reduces the complexity to a slow linear growth due to the fixed number of

comparisons. In addition, the reduced number of comparisons causes a reduction in

the number of messages. On the other hand, it seems according to the figures that

the other two methods, behavior querying and shared beliefs, do not contribute
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to the reduction of either the runtime or the number of messages.

9.4.2 A Synthetic Domain

The conclusions in the former section lead us to two questions: First, to what degree

do the results of the grouping method depend on the characteristics of the ModSAF

domain—low number of agent roles (two) and behavior paths (four)? And second,

are there benefits to behavior querying and the shared beliefs methods?

In order to address these questions we examine the diagnosis methods while

varying parameters such as roles and behaviors. To do this, we have created an

artificial domain called TEST, in which we vary (1) the number of agents, (2) the

number of roles, (3) the number of behavior path hypotheses and (4) the number

of beliefs per behavior. The actions in this domain are defined only to the degree

that allows their recognition (as part of the diagnosis process). The behaviors do

not correspond to any specific task, but are structured in a way that mimics the

hierarchy of the ModSAF domain’s behaviors.

grouping Benefits. A key feature of the grouping method is that the number

of representative agents is bounded from above, by the minimum of (i) the number

of agents in the team, and (ii) the number of groups. Since groups are distinguished

during diagnosis based on the combination of roles and selected behaviors, the num-

ber of groups, for any disagreement, cannot exceed the product of the number of

roles and number of behavior paths in the behavior hierarchy.

Figures 9.10 and 9.11 show the results from experiments with this feature. We

arranged four experiments, in which we fixed the number of roles and the number

of behavior paths in the behavior hierarchy at: (i) four (Figures 9.10(a),9.11(a));

(ii) six (Figures 9.10(b),9.11(b)); (iii) eight (Figures 9.10(c),9.11(c)); and (iv) nine

(Figures 9.10(d),9.11(d)). Since groups are distinguished based on role-behavior

path combination, the maximal number of groups is the product of these factors,

namely, in the first experiment 16, in the second 36, in the third 64 and in the last

one 81.

For each of the configurations, we ran the diagnosis methods in teams of up to

150 agents. Each test was examined in maximal disagreement (i.e., worst case),

in the sense that every agent tried to select behaviors and roles different from its

peers. For instance, for twelve agents in the second experiment, six roles are divided

equally between the agents, and for each two agents that have the same role, they

select different behavior paths. Overall, each data point in the figures is an average
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over these six trials.
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(a) 4 roles and 4 behavior path hypotheses.
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(b) 6 roles and 6 behavior path hypotheses.
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(c) 8 roles and 8 behavior path hypotheses.
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(d) 9 roles and 9 behavior path hypotheses.

Figure 9.10: TEST domain: The number of messages of the grouping algorithm

in large-scale team, in varied number of roles and behavior-path hypotheses.

Figure 9.10 shows the number of messages of the grouping method compared

with querying and reporting. We can see that around the point of the prod-

uct of the number of roles and number of behavior paths, the linear graph of the

grouping method changes its angle and grows much slower. The same phenomenon

occurs in Figure 9.11, that shows average runtime in these experiments. The graph is

approximately polynomial as long as the number of agents is smaller than the prod-

uct of the number of roles and number of behavior paths, then the graph becomes

approximately constant since this number is bounded.

We believe that the grouping method is suited for large-scale teams. As teams

grow, the number of groups (and therefore the number of diagnosed representative

agents) is likely to be much smaller than the total number of agents in the teams,

even if we assume that the complexity of the different agents (in terms of roles and

behaviors) would also be higher than in the experiments above. Figures 9.11(a) and

9.11(b) show that when the number of agents is less than 132, using the grouping
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(a) 4 roles and 4 behavior path hypotheses.
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(b) 6 roles and 6 behavior path hypotheses.
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(c) 8 roles and 8 behavior path hypotheses.

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

0 10 18 26 34 42 50 58 66 74 82 90 98 106 114 122 130
number of agents

ru
nt

im
e 

in
 m

s

reporting

querying

grouping

(d) 9 roles and 9 behavior path hypotheses.

Figure 9.11: TEST domain: Runtime of the grouping algorithm in large-scale

team, when varying roles and behavior-path hypotheses.

algorithm is preferable even to the reporting method. From the shape of the

curves in Figures 9.11(c) and 9.11(d), we can conclude that in large-scale teams,

grouping is preferable.

Let us now turn to examining the benefits of the behavior querying and

shared beliefs methods. We believe there are two ways in which these meth-

ods can be beneficial to the diagnosis process: First, by combining them with the

grouping method; and second, in settings involving a large number of behavior

path hypotheses and number of beliefs.

