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Decision trees have three main disadvantages: reded
performance when the training set is small, rigid @cision
criteria and the fact that a single “uncharacterisic” attribute

might “derail” the classification process. In this paper we
present ConfDTree - a post-processing method whichnables
decision trees to better classify outlier instance§ his method,
which can be applied on any decision trees algorith, uses
confidence intervals in order to identify these hard-to-classify
instances and proposes alternative routes. The exjraental
study indicates that the proposed post-processing ethod
consistently and significantly improves the predidve
performance of decision trees, particularly for smé,
imbalanced or multi-class datasets in which an avege
improvement of 5%-9% in the AUC performance is repated.

Keywords-decision trees, confidence intervals, imbalanced
datasets

l. INTRODUCTION

The area of decision trees is probably one of tlstm

extensively researched domains in machine learrisgle
from advantages such as the ability to explaindéeision
process and low computational costs, decision tades
usually produce relatively good results in comparigo

other machine learning algorithms. Although the imos

popular decision trees induction algorithms, sushC&.5
and CART, were developed a long time ago, theystile

This problem is not new and has been discussedsalmo
20 years ago in [2] ("soft thresholds"). In other
classification algorithms the problem has been esird

by using the notion of margin. One particular case
Support Vector Machines, where instead of using a
fixed hyperplane for separating classes, the dlguri
uses varying margins in order to better classifg th
dataset.

(c) Outlier attribute values- deep decision trees consisting

of many levels might also include many attribu&sch
bushy trees are often seen in particular whenr#ieing

set is large in terms of number of instances andbaun

of attributes. The need to rely on so many attebub
reach a classification leads to the following ptitén
problem: it only takes one attribute with an outlalue
(one that is uncharacteristic of its class) to ailéithe
classification process.

This claim can be easily supported using the fatgw
scenario. We are given a tree with a deptin ¢dvels.

Let a;(x) be the probability of selecting the wrong
branch for a given instanceon node |. For the sake of
simplicity, let assume that;(x) > € wheree > 0, and
that the errors are independent. Thus, the prabafol
reaching the wrong leaf iBr(err)=1-(1—¢)"
which of course increases with h. Moreover, in many
casexy;(x) increases as node | is located in a deeper

level, mainly because the number of available ingin
instances drops exponentially as the tree brarmites

frequently used for solving everyday classificattasks. In
this paper we aim to improve the predictive perfange of

these algorithms by mitigating three of their main  These problems are considerably aggravated in

drawbacks: . . imbalanced datasets [3], where there are many more

(a)Reduced performance when the training set is small jnstances of a certain class than of another. th siases,
Small sample sizes pose a great challenge to dacisi standard machine learning techniques may be
trees [1], in particular because the number oflabld  “oyerwhelmed" by the majority class and ignorertiigority
training instances drops exponentially as the tre@lass. Combined with the lack of sufficient numbsr
branches out (and the number of leaves is boungled hnstances, outlier values make it even more diffido
the training set size). For this reason, if thening setis  correctly classify under-represented classes. lderorto
too small, the induction algorithm may grow an dyer enaple decision trees to address imbalanced datéaset
simplistic classification tree. . practices are frequently used:

(b)“Rigid” decision criteria — the decision at each level 1 |nstead of using the leaf classification just abatanced
(node) of the tree is rigid in the sense that oo ¢|assification tasks, in imbalanced tasks it igdretb use
branch (node) can be chosen (unless the classified e qiassification distribution associated with  the

g}?ft:rg%? l:izle':ﬁ) V‘I?rl:ijse ain rt(l;aechatltjrsiz:ﬁ?’ v\\//vohrllfshl i<se| a designated leaf. This can be used to rank the test
P y PP Y W instances according to their probabilities and hibig

but consider the following scenario: the perforntest o
on attribute X is X10, and the value of attribute X of a deC|S|on_ maker to select t_h_e best trade-off betvtben
true-positive and false-positive performance. Assult,

given instance is 9.99. In such cases, should weino : : .
least consider the possibility that the classifaramight reaching to the incorrect leaf might have a greater
impact. In balanced classification tasks desigigatie

be incorrect, or consider an alternative path? ! _ c -
wrong leaf might still result in the same classifion



output (when the derailing is targeted to the inecr conducted using trees generated by the C4.5 digurithe
leaf but with the same classification). However inproposed method can be applied on decision trestuped
imbalanced tasks, derailing to the incorrect leal w by other algorithms.

usually result in a different classification dibtrtion and
therefore affect the test instances ranking.

