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ABSTRACT

Computers and services such as eBanks and WebMaitlsat identify users
only at login via credentials are vulnerable toldentity Theft. Hackers
perpetrate fraudulent activity under stolen identities by using credentials,
such as passwords and smartcards, unlawfullgbtained from legitimate users
or by using logged-on computers that are left unaénded. User verification
methods provide an additional security layer by cotinuously confirming the
identity of logged-on users based on theiphysiological and behavioral
characteristics.

We introduce a novel method that continuously veries users according to
characteristics of their interaction with the pointing device of the computer
e.g. mouse, touch pad and stylus.

The contribution of this work is three-fold: first, user verification is derived
by combining the classification results ofeach individual mouse action, in
contrast to the histogram approach in [2] in whichverification is based on
aggregations of mouse actions. Second, we proposehiararchy of mouse
actions from which the features are extracted. Thid, we introduce new
features to characterize the mouse activity whichra used in conjunction
with features proposed in previous work.

The proposed algorithm outperforms current state-ofthe-art methods by
achieving higher verification accuracy while reduang the response time of
the system.

1. INTRODUCTION

Currently, most computer systems and on-line websdentify users solely by means of
credentials such as passwords and PINs (persagrdifidation numbers). These systems
expose their users taentity Thefts— a crime in which hackers impersonate legitimate
users in order to commit fraudulent activity. Haskexploit other identities by stealing

credentials or by using logged-on computers thateft unattended.



According to the non-profit Identity Theft Resour€enter (ITRC), identity theft from a
consumer perspective is divided into four categorfe) Financial identity thefin which
stolen identity is used to obtain goods and sesyider example a bank fraud; (b)
Criminal identity theftin which a criminal impersonate a legitimate usghen
apprehended for a crime; (Identity cloning- using the information of another person to
assume his or hers identity in daily life; and Bijsiness/commercial identity thefising

a stolen business name to obtain credit.

A major threat to organizations is identity thefiat are committed by internal users who
belong to the organization. Usually, the hackengaiccess to sensitive information which
can be exploited for industrial espionage, extortetc.

The drawbacks of identification methods that ongtyron credentials lead to the
introduction ofuser verificationtechniques which are used in conjunction with ergial-
based user identification. Verification methodsfaomthe identity of the users according
to behavioralandphysiological biometricsvhich are assumed to be relatively constant to
each user, and harder to steal. The verificatiog b&aperformed once during login or
continuousiythroughout the session. In the latter case, biooeteasurements of the user
are taken at regular intervals while the user iggéml-on and are compared with
measurements that were collected in advance. Conmmebavioral biometrics include
characteristics of the interaction between the asdrinput devices such as the mouse and
keyboard. Physiological biometrics, on the othemchause fingerprints, iris patterns and
other physiological features that are unique toheadividual. Thus, systems utilizing
biometric user verification require a hacker whatsao infiltrate the system not only to
steal the credentials of the user but also to mitmecuser'®ehavioralandphysiological
biometricsmaking identity thefts much harder.

A major drawback of user verification methods tae based on physiological biometrics
is that they require dedicated hardware device$ sscfingerprint sensors and retina
scanners which are expensive and are not alwaydalalea Although fingerprint
verification is becoming widespread in laptopss istill not popular enough and it cannot
be used in web applications. Furthermore, fingatprican be copied. Behavioral
biometrics [26[28], on the other hand, do not rexjapecial designated devices since they

use common hardware such as the mouse and keyboard.



Another major difference between physiological &etiavioral biometrics is the temporal
aspect - behavioral biometrics may differ dependinghe time of day in which they are
captured. This makes them harder to intercept amthte but also harder to utilize.
Furthermore, several challenges [26], which wél édlaborated in Sections 2 and 6, still
need to be overcome in order to make this apprdaity operational. Consequently,
behavioral biometrics was largely ignored for ugerification in the past. In this paper
we propose a novel user continuous verificatiohrégue based on behavioral biometrics
of mouse activity.

The rest of the paper is organized as follows:enti®n 2 we describe various aspects of
behavioral biometrics verification systems suchgaseral architecture and challenges
inherent in their construction. We also survey ently available state-of-the-art
technigues and give an in-depth description of radaghavioral biometrics. The proposed
algorithm is described in Section 3. Experimen&guits are presented in Section 4.
Finally, we conclude in Section 5 and describevilwgous challenges and open problems

that need further investigation in order to maks #pproach fully operational.

2 BEHAVIORAL BIOMETRICS SYSTEMS FOR USER
VERIFICATION

A biometric-based user verification systdamror! Reference source not found.is
essentially a pattern recognition system that aegqubiometric data from an individual,
extracts a feature set to form a unique user sigaand constructs a verification model
by training it on the set of signatures. User veation is achieved by application of the
model to on-line acquired signatures of the ingxkaiser that are constructed using a

process identical to the one used during the moaledtruction.

2.1 General architecture
Figure 1 depicts the typical architecture of a lvé@ral biometrics user verification

system. Such systems include the following comptmen
e Feature acquisition- captures the events generated by the varioud ogxuices

used for the interaction (e.g. keyboard, mouse)



e Feature extraction— constructs a signature which characterizes theberal
biometrics of the user.

e Classifier — Consists of arinducer (e.g. Support Vector Machines, Artificial
Neural Networks, etc) that is used to build ther wszification model by training
on past behavior, often given by samples. Duringfigation, the induced model
is used to classify new samples acquired from fee.u

e Signature database A database of behavioral signatures that werd tsérain
the model. Upon entry of a username, the signattitke user is retrieved for the

verification process.
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Figure 1: A typical framework of a behavioral biomdric identification system.
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2.2 Related work
According to[6], most common behavioral biometrics verificatimthniques are based

on: (a)mouse dynami¢swvhich are derived from the user-mouse interacéind are the
focus of this paper; (lReystroke dynamigcsvhich are derived from the keyboard activity;
and (c) software interaction which include, for example, how features of acdpe
software tool are utilized.

Behavioral methods can also be characterized aiogptad the learning approach that they
employ. Explicit learning methods monitor user activity while performingeedefined
task such as playing a memory ga@@]. Implicit learning techniquesyn the other hand,
monitor the user during his usual activity rathieart while performing a specific task.
Implicit learning is more challenging due to higitonsistency owed to the variety of the
performed tasks, mood changes and other influerfeicigprs. Nevertheless, it is the best
way to learn unique user behavior characteristich sis frequently performed actions.