Combining the Three Methods. The grouping method is composed of two

stages: Dividing the agents into groups according to their role and selected behavior

path; and diagnosing the representative agents of the groups, where the results

are assumed to hold for the other agents. In order to diagnose the representative

agents in the second stage, we can use either belief recognition and comparison

between beliefs by the querying algorithm or the shared beliefs method. Since

the number of diagnosed agents is relatively small (only representative agents are
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Figure 9.12: ModSAF domain: comparison between behavior and behav-

ior+belief in small teams (2–20).

diagnosed), it is important to choose a method that works well in small teams. In

the experiments we ran in the previous section (9.4.1), we preferred the shared

beliefs method.

To evaluate this choice, Figures 9.12(b) and 9.12(a) show the communication and
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runtime results, respectively, of behavior querying (that uses behavior query-

ing in order to disambiguate the behaviors, and then continues to the querying

algorithm) and the combination of the behavior querying and the shared be-

liefs, in diagnosing small teams (up to 20 agents, close to 60 trials per data point).

We see that the two methods are close in terms of communications (Figure 9.12(b))

while the shared beliefs (behavior+belief) is better than querying in terms

of runtime (Figure 9.12(a)). However, we remind the reader that with larger team

sizes, querying runs faster than shared beliefs, and thus with a large number

of groups generated by the grouping method, it may be preferable to diagnose

representative agents using belief recognition, instead of shared beliefs.

We can explain the difference between small teams and large teams by the dif-

ference in the complexity between behavior (O(n22bm + n2b2m2)) and behav-

ior+beliefs (O(n2b2m2)) algorithms shown in Table 9.4. The algorithm be-

havior uses belief recognition to disambiguate the correct beliefs of the observed

agents (O(n22bm)) and then diagnoses the disagreements by comparing these be-

liefs (O(n2b2m2)). On the other hand, behavior+belief uses shared beliefs in

order to make the diagnosis, and so it compares between all the beliefs of the ob-

served agents before disambiguating the correct beliefs. Therefore, the coefficient

of the number of agents b2m2 in the behavior algorithm is smaller than the same

coefficient in behavior+beliefs. However, behavior has one more factor in its

complexity nm2b, which grows only linearly in the number of agents. Therefore, in

small teams the graph is affected by this factor, and so behavior+belief is bet-

ter than behavior. But in large teams this factor is insignificant relatively to the

polynomial factor of n2b2m2 (with a small coefficient), and so behavior is better

than behavior+belief due to the effect of the coefficient.

shared beliefs Benefits. A second benefit of shared beliefs is in the high

number of beliefs and behavior path hypotheses. The complexity of shared beliefs

method is polynomial in the number of beliefs (Section 8.2). This is in contrast to the

querying algorithm that grows exponentially in the number of beliefs. However,

this computational advantage does not manifest itself in the ModSAF domain, since

in the ModSAF domain tests, only the number of agents is varied where the number

of beliefs is fixed and small.

To examine the effects of this difference between shared beliefs and query-

ing, we compare them in settings involving a larger number of beliefs, in the TEST

domain. In these experiments we vary the number of beliefs from two to nine per
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behavior path in a sequence of 8 tests from a varied number of agents from 11 to 18.

Figure 9.13 summarizes the results of these experiments (6 trials per data point).

The X axis shows the number of beliefs per behavior path and the Y axis shows

the runtime in CPU milliseconds. Obviously, reporting shows the best results

since it involves comparison between the correct beliefs and between hypothesized

beliefs as in the shared beliefs algorithm. However, we can see that while the

querying graph grows exponentially, the shared beliefs graph grows polynomi-

ally very slowly. The relation between the curves consist along a varied number of

agents (from 11 agents in 9.13(a) to 18 agents in 9.13(h)). The implicit conclusion

is that in a domain that involves a high number of beliefs, shared beliefs would

be preferable to querying.

behavior querying Benefits. The behavior querying method has a sim-

ilar benefit, with respect to a high number of behavior path hypotheses. As we

have shown in Section 8.1 and in Table 9.4, the number of messages in the query-

ing method depends on the number of behavior path hypotheses. As the number

of behavior path hypotheses grows, it typically multiplies the number of belief hy-

potheses, and this results in requiring many more queries to disambiguate the belief

hypotheses. The intention behind behavior querying is to eliminate all behav-

ior path hypotheses but one, by directly querying about the behavior path of the

observed agent. In a domain where the potential number of behavior path hypothe-

ses is small (e.g., only two in the ModSAF domain), the benefit of the behavior

querying is not realized. Therefore, we examine it in the TEST domain. In this

set of experiments the number of beliefs per behavior is fixed at three, while the

number of behavior path hypotheses is varied from two to ten. We examined sets of

tests along a varied number of agents from three to ten.