. Due to the fact that the classification distribatics
frequently used in imbalanced tasks, it is reconuedn
to avoid pruning [4]. Hence, classification treex f

imbalanced tasks usually have more levels and are

therefore prone to over-fitting.

Similar to imbalanced datasets, multi-class proklatso
pose a challenge for classification trees, paditylwhen
the number of classes goes beyond a 'modest' S§iz&His
can be explained by the fact that in multi-classksa
derailing a test instance from its correct leal vékults in a
wrong classification. This is not true for balanceidary
classification tasks, in which derailing to an imeat and
random leaf may still result in a correct classifion with a
probability equal to the percentage of the iterfésscof the
total "population”.

These problems may be avoided by the use of ensem
methods like RandomForest [6]. By creating a largmber
of trees with varying attributes, outlier attribsiteand
borderline decisions become less of an obstacleveMer,
these methods require both long training and ej@ttimes
and large amounts of memory. In addition, decisamests
are considered to be less comprehensible than glesin
decision tree.

In this paper we propose a post processing metbod
address these three problems; namely, decisios ird
confidence intervals. We use simple statistical sues in
order to determine whether the decision made atydegel
of the tree has a minimum degree of plausibilitthwespect
to the final outcome (i.e., classification of arstance in a
leaf). If this is not the case, we employ one a selutions;
alternative routes or certainty fines, in ordeekplore other
classification possibilities.

The core idea of this paper is as follows. Once
classification has been made, we follow the degigath
from the leaf back to the root, examining everyisien
made along the way. After the examined instancebeas
assigned to a class, our goal is to determine \ehetie
attributes that were used to classify the instararebe said
to be “characteristic” of that class. If that i tloe case, the
solutions mentioned above, alternative paths amthingy
fines are used in order to consider other possibl
classifications.

In order to determine whether an attribute witheaain
value “belongs” to a certain class we use confidenc
intervals. Confidence intervals enable us to detemith a
predefined level of certainty whether or not théugeaof the
examined attribute is within a range that can besictered as
belonging to the class in question. The confidentervals
are easy to compute and do not add additional exitplto
the overall computational effort of the classifioatprocess.

One of the advantages of the proposed method igthe
that it does not interfere with the generationtaf tecision

The rest of this paper is organized as followstiSe
introduces related work of variations of decisioees and
decision trees that are combined with statisticathmds. In
Section 3 we present the proposed ConfDTree aBeédtion
4 we evaluate it. Lastly, Section 5 concludes tiyep.

II.  RELATED WORK

A. Decision Trees

Decision trees are directed graphs used to clagsifys.
They consist of aoot node(a node in the graph to which no
other node pointsjnternal nodegnodes that are pointed at
and point to other nodes) al@hves(nodes that do not point
to other nodes). During the classification proceds
classified item “travels” from the root to one tietleaves,
where a classification is made. The classificati@y simply
be one of the possible classes or a set of pratiedi(one
for each of the possible class values).

At this point, we wish to provide definitions foegeral

|qlaase terms: jdmmediate descendanbde — if a node points

to other nodes in the tree, these nodes are itsmédiate
descendants”; (b3plit attribute — the attribute by which a
decision is made at some node in the treesgt) value—
the value of the split attribute which determineswthich
immediate descendant node the classified instaritebev
assigned (for example, k<10 is the condition for one

{'mmediate descendant node aX¥d10 is the condition for

another, then 10 is the split value; (dss— the class is the
attribute whose values are what we attempt to prefliring
the classification phase.

The algorithms for the generation of decision traes
numerous and many methods are used for this purpdise
algorithms use recursive partitioning, but theyallsudiffer
in the manner of how they choose the attribute bickvto
split each node in the tree, as well as by thepstgpcriteria
the decision not to perform additional splits oncale). The
D3 [7] and C4.5 [8] algorithms, for example, udeet
Information Gain and Gain Ratio measures respdytaed
also differ on the tests performed on their attelsu The
CART algorithm [9] uses the Gini Impurity measud]
and regression in the leaves in order to produse it
prediction.