In the following, we list current available userrifieation systems along with their

performance evaluations. Biometric systems are llysexaluated according té-alse



Acceptance RatéFAR), False Rejection Rate (FR&)d Equal Error Rate (ERRyvhich
are described in Section 4.2.

Mouse-based user verification methods
Gamboa et al [20] proposed to verify a user baseldis interaction with a memory game.

The user was required to identify matching tiled aas verified based on characteristics
of the mouse-strokes performed in order to revealtites. A mouse-stroke was defined to
be the set of traversed points from one click to thgtand a set of one or more strokes
was used in order to verify a user. Features ascturvature and velocity, were used to
characterize each mouse-stroke. The learning puoeegimployed maximum likelihood
with various distributions such as the Weibull J[2a@nd Parzan distribution[27]s.
Evaluation was performed using 50 users with aimgrpumber of mouse-strokes having
an average duration df second. Equal error rates (ERRs) of 0.007 and20wWére
achieved for 100 and 200 mouse-strokes, respegtivel

Ahmed et al[1] monitored the mouse activity of nssevhile they performed their daily
tasks within their own chosen operating conditiaarel applications. Features were
extracted and aggregated into histograms that weed to characterize each user. Four
action types were defined:

e Mouse-Move(MM) — General movement between two points.

e Drag-and-drop (DD) — An action composed of the following sequencenause-
button down event, a movement and then a mouserbuf.

e Point and Click (PC) — Mouse-movement between two points followed lojick.

e Silence— No movement.

Every action is described by properties such asdtivation, traveled distance and the
direction of the movement (the travelling propestaze excluded for silence actions). The
general movement angle is fitted into 8 equal sexors of the circle - each covering 45

degrees of the angle space as illustratdttiar! Reference source not found.
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Figure 2: Angle space of movement direction: 8 eqliaized sectors of the circle. Direction 2 represés
angles between 45° and 90°. Direction 5 represerangles between 180° and 225°.

Examples of collected actions are illustrated ibl&d..

Dirgon

Type of action

Distance(pixels)

Time(Seconds

MM 50 1 3
PC 237 3 4
PC 80 2 2
Silence - 2 -

Table 1 — Raw mouse activity data. The first actionvas Mouse-move which took 1 second, travelled in
direction 3 to a distance of 50 pixels. The secorattion was aPoint and Click which took 3 seconds
and was to a distance of 237 pixels.

A session is defined as a sequence of mouse &giyierformed by a user. The sequence

is limited to a predefined number of actions anmbaod of time. The user is characterized

by a set of 7 histograms that are constructed fiteenraw user session data. In order to

form the histograms, the data are averaged adnessession and discretisized in a manner

similar to the fitting of movement angle into 8etlitions.

1. Traveled Distance Histogram (TDH)— The distribution of the travelled distance for

every action type which is illustrated Error! Reference source not found(a). Only
the first two features (distances 0-100 and 10042@6ls) are used to represent the
user.

. Action Type Histogram (ATH) — The relative frequency of the MM, DD and PC
actions within a session - illustrated in Figurb)3(

Movement Direction Histogram (MDH) — The ratio of actions performed in each
one of the eight directions. This feature is repnésd by 8 values and illustrated in
Error! Reference source not found(c).

. Average Movement speed per movement Direction (MDA} The average speed
over all the actions performed in each one of tightedirections. This feature is

represented by 8 values and is illustrateHrior! Reference source not found(d).



5. Average movement speed per Types of Actions (ATA} The average speed of
performing the MM, DD and PC actions. This featisreepresented by 3 features and
illustrated inError! Reference source not found(e).

6. Movement Speed compared to traveled Distance (MSDB) Approximation of the
average traveling speed for a given traveling dista(derived via a Neural Network).
This feature is represented by 12 values sampted the curve. This is illustrated in
Error! Reference source not found(f).

7. Movement elapsed Time Histogram (MTH)— The time distribution for performing
an action. Represented by 2 features and illustrateError! Reference source not
found.(g).

The histograms are used to construct a featureovecimposed of 39 features which
characterize each session of every uBemwr! Reference source not found.summaries
the extracted features.

A binary neural network model was built for everyeu based on the feature vectors
drawn from the different histograms. The Neural Wk was trained via the back
propagation algorithm. Training consisted of 5 Egss- each of which contained 2000
actions (~13.55 minutes). This experiment achiet#R of 2.4614% and FRR of
2.4649%. Shorter times (about 4 minutes) produesdlts of less than 24% FRR and
4.6% FAR. Thus, in order to construct accurateolgistms, it requires a significant

amount of mouse activities, monitored over a reddyi long duration of time.

Factor: | MSD | MDA | MDH | ATA | ATH | TDH | MTH
Feature | 12 8 8 3 3 2 3

Table 2: 39 Features used in Ahmed et al [1] to elnacterize mouse behavior biometrics.

Pusara and Bordley [19] proposed a user veriboasicheme based on mouse movements
while participants browsed a predefined set of wages using a web browser. Features
such as the mean, standard deviation, third momedistance, angle and speed were

extracted from a sequence fevents. Three main evaluations were performedgta

of the first was to check the behavior differencgween each pair of users. Results

showed that a relatively large number of usershEadiscriminated from one another. In

the second evaluation, the discrimination of easéru from theset of the remaining



users was tested. A binary model was created fdr eserx. An FAR of 27.5% and FRR
of 3.06% was achieved on the average. The thirtbattan was similar to the second but
used only 11 (out of the 18 that participated) sisard also applied a smoothing filter to
the data. An FAR 0.43% and an FRR of 1.75% weresgeq.
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Figure 3 — Constructed histograms from user activit session in2]. (a) Traveled Distance Histogram
(TDH), (b) Action Type Histogram (ATH), (c) Movemert Direction Histogram (MDH), (d) Average
Movement speed per movement Direction (MDA), (e) Aerage movement speed per Types of Actions
(ATA), (f) Movement Speed compared to traveled Disince (MSD), (g) Movement elapsed Time

Histogram (MTH).