Figure 9.14 summarizes the results of the experiments. The X axis shows the

number of behavior path hypotheses, while the Y axis shows the number of mes-

sages. Both the behavior querying method (behavior) as well as the group-

ing method (that relies on the behavior querying) are essentially constant in

the number of sent messages, since once the behavior path of the observed agent

is disambiguated the rest of the process depends on the number of agents and the

number of beliefs, where these parameters are fixed here. On the other hand, the

querying algorithm grows with the number of behavior path hypotheses. We con-

clude that behavior querying can be very beneficial in domains involving a large

number of behavior path hypotheses.
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(a) 11 agents.
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(b) 12 agents.
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(c) 13 agents.

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8 9
number  of  beliefs

ru
nt

im
e 

in
 m

s

querying
belief
reporting

(d) 14 agents.
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(e) 15 agents.
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(f) 16 agents.
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(g) 17 agents.
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(h) 18 agents.

Figure 9.13: TEST domain: runtime in varying number of beliefs per behavior.
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(a) 3 agents.
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(b) 4 agents.
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(c) 5 agents.
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(d) 6 agents.
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(e) 7 agents.
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(f) 8 agents.
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(g) 9 agents.
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(h) 10 agents.

Figure 9.14: TEST domain: number of messages in varying number of behavior path

hypotheses.
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Chapter 10

Summary and Future Work

In this dissertation we coped with the problem of diagnosing coordination faults in

teams. We discussed aspects of the problem that have not been addressed in the

literature, and presented the following contributions:

1. Formalizing the problem in terms of model-based diagnosis, and proving its

complexity is NP-Hard.

2. Presenting a distributed approach for the diagnosis, and evaluating its perfor-

mance empirically.

3. Drawing lessons about a design space for coordination diagnosis.

4. Presenting algorithms and approaches for diagnosis of large-scale teams.

Here we will summarize the contribution in each one of these aspects. Finally in

Section 10.5 we will present new directions for future work.

10.1 Formalism

We presented a novel formalization for diagnosing coordination failures in multi

agent systems, in terms of model-based diagnosis. In our model the diagnoser does

not know the inputs of the agents, instead it relies on a model of the coordination

between the agents. We model such coordination using two coordination primi-

tives (concurrence and mutual exclusion). In the diagnosis process the diagnoser

observes, the actions of the agents, then it finds the candidate abnormal agents by

the coordination model.
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We defined both a consistency-based and abductive diagnosis versions of coor-

dination diagnosis, and proposed centralized algorithms for both. The consistency-

based approach finds the local conflicts between pairs of agents, then continues to

compute the diagnosis by combining the conflicts using a minimal vertex cover algo-

rithm. We showed that this approach is unsound, in that it may produce diagnoses

that are impossible, in that they cannot be corrected. The second approach maps

the abductive coordination diagnosis problem to that of satisfiability, finding a min-

imal set of truth-value changes that satisfy a given proposition. Here, our initial

approach pre-computes all the possible coordination-satisfying action assignments,

and then uses these during on-line diagnosis by comparing the actions of the agents

to each one of the instances of the satisfying action assignments.

10.2 Distributed Algorithms

To counter limitations of centralized coordination diagnosis methods, such as com-

putationally expensive in practice in terms of communications and run-time, or

relying on a single diagnoser and thus risk a single point of failure. We presented an

empirical investigation of distributed diagnosis algorithms, using distributed CSP

algorithms as a basis. Two algorithms compute all minimal diagnoses: SBT OFF

(suitable for systems where the coordination is static), and SBT ON (for dynamic

coordination). One algorithm guarantees a single diagnosis (ABT), and two algo-

rithms utilize a local search approach and therefore do not guarantee any solution

(DSA,DBA).

We evaluated the algorithms with real and simulated robots, and concluded that

there is a trade-off between the effectiveness of the algorithms in terms of commu-

nication and computation and the correctness of the diagnosis that the algorithms

produce. However, The ABT algorithm provides a surprise: It runs faster, com-

municates less, and provides better diagnoses than the local search algorithms—in

contrast to lessons in the distributed CSP literature [Zhang et al., 2005].

10.3 A Design Space for Social Diagnosis

We presented a novel design space for methods of social diagnosis. Each such method

operates in two phases, and we presented alternative techniques for each phase.