Contrary to the methods described above which bauild

éingle decision tree other methods use many. Alyos

such as RandomForest [6] and RotationForest [14hter
many subsets of training instances and attributeb wse
them to train multiple trees. During the classtiiica phase,
each tree provides its prediction and they area@thbined
into one. These methods usually produce superisultse
when compared to those that use single trees ypg@etause
they provide a solution, at least to some degreethe
drawbacks mentioned in Section 1), but they reglarge
amounts of computing resources and are not compsdiie
to users. In addition, the dataset requires adelfily large
number of attributes.

tree. This means that although our experiments were



B. Combinations of decision trees and statistics

The problem of outliers is not new in the fielddefcision
trees, especially in unbalanced datasets. Howgvevjous
work was focused on the tree generation phase. Woris
were aimed at preventing the outliers from infliegcthe
creation of the model and on improving probabditie
estimation. For example, John [12] proposed itegati

have not previously been used for improving classifand
decision trees in particular. Note that our goaldsto assign
a confidence score to the classifier's predictiangoncept
that has been investigated before [21], but raiinémprove
the classification itself.

I1l.  THE PROPOSEDMETHOD

removal of instances with outlier values, while t_as al In this section we present the proposed method. We

[13] used statistical methods in order to createoge robust ~explain the required calculations needed during the
classifier. Zadorny and Elkan [14], and Provost andjeneration of the tree and go over the proposed
Domingos [4] and [15] focused on improving the Modifications to the classification process.

classification probabilities produced by the trgette use of
regression in the leaves. The use of confidencesumes is
also not uncommon; McCallum [16], for instance,d.ifiee
Kolmogorov-Smirnov te$i7] in order to determine whether
additional nodes in tree should be created basedhen
differences in the distribution of instances fronffedent
class. These researches, however, propose metturds
ignoring outliers during the creation of the modwmif offer
no solutions for correcting classifications durittge test
phase.

Another well-known method for dealing with outliess
fuzzy decision trees [18, 19]. By using fuzzy fuors to
construct the tree and by varying the degrees dhiogy
based on the attributes of the classified instaribese
methods offer a greater degree of flexibility iratieg with
outliers whose values are slightly irregular (agbte by
using multiple states and weights). This fuzzineffers a
possible solution to the “rigidness” problem men&d
above; however, there are several substantial reiftees
between this method and the one proposed in tisrpél)
the fuzzy function may be domain specific and rega
human expert in order to correctly define it. Owthod, on
the other hand, uses simple statistical tools rbatire very
little (if any) tuning; (2) fuzzy decision trees livhave
difficulty in correctly classifying instances whosmitlier
attribute values differ greatly from the norm (heyt will be
out of the scope of the fuzzy function); and (3 groposed
method differs from fuzzy decision trees becauseadtifies
the original classificatiomnly when it is very likely that the
classification is incorrect; i.e., knowing that tkétribute
value is borderline is not a sufficient cause td and
therefore, we also verify that the value is outhaf norm of
the assigned class.

The proposed method contains several similaribethe
work presented above. We use statistical measuaed,
specifically confidence intervals, with the goal dfe
proposed algorithm being to deal with outliers. ldoer,
unlike any of the methods presented above, our gdetha
post processing method appliafter the decision tree has
already been derived, during the classificationsphalhis
difference means that the plausibility of the dlésation is
verified at various points along the classificatigath,
increasing the probability of correctly handlingtl@rs. In
addition, although “smoothing” has been used amdieghon
the leaves of a decision tree [20], it has not hessd in the
inner nodes or in any other way than "tweakingrdsults".
Lastly, to the best of our knowledge confidenceerivils

A. Deriving the Confidence Intervals

Confidence intervals are used to assess the Héladi
an estimate. They enable us to define a range bfeva
within which an instance, randomly sampled from a
distribution, is likely to be. In other words, anfidence
fnterval with a probability of (kt) means that a random
instance from the distribution has a}l-chance of being
inside it, whereas: is the probability of the instance being
outside the interval. For example, in normal disttions the

confidence interval can be defined B§#-c , X+ zc] where

X is the average of the distribution,is the corresponding
value in theZ table for the requested significance level of the
interval andb is the standard deviation.

According to the proposed method, once the decisam
has been generated, the following values are catmllifor
every internal node:

1. the average value of the split attribute

2. confidence intervals for values of the split atité
This is done separately for every class whose itgiset
instances are included in the node.