Other user verification approaches

Alternative approaches to user verification utilikeyboard dynamics and software
interaction characteristics. Keyboard dynamics features irgludr example, latency
between consecutive keystrokes, flight time, dwkthe - all based on the key
down/press/up events. Keyboard-based methods adediinto methods that analyze the
user behavior during an initial login attempt anetinods that continuously verify the user
throughout the session. The former typically cardticlassification model according to

feature vectors that are extracted while the usgys a predefined tex{usually short)



[3,21,22,29,30,31]. Bergadano et al [3], extradtes typing durations of two (di-graph)
and three (tri-graph) consecutive characters frosaraple and used to associate it to a
user. The extracted graphs were ordered by theatidn and their relative ordering was
compared to the relative order of the training saspf other users.

Keyboard-based methods for continuous verificatibosers extract feature vectors while
the user types free text. Gunetti et al. [24] ed&sl the approach of [3] to also handle free
text. Furthermore, they proposed another distaressnore based on absolute times. Curtin
et al [23] constructed a nearest neighbor classithat was trained according to the
duration of common characters, transition timesashmon di-graphs and the occurrence
frequency of special keys

Although being effective, keyboard-based verifigatis less suitable for web browsers
since they are mostly interacted with via the mouse

Several types of software are suggested in theafitee to characterize behavioral
biometrics of users. These include board gameq[14]3 email clients [7][8][9],
programming development tools [10][11][12], coamd line shells [17][18] and drawing
applications [15][16]. These biometric featureaynbe partially incorporated in user

verification systems.

3 THE PROPOSED METHOD

We propose a novel verification method which vesfia user based on edodividual
mouse action. This is in contrast to the histogkased method in [2] which requires the
aggregation of dozens of activities before accunatefication can be performed.
Verification of each individual mouse action ingea the accuracy while reducing the
time that is needed to verify the identity of th@eusince fewer actions are required to
achieve a specific accuracy level, compared tchtkgram-based approach. In order to
effectively characterize the mouse actions, we ttoasa hierarchy of features whose
lowest level consists of fundamental mouse everiidewfeatures at higher levels are
composed of lower level ones. In general, highlldeatures characterize the mouse
activity better than low-level ones since they aanwmore information regarding the task

intended by the user. The verification algorithmnstoucts a classifier using vectors



composed of high level features, which will be disd below. Some of the proposed

features are new while others bare some resemblarthe ones used in [2] and [20].

3.1 A hierarchy of mouse actions
All mouse activities are formed from fivatomic mouseevents which constitute the

lowest level (level 0) of the proposed hierarchy:

0] Mouse-move Eventnf) — occurs when the user moves the mouse from one
location to another. Many events of this type oadurning the entire movement —
their quantity depends on the mouse resolutionibétys mouse driver and
operating system settings.

(i) Mouse Left Button Down Eventld) - occurs when the left mouse button is
pressed,

(i)  Mouse Right Button Down Eventd) - occurs when the right mouse button is
pressed,

(iv)  Mouse Left Button Up Eventy) - occurs after the left mouse button is released,

(V) Mouse Right Button Up Eventy) - occurs after the right mouse button is released

Data describing each event is typically collectgalpiece of hardware or software which

may dispatch it to an event handler for furthercpssing. Mouse events are characterized

by (a) their type; (b) the location of the mougea(dy coordinates); (c) the timewhen

the event took place. Thus a mouse event is foyndakcribed bgvent-type<x,y,t>.

In general, higher-level actions are formed fromusmces of lower-level ones. Two

consecutive mouse events are considered part @feence if the time duration between

their occurrences is below a given threshold. Wer e these thresholds esncatenation
time-thresholdgCTT).

Basic mouse actions (level 1)

This set of basic mouse actions is constructeddbasea sequence of the atomic mouse
events -m, Id, rd, luandru. In order to concatenate two consecutive mousatswee
define the following CTTs:

e Moving CTT: Time threshold for concatenation of two conse@itmouse move

events which is denoted byjy.



e Mouse move to left click CTT: The time between a mouse-mowe) event and a left
mouse-down Ifl) event to be concatenated into an action. The ktoogve to Left
Click concatenation time is denoted iy v.

e Mouse-move to right click CTT: The time between a mouse-mowe) (event and a
right mouse-downrl) event to be concatenated into an action. The Elongve to
Right Click concatenation Time is denoteddyyiu.

e Mouse-down to mouse-up CTT Theminimal time duration between a mouse-down
event (d or Id) and a mouse-up eventu(or lu) event to be concatenated into an
action. Optional mouse-move events) (nay take place between the mouse-down and
mouse-up events. The mouse-down to mouse-up cortate time is denoted layp.

Given the above thresholds, we define the followbagic (level 1) mouse actions:

Silence interval — is defined as a time interval that separates dxtwiwo consecutive

mouse events in which no action took place. Foymndtle following silence interval are

defined: (a) two consecutive mouse-move eventsrasggh by a period of time that is
greater tharmym seconds; (b) a mouse-move followed by a left malsen event after

more thantyy seconds; and (c) a mouse-move followed by a mgbtise-down event
separated by more thagryv seconds. We denote a silence intervatby

Left Click (LC) — refers to the action of clicking on the left moumséton. This action

consists of a left button down event followed bigfd button up event taking place within

7Lc Seconds. Formally,

tn J—
Ly =(id,.[m_,m_,..m_]lu, |t,—t,<z,¢)
t, andt, denote the time points at which the left buttomvdand left button up events
took place, respectively. THen ,m ,...m ] refer to optional mouse move events taking

place between the mouse down and mouse up events.

Right Click (RC) — denoted the action of clicking on the right m®udmitton which is
composed of a right button up event taking platera right button down event within
Trc Seconds. Formally,

RGr =(rd,,[m_,m_,...m 1 ru, |t,—t, <zec)



Mouse-move Sequence (MMS} refers to action of moving the mouse from onsitpm
to another. This action is defined as a sequeneceonise-move events in which the time

gap between every consecutive pair of events ssthesry,. Formally,

MMS;" = <m[1,m[2 oM [ VISkSn-1:(t,, —t <7y )>
Drag-and-Drop (DD) — denotes the action in which the user presses btigeamouse
buttons, moves the mouse while the button is bpmegsed and releases the button at the
end of the movement. Using atomic events, thisoadbegins with a left or right mouse-
down event followed by a sequence of mouse-moveatswend terminates with a left or

right mouse-up event, respectively. The minimaktipetween the left down event and left

up event exceedsp Formally:

DD = (d,, M, M, .MU [t =t > 755
where the duration of the action has to be grehtn the click time, i.ez,, >7,. and
Top > Tre fOr left button and right button usage, respeyiv

The level 1 mouse actions — LC, RC, MMS and DD e iflustrated in Figs. 4(a)-(d),

respectively

Level 2 mouse actions

The next level of mouse actions is composed ofllévactions and level 0 (atomic)
events:

Mouse-move Action (MM) — A sequence of mouse-move events followed by sflen

time 6. Formally:

MM = MMS o

Double Click Action (DC) —is composed of a two consecutive left clicks inalihthe
mouse-up of the first click and the mouse-dowrheftecond one occur within an interval

of 7. Formally:

DC = (LC 3 LC,, |cty—ct, <7, )

The level 2 mouse actions — DC and MM — are ilatsd in Figs. 4(e) and 4(f),

respectively.