For the selection of the diagnosing agent, we have the following methods: (i) pre-
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selected agent(s), relying on pre-selection by the designer; (ii) fault detecting agent(s),

letting the agents that detected the fault do the diagnosis; or (iii) minimal queries

diagnosing agent, choosing the agent most likely to reduce communications (using

distributed recursive modeling). In terms of computing the diagnosis, two choices are

available: (i) Reporting: have all agents communicate their beliefs to the selected

agents, (ii) Querying: allow the diagnosing agents to actively query agents as to

the state of their beliefs, while minimizing the number of queries. For each one

of the methods we evaluated the complexity in terms of their communications and

computation overheads.

The combination between these methods defines a space of six algorithms of

diagnosing a team of behavior-based agents. We empirically and systematically

evaluate the different combinations to draw general conclusions about the design of

diagnosis algorithms.

A first conclusion is that centralizing the diagnosis disambiguation task is critical

in reducing communications. The second conclusion is that techniques where agents

reason explicitly about the beliefs of their peers are computationally inferior (in

runtime) to techniques where agents do not reason about others. However, such

computation does result in a slight reduction in communications.

10.4 Large-Scale Teams

A key challenge in scaling up social diagnosis was the need to reduce both commu-

nication and inference runtime, where normally a trade-off between them existed.

We presented novel techniques that enable scalability of social diagnosis in two

ways. First, we used communications early in the hypotheses generation process, to

stave off unneeded reasoning, which ultimately leaded to unneeded communications.

Second we suggested diagnosing only a limited number of representative agents (in-

stead of all the agents). We presented three techniques which utilize these ideas:

(i) behavior querying using targeted queries to alleviate diagnostic reasoning;

(ii) shared beliefs using light-weight behavior recognition to focus on beliefs that

may be in conflict; and (iii) grouping the agents by their role and behavior and

then diagnosing each group based on representative agents.

We evaluated these techniques comparing them to reporting and querying

algorithms. We showed that behavior querying and shared beliefs techniques

offer only limited benefits in teams where the number of agents is scaled-up. How-
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ever, behavior querying allows grouping the diagnosed agents along disagreement

lines, thus allowing focused diagnosis of only representative agents from each group.

This method proved highly scalable both in communications and in runtime. We

also showed that using shared beliefs in small teams is better than querying,

and so combining it with grouping, which makes the diagnosis only against the

representative agents, provides good results.

In addition, we showed that behavior querying alone is scalable in the number

of behavior path hypotheses, and that shared beliefs alone is scalable in the

number of beliefs. Thus the contribution of this thesis is by providing techniques

scalable in the number of agents and also scalable in the knowledge size of the agents.

10.5 Future Work

This dissertation began to address the coordination diagnosis challenges we counted

in Chapter 1.2. Much work remains for future research.

We formalized the coordination diagnosis problem in terms of model-based diag-

nosis (Chapter 4). However, once the diagnosis process isolates the abnormal agents,

we should complete the diagnosis process by diagnosing every single abnormal agent

separately. Thus we will be able find the faulty components of the abnormal agents.

The combination of coordination diagnosis with single system diagnosis could be

done either in two different stages as described here, or in one process by modeling

the components of the agents in the coordination model of the team. One challenge

is to investigate these approaches, and compare their runtime and communication

overhead.

In Chapter 5 we presented diagnosis algorithms based on distributed CSP algo-

rithms. Generally these algorithms have some drawbacks. The complete algorithms

(guarantee minimal diagnosis) are not effective since they must go over through all

the combinations of the assignments of the agents. The non-complete algorithms are

faster but do not guarantee minimal diagnosis no correct. Thus another challenge

is to find a complete algorithm which finds minimal diagnosis without checking all

the assignments. Moreover, a heuristic is necessary to compute the diagnosis in in-

creased order. This enables to compute the diagnoses less than a given cardinality,

where, the cardinality is the size of the diagnosis.

In diagnosing disagreements in teams of situated-agents (Chapter 7), all meth-

ods find only the contradictions between agent beliefs, where the beliefs are derived
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directly from the hypothesized behavior paths. But in complex behavior-based con-

trol systems, chains of inference may lead from one belief to the next. Our system is

currently not able to back chain through such inference pathways, and thus is unable

to draw conclusions beyond the beliefs that immediately tied to pre-conditions and

termination conditions. Addressing this challenge is also high in our list.

In this thesis we did not address probabilities on the type of the faults of the

agents, nor on the type or amount of the faulty agents. For instance, we did not

prefer a diagnosis which hypothesizes a single faulty agent over a diagnosis that

hypothesizes multiple faulty agents. In addition, we did not address problems like

how to repair the faults automatically or how to recover the system. This pioneer

thesis laid the foundations to the diagnosis problem in teams of multi-agent systems.

It will be a challenge to address such points in the future.
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