There are two prerequisites for the generation loé t
confidence intervals:
1. The split attribute of the node should be numeric;
2. A minimal number of instances (a predefined
threshold) exists for every class present in thedeno

We experimented with three different approaches for
calculating the confidence intervals: one basedtlont
distribution, one based on the norma) distribution and the
third with both distributions combined (their amgaifion is
explained later on).

The t distribution is suitable for our needs because it
enables us to make an inference regarding the mwéan
the standard deviation is unknown. In additionassumes
that the distribution values are more disperseah timaa
normal distribution, a fact which enables it toduitable for
a larger range of scenarios. The normal distrilotio
however, is meant to be used on values that anmailyr
distributed. For data that is known to be normdlstributed,
calculating the confidence interval using the ndrrtd
distribution will be more accurate.

However, for obvious reasons, we cannot assumettbat
split attribute values are always normally disttédsl and
therefore we used the Kolmogorov-Smirnov (K-S) {431
on every node with a numeric split attribute. Th#ofving
calculations (and subsequently, the algorithm prieskhere)
were only applied on nodes for which all preserdssl



attributes "passed the test" (the K-S test was iegppl
separately for each class attribute).

For each of the nodes in its path, not includirg Igaf, we
apply the following algorithm:

We hypothesized that the normal distribution (when 1) If the instance is within the confidence intervéltioe

applicable) would be more accurate than tthdstribution,
but we were concerned that there could be datagetse
attributes would not be distributed in such a wéye
therefore decided to test an approach that usesdhmal
distribution to generate the confidence intervalsemever
possible and uses thdistribution in all other cases. We call
this approach the combined approach.

A general example of calculating these measurenisnts  2)

presented in Fig. 1. In this example the splititatte in the
highlighted node i¥ and the possible classes ard3 andC,
where 100 instances from the training set areaxfsél, 100
are of classB, and 30 are of clas§. The average of the
values of attributey of instances that belong to cla&sis
4.75 and the confidence interval is [3,6.5].

The pseudo code for deriving the confidence interis
presented in Alg. 1. For each node the algorithist hecks
if it is a leaf or not (line 1). If the node is eaf, or if the
number of instances in the node is smaller tharedgfined
threshold m (or if the values of the node are rmhrally
distributed when only thez distribution is used), the
procedure terminates; otherwise, the average aamtiatd
deviation of the split attribute are calculated asafely for
each class (lines 2-5). Then, the procedure issa@ly run
for each of the immediate descendant nodes (lifi®s 6

The additional computations during the training sgha
include the calculation of the average and standaviation
of the split attribute for each class in every innede. The
computational complexity is thereforer®(@-1)), where n is
the number of instances in the tree, and d is tihreber of
levels in the tree (height of the tree).

B. The Classification Phase

During the classification phase, we first use tiduced
tree to provide a classification distribution. That the
examined instance traverses the tree top-down ¢oobrits
leaves, thus producing a classification. This diassion
consists of the probabilities of the classified tamse
belonging to each of the class values, whose satvisys 1.
For example, in Fig. 2 it can be seen that the ghiities
produced by the decision tree (leaf number 1) &@,Q} for
classA, B andC respectively, which indicates that the tree
100% certain of its classification. Using the clésgjuency
in the tree leaves as-is will typically overestimathe
probability. In order to avoid this phenomenorisituseful to
perform the Laplace correction [22]. Later, in $@tt3.2.2
we suggest a variation of the Laplace correctioitivbetter
fits our goals.

At this point we would like to define an additiortatm —

assigned classThis term refers to the class which has th

highest probability. For example, if the probakakt of
classed\, B andC are 0, 0, and 1 respectively, themill be
defined as the assigned class. We will use this fesm this
point on.

After the classification probabilities have beenaited,
the classified instance “travels” up the tree, biackhe root.

assigned classdo nothing The instance is said to be
within the confidence interval of the assigned li&s
the instance’s value of the node’s split attribige
within the confidence interval of the split attrtbuof
the assigned class. We consider this to be therfabir
situation where the value of the split attributetioé
instance is within the area considered as “likely”.
If the instance is not within the confidence inedrof
the class it is currently assigned to, there are tw
options:
a)lt is within the confidence interval of anothersda
(or classes) — in this case we genegdternative
routes
b)It is not within the confidence interval of any eth
class —in this case we impose certainty fines.