Level 3 mouse actions

This is the highest level of mouse actions. Th@astin this level are composed of level
1 and level 2 actions as follows:

Mouse-move and Left Click Action (MM_LC) —is composed of a sequence of mouse-
move events followed by a left click taking pladenaostzym seconds after the last

mouse-move event. Formally:

MM _LC =(MMS{-LC, |t ~t, <7y )

aq <
Mouse-move and Right Click Action (MM_RC) —consists of a sequence of mouse-
move events and a right click taking place at msiy seconds after the last mouse move
event. Formally:

MM _RC=(MMS"*-RC, [t,~t,; < Typy )
Mouse-move and Double Click Action (MM_DC) —is defined as a sequence of mouse-

move events which are followed by a double letticliFormally:
MM _DC =(MMS" -LCg? - LC,, |t —t, <7y, Cty—CL <7, )
Mouse-move and Drag-and-drop Action (MM_DD) —is composed of a sequence of

mouse-move events, a left/right mouse-down evembiher sequence of mouse-move

events and a left/right mouse-up event, respegtivarmally,

MM _DD=(MMS" -d,_,m_.m__..m_ .U

where d, ~denotes when the mouse down event took place, is when the mouse-up

e L VY O Tc>
event occurred and

d, =ld,, 7. >7. .,y > 1\ (for left button)

d, =rd,, 7. > e, 7y > Ty (fOr right button)
The level 3 mouse actions — MM_LC, MM_RC, MM_DC avd#l_DD - are illustrated
in Figs. 4(g)-(j), respectively. An overall view tife feature hierarchy is depicted in Fig.
5.
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Figure 4: Schematic description of the various mowsactions: (a) Left click. (b) Right click. (c) Mowse-
move sequence. (d) Drag-and-drop action. (e) Doubtdick. (f) Mouse-move. (g) Mouse-move followed
by a left click. (h) Mouse-move followed by a rightlick. (i) Mouse-move followed by a double click(j)
Mouse-move followed by a drag-and-drop.
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Figure 5: The hierarchy of mouse actions that are sed to characterize the mouse activity.3.2 Actions
features

Id

All actions, except for LC, RC and DC, contain aremore sequences of mouse-move
events together with lower level actions. In thkofwing we describe the features that we
use in order to characterize mouse movement. We tlescribe the features that we

associate with each mouse action.

3.2.1 Movement Features (MF)
We adopt a similar approach to the one proposdgdaigboa et gP0] in order to describe
a mouse movement action. Formally, each mouse menens associated with the

following three vectors:



t={t} , - The sampling time

X

{%}., - The horizontal coordinate sampled at titne

n
i=:

y={y}., - The vertical coordinate sampled at tite

The length of the path produced by the sequengpeiats until thda-th point is defined as:

S = o¢ + "
k=1

whereox =x,—xandoy=y,— V.
A set of basic features, which are described inlef&p was extracted in [20] from the

vectors,y andt.

Feature name Description Formal definition
Angle of movemer Angl_e of the path tangent with tl 9 =arctan{@j+i§ei
1 X-axis &) S
06, = min{& arctan{%J + an}
R
> Curvatur The relative angle change to 1| . _ &0
traveled distance 5
3 | Curvature change re Ace %
4 | Horizontal Velocit Velocity with respect to the-axis _9X
ot
5 | Vertical Velocity Velocity with respect to the-axis _9y
Yoot
6 | Velocity V= [5VZ+ove N7+ oV
7 | Acceleratiol vV
&
Jerk 5 NV
V=22
8 &
g | Angular Velocity _ 90,
ot

Table 3: Basic mouse movement features which weregposed in [20] and are used by the proposed
approach in this paper.

Based on the features in Table 3, Gamboa et al ¢@@ptruct a set of higher-level
features. In order to calculate some of these featihe vectorx,y are first interpolated
and the interpolated results are denotedkhy', respectively. The result is used to obtain
the interpolated traveled distance which is denbied'.

A subset of the higher-level features proposef2@} which is utilized by the algorithm

proposed in this paper, is given in Table 4.



Feature name Description Number of | Formal definition
features

minimum, maximum, meai| The specified statisti| 55
standard  deviation  andof
1 (maximum-minimum) x',y',0,c,Ac\,,

Vy,V,V,V and w

2 Durationof movemer 1 th
3 Traveled distanc 1 Sha
4 Straightness( 1 % —xn>;+(y1 —Va)?
Critical Points (CF 1 Critical Points(CPFi; where
5 , :{1if Ac, :O"\c‘\>lzclz}fora>£ rad
Ootherwise 10 pixel®
6 Jitter(J 1 S

S

Table 4: Additional extracted features based on xy;,s' and the basic features.

We introduce a set of new features that are usednjunction with the features in Table
4. These features include:
1. Trajectory Center of Mass (TCM) —a single featur¢hat measures the average time

for performing the movement where the weights &fendd by the traveled distance:

]_ n-1 2 >
TCM =Sn—Ztim/(>q+l =%)2+ (Vi = V)

-1 i=1

2. Scattering Coefficient (SC) —measures the extent to which the movement deviates

from the movement center of mass:

1 n-1
SC= S—Ztizﬂ\/(xm - Xi)2 + (Vi — yi)2 -TCM?
n-1 i=1

3. Third and Fourth Moment (M 3, My) —

n-1

1
M= Sw_ztulk\/(xﬂl_ Xi)2 +(Yia— Y, )2 wherek=3,4.
1

4. Trajectory Curvature (TCrv) - The average of the following quantity is taken over

all the sampled points:

TCrv=—2"%_
(X +y?)?




5. Velocity Curvature (VCrv). The average is taken as the feature.

VCrv = 3
(L+V?)2
Table summarizes the features which are used &yptbposed algorithm in order to

characterize mouse movement actions.