A: 100 [3,9]
B: 100 [2,8)
€:100[9.5,15]
N
X<=10 [ X X>10
N
A: 100 [3-6.5]
B: 100 [6.8-10]
€:30[6-9] p .
O (5
_/ \_/
Y<=7 Y>7
c: 70
K y {0,0,1}
Vs Vs
( 1\ ( 2\‘
N N
A: 100 B: 100
{10,0} C:30
{0,0.769, 0.231}

Figure 1. An example of the calculation of the confidenceeimals for
each class in the internal nodes. Squared braakettse internal nodes
indicate the confidence intervals. The values mchbrly brackets indicate
the classification distribution vector.

Algorithm 1 Deriving the confidence intervals

[

Input : Node node: a node in the tree

List<Instance> instances: all the tnagninstances in the node
1:IF Is_Leaf(node)==true or node.sizer<THEN RETURN
2: split_attribute& node.split_attribute;
3:node.num_of_instanc&s Get_Num_Of _Instances_Per_ClassID(node);
4. node.attribute_averagés Calculate_Attribute_Average_By_ClassID
5. node.stdev& Calculate_Stdev_Per_Class_ID(instances,

num_of_instances, attribute_averages)
6. Node[] sonk- Get_Son_Nodes(split_attribute)
7.FOR (inti=0; i<sons.Lengthi++) DO
e Build_Tree_With_Confidence_Intervals(saihs[
Find_Instances_That_Match_Criteria(instancest_splieria)
8:END FOR

~

These courses of action can best be explained &y th

example shown in Fig. 3. After being classifieddaf 1, the
classified instance "travels" bottom-up the treeténthe
direction of the arrows). The number of instanaarfreach
class and their confidence intervals are presented to



their corresponding internal nodes (the relevamifidence
intervals in bold). In the internal nod¢ the confidence

to a different class, we attempt to determine wéreitthneeds
to be “reassigned” to a different descendant nadbe tree

interval of clas®A (the current assigned class) is the only ondrom what it originally was. For this reason, wesiga the

that contains the instance's attribute value. érdot node,
however, the instance's attribute value is outstde
confidence interval ofA (it is, however, inside the
confidence interval of class).

In the following sub-sections we will go over these
scenarios in detail.

Test-Instance
{X=9.9,Y= 5,true_class= C}

X<=10 ’/;\ X>10
<= >
\_/
a o
/ Y\ ( 3\
NG N
Y<=7 Y>7
c:70
) Y {0,0, 1}
Ve /
(1) (2)
\_/ \_/
A: 100 B: 100
0,0} C:30
{0,0.769, 0.231}

Figure 2. An example for the classification process of a Cdegision
tree. The attribute values of the classified instarwhose true class is C,
are presented above the root node and correspaghdXwiy and the true
class. The probabilities of each class in the Isavelenoted by the curly
brackets.

A: 100 [3,9]
Test-Instance B: 100 2,8)
{X=9.9,Y= 5,true_class= C} €:100[9.5,15]
X<=10 /);\ X>10
<= { >
N
A: 100 [3-6.5]
B: 100 [6.8-10]
C:30[6-9]
) ()
N \/
Y<=7 Y>7
C:70
. 4 {0,0,1}
(1) (2)
\_/ \_/
A: 100 B: 100
{1,0, 0} C:30
{0,0.769, 0.231}

Figure 3. After its classification to leaf 1, the classifiethstance
(presented at the top of the figure) “travels” bottup to the root node.
The confidence intervals that are presented inrsgbeackets are used to
assess the plausibility of the classification incheanner node. The
confidence intervals to which the instance’s atiiéls is assigned, are
printed in bold.

1) Alternative Routes

In this case, the instance is within the confidenterval
of one or more classes. In this scenario we cammasthat

there is at least a chance that the instance has be

incorrectly classified. Since we concluded thahiy belong

instance to all the immediate descendant noddseofurrent
node (including the originally chosen path) anchtpeoduce
a weighted average of all the predictions they peed The
weight assigned to each son node is calculateollas/é:

weight =3 (/n %)

wherei is the index of the immediate descendant nodea

class in whose confidence interval the classifiestance is
found, n; is the number of items from classssigned to this
immediate descendant node, aRdis the total nhumber of
training instances in son node All the weights are then
normalized to one, and each prediction is multiply this

weight and summed. The resulting prediction isrregd.

The weight is designed such that the immediate
descendant nodes that have a larger proportiolassé & will
have a higher weight and therefore a higher infleeon the
final prediction. Note that the threshatd(minimum number
of instances) ensures that the weights are cadzllzdsed on
a sufficient set of instances. The reason we usestjuare
root ofn in the equation instead afitself (as is done in the
C4.5 algorithm when the classified instance dodshage a
value in the split attribute) is our desire to wlee the
problem of imbalanced datasets. We have discovered
through experimentation that this method improves
performance on imbalanced datasets without affgctin
performance in balanced ones.

This scenario is shown in Fig. 4. It can be seaniththe
root node the use of confidence intervals has shibanthe
classification may be incorrect; despite being sifaesd as
belonging to clasA by the decision tree, the confidence
intervals indicate that the classified instanceae likely to
belong to clas€. Therefore, the following steps are taken:

a) Since the instances of clags are assigned to both
immediate descendant nodes of the root, both routes
will be considered.

b) The left (original) route will produce the followgn
classification: [1,0,0] (100% for clask), which was
generated in the leaf designated by "1". According
the formula presented above, its weight will be:

30
V30*—=0.71442:
230

¢) The right (alternative) route will produce the @lling
classification: [0,0,1] (100% for cla€y. According to
the formula presented above, its weight will be:

\/70*%=\/%= 8.366¢

d) We now normalize both weights to one, which gives u
{0.078672, 0.921328} for the original and alternati
paths, respectively.

e) Therefore, the final classification will be [0.0788 0,
0.921328]. We've gone from providing a wrong
classification with absolute certainty to providitige
correct classification with a high degree of cetgai



This process is displayed in Fig. 4, with the alédive
route shown by the dashed line.

the probability of the assigned class). This whg,larger the
current certainty of the classification, the lartes reduction

In our experiments we chose to use a higher degfree is and vice versa.

confidence for the assigned class and another, rjowe

confidence interval (that is, using a lower cettaitevel)
when attempting to assign the analyzed instancetiter
classes. The reason for this decision is simpleusipg a
"smaller" confidence interval for the alternatiiasses we
make it more difficult for instances to be assigtedther
classes than to only be "unassigned" from theirecuirclass.
This way, in cases of lesser certainty we apply'tegtainty
fines" and in cases of high certainty we use therrstive
routes.

2) Certainty fines

In the second case the instance is not within the

confidence interval ofany class. In this scenario the
classified instance cannot be assigned with seffici
certainty to any of the classes. Since in this agerwe have
no way of knowing to which immediate descendante(s)X
to assign the instance, we will instead impose extéinty
fine”. This is done by reducing the probabilitytbe leading
class (the one with the highest probability) by sowalue,
and dividing it equally among all the classes whastances
were assigned to the current node during the omati the
tree.

A:100[3,9]
B:100 [2,8]

Test-Instance
C: 100 [9.5,15]

{X=9.9,Y=5,true_class= C}

O\
X=10 g X N ¥>10
) \/\ ”

N\
A: 100 [3-6.5]
B: 100 [6.8-10] \
C:30[6-9] y \
) G)
_/ \Z/
Y<=7 Y>7
c:70
/ y {0,0,1}
(1) (2)
\_/
A: 100 B: 100
{1,0,0} C:30
{0,0.769, 0.231}

Figure 4. With the confidence interval indicating that cl&snay be the
correct classification, the alternative route (fre tdashed line) is also
considered.

The idea behind this action is simple. We haveaasoe
to doubt the classification derived by the decisiae, yet
we are currently unable to offer an alternativeerBfore, we
only somewhat reduce our certainty in the classiion, and
thus increase the likelihood that the following esdvill be
able to change the classification, assuming marsgisious”
attribute values are detected.

The "size" of the fine is calculated using a véoiatof
the Laplace Correction [22]. It is usually usedi@ids such
as text mining [23, 24] in order to prevent prolitibs from
being zero. We, on the other hand, wish to usedhesction
in order to reduce large probabilities. For thiasen, we
define the “fine” as 10% of the largest probabiliyhich is

An example of this scenario is presented in FigVe
have altered the confidence interval of cl@sis the root so

that the value 9.9 is no longer inside it. In thase, the
following steps will be taken:

a) The certainty by which the classified item is aseit
to classA (the original classification made by the tree)
would be reduced by 0.1 from 1 to 0.9 (1-(1x0.1%30.