Factors | x | v | @ |c| AC| v [ v |v|V|V|w|l & |si|s|CP| 3| TCM| SC| Mc | TCrv | VCrv

Features | 5 515 5| 5 5 5 515|551 1 1 1 1 1 1 2 1 1

Table 5: 66 features used to represent a movemergcience.

3.2.2 Mouse action features
In order to describe the LC, RC, DC, DD, MM_LC, MRC and MM_DD mouse
actions, additional features are extracted depgndimthe action type at hand. Table 6

provides a detailed description of the features #ma used to characterize each of the

actions.
Action Features Number
of
features

Left Click (LC) | e Click Time (CT) — The time between the mouse down event and thesenap event, whic
must be less thatic.

e  Traveled Distance during Click (TDC) — The distance traveled between the mouse dpwn 2
event and the mouse up event.
Right Click | e  Click Time (CT) — The time between the mouse down event and tlusenap event which
(RC) is less thanrc. 5
. Traveled Distance during Click (TDC) — The distance traveled between the mouse dpwn
event and the mouse up event.
Drag and Drop | e The features of the movement between the mouse-dowinmouse-up events which are 66

(DD) summarized in Table

Double Click | e First Click Time (FCT) — The time between the mouse- down and mouse-emtgwvhich

(DC) is less thamc.

. First Click Distance (FCD) — The distance traveled between the mouse-dowmuse-
up events of the first click.

. Interval Time (IT) — The time interval between the first click and #econd one, which is
less thary,. 6

. Interval Distance (ID) — The distance traveled between the first cliok #re second one.

e  Second Click Time (SCT)- The time between the mouse-down and mouse-upt®\e
which is less tham, c.

. Second Click Distance (SCD)- The distance traveled between the mouse-down |and
mouse-up events of the second click.

Mouse Move | o Mouse movement featuredrom the beginning of the action until the mousevd@vent

and Left or (Table 6).

Right  Click | «  Time to click (TC) — The time between the mouse-move event immedliateceding the|

Action mouse-down event and the mouse-down event itself.

(MM_LC) e Distance to click (DC) —The distance between the mouse-move event immédiate
preceding the mouse-down event and the mouse-deent éself.

e  Click Time (CT) — The time between the mouse-down and mouse-ugtewehich is less
thanTLc.

. Traveled Distance during Click (TDC) — The distance traveled between the mouse-dpwn
and the mouse-up events.

Mouse Move | o Mouse movement featuredrom the beginning of the action until the mousevd@vent

and Double (Table 6). 74

Click Action | e  Time to click (TC) — The time between the mouse-move event immediateceding the

70




(MM_DC) mousetdown event anthe mous-down event itsel

. Distance to click (DC) —The distance between the mouse-move event immédiate
preceding the mouse-down event and the mouse-doant iself.

. First Click Time (FCT) — The time between the mouse-down and the mousarepts,
which is less tham, c.

. First Click Distance (FCD) — The distance traveled between the mouse-downttaad
mouse-up events of the first click.

. Interval Time (IT) — The time interval between the first click and 8econd, which is less
thanz,.

e  Second Click Time (SCT)- The time between the mouse- down and the mops+ents,
which is less tham, c.

. Second Click Distance (SCD} The distance traveled between the mouse-downttend
mous«up events of the second cli

Mouse Move | e Mouse movement featuredrom the beginning of the action until the mousevdevent

and Drag and (Table 6).

Drop Action | «  Time to click (TC) — The time between the mouse-move event immeyliateceding the

(MM_DD) mouse-down event and the mouse-down event itself.

. Distance to click (DC) —The distance between the mouse-move event immédiate
preceding the mouse-down event and the mouse-deent éself.

. Mouse movement featuresdescribing the movement between the mouse-down |and
mouse-up events of the drag-and-drop action (Téble

Table 6: Features of the mouse actions that are u¢o describe the mouse activity.
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3.3 The Proposed Verification Framework

The framework is divided into 3 parts: (a) Acquait (b) Learning, and (c) Verification.

A detailed description of these parts is giverhii next sections.

3.3.1 Acquisition
The acquisition part captures the mouse eventscihradtitute the users' mouse activity
and is illustrated in Figure 6. This part is comgmbof three modules and actions

database

e A feature acquisition module- responsible for acquiring the events that acelpced
by the mouse. Each event is described as a queeteint type, x coordinate, y
coordinate, timestamp>For example, the quartetvi,220,320,63355951016724>
represents a mouse-move event, at location X=22@32¥ at time 63355951016724
milliseconds after the year 1970.

® An action extractor module - transforms the acquired events into the mouserec
defined in section 3.1. Each action is extracted associated with its events in order
to facilitate the extraction of the different fewds proposed in Section 3.2.

e A feature extractor module - derives features from the given action. It is iitated

by multiple instances in Fig. 7 since different ttea extractors are required for



different types of actions. The extracted featwes summarized in TableError!

Reference source not found.

® An actions DB - stores the actions and their associated feanfresich user. This

information is used to construct the profiles afteaser in the Learning process.

Acquisition
- 1 Actions
Feature Events Action Actions | | Feature Features
Acquisition Extractor | Extractor

Figure 6: The acquisition process of mouse activity

3.3.2 Learning

In this part, classifiers are constructied each action typeTraining sets in the form of
matrices are constructed using the actions of Hegsuthat are stored in the actions DB.
Each matrix holds the features that belong to aiBpeaction type. Specifically, each
action instance forms a row whose columns contanféatures that are associated with
the action and its label is given by the id of tiser who performed the action.

A classifier is trained using the rows of one ma#tmnd the produced model is stored in a
database (one model for each action type).

We use the Random Forg&65] classifier which is a multi-class classifi@gnstructed
from an ensemble of decision trees. Given a trgirset consisting oN instances,
bootstrap samples of sikéare drawn from it. Each sample is used to conostuwlecision
tree. The classification of a pattern is obtaingdabmajority voting scheme applied to the

results of the constructed trees. Figure illusgdhe training process.

Learning

Action Type Action
Feature Type
Matrix Classifier Model

(Layer 1)




Figure 7: The training process for each of the aatin types.