The 0.1 that was reduced frotwill be distributed
equally among all other classes whose items atieein
node (in this case, classeandC).

The final classification returned by the decisioeet

would be {0.9, 0.05, 0.05}, thus reducing the
classifier's "certainty" of its (mistaken) classétion.

b)

c)

A:100 [3,9]
B: 100 [2,8]
€:100[11,15]

Test-Instance
{X=9.9,Y=5,true_class= C}

N\
X<=10 g X

N

X>10

A: 100 [3-6.5]
B: 100 [6.8-10]
C:30[6-9]

Y<=7

G) ©

N

A:100 B:100

0,0 C:30
{0,0.769, 0.231}

Figure 5. In this scenario no confidence interval in the roohtains the
value of the classified instance's attribute X.rElf@re, a certainty fine will
be imposed.

The pseudo code for the classification of an ircstan
using the modified decision tree is presented ig. &l For
each node, the algorithm first checks if it is & ler not (line
1). If the node is a leaf, the procedure returespiobability
of each class, as calculated by the decision tigaritom
used (C4.5, for example). If the node is not a laasign the
classified instance to the appropriate immediatceledant
node(s) in order to obtain a classification (li2e8). Once a
classification has been obtained, we check whettesplit
attribute value of the classified instance is withihe
confidence interval of the assigned class. If thahe case,
then we return the current classification to theepanode
(line 4). If it is not the case, we check the cdefice
intervals of the other classes in the node in ortter
determine if the classified instance is within tenfidence
interval of any of them (line 6). If any are founde apply
the alternative routespresented in Section 3.2.1 (line 7). If
none are found, we usertainty finegline 9).

During the classification phase, the only subsgnti
additional activity is the assignment to alternatiroutes.
Since assigning an instance to an alternative riguegqual to
the classification of an additional instance, tbenplexity of
classifying an instance cannot excead- the number of



nodes in the tree; this number will be reached #ttributes
are numeric and alternative routes are used aly evatle
(i.e., worst case scenario). Therefore, the contipuia cost
in the worst case scenario will I&n-m) with n being the
number of instances amd the number of nodes in the tree.
This is slightly worse tha®(n-h) (with h being the height of
the tree), the complexity of classifying an instaris the
original C4.5 tree, but the complexity remains é&ine
nonetheless.

Algorithm 2 Classify instance

Input:  Nodecurrent node: a node in the tree
Instance instance: the instance being classified

Output: a set of probabilities, one for each class

1:IF Is_Leaf(node)==tru# HEN RETURN node.probs

2: Probs¢ Classify_Instance(node.Get_Relevant_descendant(),

instance)

: Current_classification_ié¢ Get_Current_Classification(probs)

:IF (Instance_Is_Within_Confidence_Interval(node ktité_averages
node.stdevs, Current_classification, instaffd¢EN RETURN
Probs;

:ELSE

6: alternative_class_id&

Get_Class_ID_Whose_Stdevs_Contain_Instance(
node.attribute_averages, node.stdevs, instance)

7.1F (alternative_class_ids.Length >THEN RETURN
Get_Weighted_descendant_Prediction( alternativesclds,
node.descendants, instance)

.ELSE

9.RETURN Impose_Certainty_Fine(probs, node.num_of_instgnces

AW

a1

[ee]

3) Dealing with Missing Values

In our experiments, we have learned that missirigega
pose a problem when using confidence intervals. tDube
C4.5 algorithm’s method of assigning instances withsing
values to all possible paths, such instances vesgets for
changes along their many paths in the tree. Thicess
diversity” actually harmed the classification outw and
therefore we modified the algorithm so that theppsed
method would not be used in nodes following those f
which there were missing values.

For example, if a classification path in a decistoee
consists of six nodes and a classified instanamissing a
value in the attribute needed for the third noden(fthe tree
root), then the proposed method will not be appiiedodes
four and five (the method will not be used in nosle
because it is a leaf). The proposed method wilubed in
node one, the root, and two.

V.