3.3.3 Verification

The verification process is composed of the folluyvsteps:

1. Features are extracted from the acquired actians yrocess that is similar to the one
employed by the acquisition part.

2. The extracted features are stored irAation Collector DB

3. Once a sufficient number of (consecutive) actions eollected (according to a
predefined thresholdn) they are sent to the appropriate classifier atingrto the
action type.

4. The Classifier (Layer 1) predicts for each of tteented users, the probability that each
of them performed each of theactions.

5. Alayer 2 decision module combines the probabditeederive a final result.

The process and its components are illustratedgind-

Verification
User
Actions _— Action Users v Final Decision
Action Actions Feature | Features Features| | Classifier Probabilities | Decision (YesiNo)

Extractor Extractor ector (Layer 1) (Layer 2)
* T Action
Events Type
Model

Feature
Acquisition

Figure 8: User verification process.

In the following, we give a formal description dfet layer 1 classifier and the layer 2

decision module.

Classifier (Layer 1)

As previously mentioned, the classifier used tostartt the model for each action type is
the Random Forest [25]. Each of the actions ctdbkby the Action Collector is passed to
the appropriate classifier according to the typaaiion. LetU = {u,, ..., u,} be the set of

trained users and ldt = {a, ..., a,,} be a set of performed actions.



Each classifier (associated with actiap) estimates for each trained useythe
probability he performed action;. This probability is denoted b@(uilaj).

Let Ty = {th ta .., t;;*} be the set ofmy training instances of action type,
performed by usdr In many casesi may vary between the users for each type of action
This may result in a biased decision by the clagsifn order to overcome this problem,
normalization is applied to the probabilities. Speally, the probabilitpr"St(ui|aj) that

an actiorg; was performed by uses; is given by:

prorm (ui |aj)

:L: L pnorm (ut | a )

PPOSt (ui |a]) =

where
F’(ui|aj) R .
Pnorm(u-la-): n-Papr(ui|aj) _ P(uilaj) zpapr(ut|aj)
T e _Plude)  Porr(uile) & Puclay)

t=lp . papr (ut|aj)

andP" (u;|a;) denotes the a-priori probability derived by thértireg step.

Decision (Layer 2)
The decision module provides a final decision rdyay the performed actions. It
combines the probabilities given by the layer-Isifiers and produces a final probability
PPOst(y;lay, ..., Q).
The probability that the set of actiofa,, ..., a,,} belongs to user; is given by the
following formuld":

7Ly PP (] ;)
feq X1 PpOSt(uilaj)
The set of actions,, ..., a,, is associated to usey if the resulting probability is above a
threshold\ i.e.

PPOSt(y;lay, ..., Q) =

Yes PPoSt(u;lay,...,am) = A

Final Decision({a4, ...,a,,} € u; ={
(o, m} 2 No Otherwise

! Probability multiplication equivalent to Naive Bssywith Bayes formula was also tested, howevertaeor results
the experiments were performed using probabilitysation.



4 EXPERIMENTAL RESULTS

In order to evaluate the proposed approach, we doected an extensive and diverse
data from a wide variety of users and computer igandéitions. Given the data, the
proposed approach was evaluated by performingoitening experiments:

1. Comparison between the proposedtion-basedmulti-class approach to the
histogram-basetinary-classapproach proposed by Ahmed et al [2].

2. Comparison between the proposed multi-class vatiino and a binary-class
model utilizing the proposed approach in order amine the effectiveness of
using a multi-class model.

3. We tested the contribution of the new featuresothiced in Section 3.2 to the

verification accuracy.

4.1 Data Collection

The feature acquisition described in sectiemor! Reference source not found.was
performed in 25 computers which were used by 2lesahd 4 females. The computers
were chosen from a wide variety of brands and hardwonfigurations. Specifically, the
computers included 13 desktops, 12 laptops. The €pdéds ranged from 1.86Ghz to
3.2Ghz and the pointing devices included opticalaniouch pads and styli.

4.1.1 User groups definition

In general, different users may interact with omenmre computer system. These users
may be associated with the institution or companwhich the computer systems belong
or alternatively, they may be external. Accordindlye following two groups of users
were defined:

(a) Internal Users —correspond to users that belong to the institutiocompany.

(b) External Users —users that are external to the institution or canyp

One or more internal users may be authorized terant with a particular computer
system while the rest of the users (internal artéraal) are not. We refer to the former
interaction type as aauthorized interactionlt is assumed that the number of authorized
interactions performed by an internal user is highan the number of unauthorized ones

since most of the time the legal users interadh wieir computer systems. Moreover, the



number of unauthorized interactions by externarsise even smaller since they are not
supposed to have access to any of the computdmgite company. This assumption is
manifested by the number of legal verification @mip¢s, internal attacks and external

attacks that are chosen in the evaluation.

4.1.2 Experiment configuration

The thresholdsum, Tmim, TMRM, TLc, TR, 71 that were used in order to construct the actions
defined in sectiorError! Reference source not found.were empirically set t&00
milliseconds. The action extraction incorporatdtrdtion similarly to the one used in
[20]. Namely, calculation of the movement featuassociated with the different actions
such as speed, acceleration and jerk, was only dl@minimal amount of events was at
hand. Only movements that contained at least £rm@ifit points were considered. Events
whose type and position were equal to those ofetrent which preceded them were
ignored.

Two-fold cross validation was used in the experitegre. the data collected for each of
the users was split into 2 equal partitions: tragnand testing. The profile of each user
was constructed from the training partition and téging partition was used to generate
legal verifications and illegal attacks. On therage, the training set consisted of 15.494
hours of activity per user and the average actioattbn was approximately 1.4 seconds.
The set of all available usets= {u,, ..., u,} was randomly divided in each fold into a set
of k internal usersiU = {iu;, ..., i, |iv;, €U,1<j,<nl=1,.,k} and a set of
external user&U = U — [U. Profiles were constructed for each of the inteasars inlU
according to the training activity that belongedatbusers inU. Each of the users it
was tested for authorized and unauthorized accessedbon a varying number of
consecutive actions. In each of the experimentsitimeber of internal users was setitd| |
=12 and the number of actions varied between 11&tdactions. All the experiments
were conducted using the same testing instancaote credible comparisons.

Attacks by internal and external users were simadlatnd are referred to as internal and
external attacks, respectively. An internal attegs simulated by changing the user id of
an activity that belongs to an internal user tadaef another internal user. An external

attack was simulated by associating actions ofxdereal user with an id of an internal



user. Specifically, 24 internal attacks were sirtedafor each user in each of the two
folds, producing 48 internal attacks per user atmta of 48 * 25 = 1200 internal attacks.
Six external attacks were simulated for each usevach of the two folds, producing 12
external attacks per user and a total of 12 * ZB6& external attacks.

In addition to the attacks, 72 authorized inteaddiwere checked for each user in each of
the two folds, simulating a legitimate user workmg a computer system. This produced
144 legal verification attempts per user and 1246 * 3600 verification attempts in total.
The training and testing were performed on compwién 16GB RAM and an Intel(R)
Xeon(R) CPU running at 2.5Ghz which achieved al ¢lxecution times that are specified

below.

4.2 Evaluation measures
Since biometric-based verification systems are ecigp case of classifiers [1], their

performance is evaluated using similar measureme8fecifically, the following
measurements were used:

e False Acceptance Rate (FAR} measures the ratio between the number of atthels
were erroneously labeled as authentic interactimasthe total number of attacks.

o False Rejection Rate (FRR) -measures the ratio between the number of legitimate
interactions that were erroneously labeled as kdtand the total number of legitimate
interactions.

¢ ROC Curve — An ROC curve is a graphical representation eftdadeoff between the
FAR and the FRR for every thresho[d][5]. The point (0,0) represents perfect
verification while the point (1, 1) represents wgorerification for every instance.

e Area Under Curve (AUC) — measures the area under the ROC curve. A loWKE 5
sought after since it corresponds to better perdoiaa.

e Equal Error Rate (EER) — The rate at which both acceptance and rejeetioor rates
are equal.

Based on the above measurements, additional measote were defined.
¢ TheINTERNAL_FARwvas attained from the attacks performed by intargers.
e TheEXTERNAL_FARvas derived from the attacks performed by exteusats.



4.3 Comparison with a histogram-based approach

The approach introduced in [2] uses histogranwder toaggregatemultiple actions and
utilizes abinary modelin order to represent each user. The first expaitraompares this
approach with the two layer approach proposed ia work. In order to construct
histograms from the features that are used to cteize the mouse actions (Section 3),
discretization is first employed to continuous teas. Specifically, one of the following
methods was applied to each feature:

1. Distance discretization— In most cases, during click/double click no dis& is
traveled. Thus, in this case discretization wadopered via twobinary features. The
first is set to 1 if no distance was traveled; othee the second feature is set to 1.
This discretization was applied to the DC, FCD, §@,D and TDC features.

2. Critical Points discretization — The values observed for the CP feature were 2, 1
and 3. Therefore, the discretization produfieelbinary features. A critical point value
of O would set the first feature to 1 and the tedd, a critical point value of 1 would
set the second feature to 1 and the rest to zete@on. The last feature would be set
to 1 if the number of critical points is greateanh3. This discretization was applied to
the CP feature.

3. Equal Frequency (EQF)— The values of each feature were separated ietually-

spaced intervals. This discretization was applethé remaining features.

The discretisized features were used by both tbpgsed approach and the histogram-
based one. By performing aggregation of the distzed features of each action,
occurrence histograms as in [1] were created.f@&ieire average histograms were created
by averaging the remaining features. The featuraswere used were described in Table
6.

A verification attempt based dwactions was performed in the following manner:tHeat
the eight types of actions was extracted from kheactions and was individually
aggregated. The aggregated values were concatetmténkm a feature vector that
characterizes the user's activity. In addition, thlative occurrence of each action was

added to the feature vector.



In order to train the model, the training set dates split into 5 equal partitions and each
training partition was used to produce a singlereg@gted vector. Thus, each user was
represented by 5 vectors.

Error! Reference source not found(a)-(b) present the comparison results between the
aggregation and the action-based approadBesr! Reference source not found(a)
depicts the comparison between the two methodseimst of the AUC measure
incorporating the ANOVA test with 95% confidencéeirvals. It is evident that the action-
based method outperforms the histogram-based agproa
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Figure 9: Comparison between the action-based metldoand the histogram-based approach. (a) AUC
measure comparison: the action-based method cleartyutperforms the histogram-based one. (b) EER
evaluation of the proposed method: the action-basedhethod is superior for any number of actions

and produces EER of 8.53% and 7.5% for 30 and 10QcHons, respectively, while the histogram-based
method produced EER of 29.78% and 23.77%. There ia sharp decrease in the EER in the action-
based method until 30 actions are performed whichdcomes more moderate for a number of actions
higher than 30.

Error! Reference source not found.shows the EER of the two methods for different
quantities of actions. The action-based methoduesor for any quantity of actions.
Furthermore, a sharp decrease in the EER is olibénvihe action-based method when
the number of actions that is used for verificatranges from 1 (26.25% EER) to 30
actions (~8.53% EER). When the number of actiorizetsveen 30 and 100, the decrease
becomes more moderate and for 100 actions the EEual to 7.5%. The aggregation
approach produces 29.78% and 23.77% EER for 3Q.@@actions, respectively.

As mentioned above, the average duration of amrastias less than 1.4 seconds. The
construction of the verification vector and testtilge per action was approximatelyn8
Thus, the required time for verification based @dh&hd 100 actions is approximately

42 seconds and2.33 minutes, respectivelyConsequently, the approach proposed in this



paper provides a method for verifying the useresslthan 2 minutes with a maximal

equal error rate of 10%.

Error! Reference source not found.presents an ROC curve obtained from verification
based on 30 actions. The optimal point on the RO®@ecin which the acceptance and
rejection errors are equal is obtained for an mdEEER of 8.53% and a relatively high

external FAR of 17.66%. The choice of the optimainp may be altered according to

security level that is sought after. For instaraepint where the FAR is low and the FRR
is high suits users that have highly confidentidbimation on their computer system

while a point with relatively low FRR and higher RAnay reduce the rate false alarms of
legitimate access.

It should be mentioned that while in [1] a setaations performed within a session

produced a single instance in the training and sesd, in our proposed method, every
action produces an instance. Consequently, the eumibinstances is higher and thus
requires a larger amount of memory. Nevertheldsis, tequirement only affects the

training phase.
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——External
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0 20 40 60 80 100
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Figure 10: ROC curve for verification based on 30 etions. An internal EER of 8.53% corresponds to
an external FAR of approximately 17.66%.

4.4 Comparison between binary and multi-class models
The purpose of the second experiment was to datermvhether modeling users by a

multi-class approach is superior to modeling thersiby binary class models. In the latter,
a binary model was constructed for every actionuset pair in the training set in order to

derive the probability (u;|a;).
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Figure 11: Comparison between the binary-class motie and the multi-class model approaches. (a)
The binary-class approach outperforms the multi-clas in terms of AUC with statistical significance.

(b) The binary-class approach is superior to the miti-class approach in terms of EER for almost any

number of actions between 1 and 100.

(a) presents a comparison between the two modelopgoaches in terms of the AUC
using the ANOVA test with 95% significance intervalResults show statistically
significant superiority of the binary modeling apach over the multi-class modeling
approach. Figure 11: Comparison between the biclass models and the multi-class
model approaches. (a) The binary-class approagtedatms the multi-class in terms of
AUC with statistical significance. compares betwélee equal error rates of the multi-
class and binary-class approaches for a numbectaina ranging from 1 to 100. The
binary approach outperforms the multi-class apgraaderms of EER by 1.01% on the

average for almost every number of actions.
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Figure 11: Comparison between the binary-class mote and the multi-class model approaches. (a)
The binary-class approach outperforms the multi-clas in terms of AUC with statistical significance.

(b) The binary-class approach is superior to the miti-class approach in terms of EER for almost any

number of actions between 1 and 100.




A major drawback of the binary class modeling appho is its time and space
complexities which are approximate|y/| times greater than those of the multi-class
model approach wheré/| denotes the number of users which take parteéntriining.
Specifically,|U| binary models are constructed for every actiateiad of a single multi-
class model. For example, training each multi ctasslel requiredB.1896 minutes on
the average while testing requirdd746ms. However, since training in the binary-model
approach requires the construction of an individoiglary model for every user, the
training time took7.031 minutes * 12 (users) = 84.372 minutes and the testing time
took2.7135ms * 12 (users) = 32.562ms.

Thus, although the binary-class approach exhildasistically significant performance
superiority over the multi-class approach, considgthe time and space complexities that
are required for training and testing may rendesitunsuitable in time-critical settings.
Consequently, choosing one of the approaches dependthe verification time and
accuracy which is required. The multi-class appno&c suitable when relatively fast
verification (at the expense of lower accuracyeiguired while the binary class provides
a better choice in cases when higher accuracy gairexl at the expense of slower

verification.

4.5 Contribution of the new features
The proposed approach introduces new features doacterize mouse activity. These

features are used in conjunction with features Werte adopted from [20]. In order to
determine the contribution of the newly introducBsghtures two experiments were
conducted: the first verified users based onlylenfeatures that were adopted from [20]
and the second experiment used the new featurethrgwith the ones from [20]. Figure
(a) and 12(b) present a comparison between thétsedithe two experiments in terms of
the AUC. It is evident that the new features cdmiie to the accuracy of the model.
Figure 12(a) shows that using the additional neatuies achieves a better result for any
number of actions that are used for the verificattmd the ANOVA test using 95%

confidence intervals achieves similar findings vihaece illustrated in Figure 12(b)
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Figure 12: Contribution of the new additional featues that were introduced in Section 3.2. (a) The
additional features contribute to the verification accuracy for any number of actions ranging from 1
to 100. (b) Contribution in terms of the ANOVA testusing 95% confidence intervals.

5 Conclusions and future work
A novel method for user verification based on moadévity was introduced in this paper.

Common mouse events performed in a GUI environrogrihe user were collected and a
hierarchy of mouse actions was defined based omatheevents. In order to characterize
each action, features were extracted. New featuegs introduced in addition to features
that were adopted frof20]. A two-layer verification system was proposdthe system
employs a multi-class classifier in its first layard a decision module in the second one
in order to verify the identity of a user.

The proposed method was evaluated using a datesgtetvas collected from a variety of
users and hardware configurations. Results showgeriority of the action-based method
proposed in this paper over the histogram-basedhadeproposed irl]. Furthermore,
evaluation showed a significant improvement in\bdfication accuracy when using the
newly introduced features.

In the following we describe several issues thadnfirther investigation in mouse-based
verification methods.

The original actions intended by the user are Idguysther by software nor by observing
the user while performing the actions. Accordinghgy are heuristically reconstructed
from the raw events which may produce some nonHgleedcctions. Additionally, the
obtained actions may vary between different hardveanfigurations (e.g. optical mouse,
touch pad). In order to obtain a higher percentdgeedible actions, the parameters that

define them should be determined by a more rigonoethod.



Furthermore, the data collected from mouse dewicag be partially unreliable due to
noise. Specifically, lint clogging the moving pad$ mechanical mice may affect the
functionality of the mouse. However, this type oicenis becoming rare. Optical mice
may introduce noise due to their inability to tratlovement on glossy or transparent
surfaces. In some mice, fast movements may bepoaptured.

A significant drawback of mouse-based verificationcomparison to keyboard-based
verification is the variety of mice, mouse pads a&oftware configurations which may
influence the performance of the verification. E@ample, a person using a laptop in two
different places may use the touch pad in one packan external mouse in the other -
thus affecting the events produced and, conseguehi performance of any mouse-
based verification method. This problem does nastex keyboard-based verification
techniques since the keyboard is an integral gaheolaptop.

In order to establish well structured research emaluation of methods in the area of
behavioral biometric systems, benchmark data set be available. In their absence, it
is impossible to compare the existing methods éserch uses a different dataset, having
unigue characteristics). Moreover, each study bastadrt by putting new efforts in the
construction of new datasets. Generally, there tane types of datasets: (a) General
activities of a user in an operating system ofall@omputer, in which all the events are
hooked at the operating system level; or (b) Atggi generated from interaction with a
web application, in which all the events that akated to the web browser are monitored
at the client and sent to the server. The techmdbgspect of such collection tools is not
an issue, but rather the ways to collect largeesaathentic data, in which many users
perform their daily tasks. The problem here is fyato convince users to expose their
biometric data and to put the time and the efflmtghe data collection.

Creating a dataset faontinuous verificationnss more challenging, since the dataset should
be diverse and reflect the daily tasks of the us€&wsthermore, the dataset should reflect
the different physiological states of the user migiithe day which might influence their
behavioral biometrics and consequently the vetifica accuracy. For example, some
users are faster in the morning, while slower ghtior after lunch. Moreover, user
postures, such as sitting (common), standing d&inlon the phone while interacting

with the computer, are expected to influence thédigation accuracy as well.
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