This section is divided into two parts. In the tfirsre
evaluate the model's performance on both binaryraunki-
class datasets, use statistical tests in ordezteymine which
version performs best and analyze the percentagerob
affected by the proposed method. In the seconddidliis
section we evaluate the proposed method's perfaenan
varying training set sizes.

EVALUATION

A. Analysis of the proposed method's performance on
binary and multi-class datasets

The proposed method was tested on 10 two-classalata
(binary problems) and 7 multi-class datasets ineorb
assess its contribution (see Table 1). All dataaetswell
known and available online (from the U@epository). On
each dataset we tested the following four decidiees:
original C4.5 algorithm (Org), the proposed ConfBar
when using the normal distribution for deriving the
confidence intervals (ConfDTrgery), the proposed
ConfDTree when using thedistribution for deriving the
confidence intervals (ConfDTragst), and the proposed
ConfDTree when using both the normal distributior &
distribution for deriving the confidence intervals
(ConfDTregeows). We also tested and applied the
RandomForest classifier, which we used as an uppend,
in order to compare it with the ConfDTree and usterd
the potential improvement of the decision tree.

For the comparison of the performance of the four
decision trees and RandomForest we chose to us&Ufie
(area under the ROC curve) measure [25]. For tloectass
(binary) datasets this is a straightforward and aetepted
comparison measure. For the multi-class datasets
calculated the AUC for each class by defining ttlass as
"positive" and all other classes as "negative", dedving
the following measures as suggested in [26]:

1. average AUC- a simple average of all calculated
AUCs
weighted average AUE each AUC was assigned with
a weight that was equal to the percentage of its
"positive" class of the total number of instanctsug
giving more weight to the more common classes).

We used both balanced and unbalanced datasetden or
to obtain a better insight on for which circumstsathe
proposed method contributes to the classic decisiea
algorithm. The degree of imbalance of each datéset
presented in Table 1. The proposed method was
implemented on the open source machine learnirtfopia
Weka [27] and all experiments were run on it. Adbults
were obtained using a 10-fold cross validation.

The experiments were run with following settings:

1. The confidence interval that was used in order to
determine whether an attribute is inside the ceamig®
interval of the assigned class was that of twodstesh
deviations for the normal distribution or a confide
level of 0.995 (i.e.x=0.5%) for the t_value distribution
(line 4 in Alg. 2).

The confidence interval that was used in order to
determine whether an attribute is inside that dfeot
classes (line 6 in Alg. 2) was generated using one
standard deviation for the normal distribution or a
confidence level of 0.9 (i.eq=10%) for the t value
distribution.

The value ofm, the minimum number of instances for
which confidence interval is computed was set to 5.

we

2.

! http://archive.ics.uci.edu/ml/



TABLE I.

DATASETS PROPERTIES AND THE IMPROVEMENT OfUC OF THE PROPOSED METHOD

Num | Num of
Name of | Numeric Ir':lsl:;cc:);s Imbalance Ratio C[(’)\lrgDRu?e ConfDTree [TDIST] C[%néliATéiee Random Forest
Classes Atts
cancer 2 30/30 569 1:1.168 3.1% 3.1% 3.6% 6.9%
contraceptive 2 6/9 1473 1:3.423 1.3% 4.2% 3.5% 21.7%
credit 2 6/15 690 1:1.247 0.3% 0.7% 0.6% 8.5%
diabetes 2 8/8 768 1:1.865 4.5% 8.7% 8.2% 11.2%
ecoli 2 717 336 1:8.6 3.2% 2.5% 3.4% 17.5%
ionosphere 2 34/34 351 1:9.14 2.0% 8.7% 8.9% 16.7%
pima 2 8/8 768 1:1.865 3.3% 6.0% 6.0% 5.4%
spam 2 57/57 4601 1:1.5377 1.8% -6.9% 2.9% 6.1%
yeast 2 8/8 1004 1:9.14 0.0% 7.8% 0.0% 27.2%
MiniBooNE 2 50/50 130,000 1:25 6.0% -33.4% 8.1% 12.5%
7117 . a. o 0.09% 2.67% 2.67% 4.89%
Autos 6 205 1:7.3:9:10.6:18:22.3 (0.10% (3.04% (3.04% (5.25%
9/9 . . . . . 0.74% 4.57% 4.44% 13.19%
Glass 6 214 1:1.44:1.88:9.66:7.77 :8l44 (1.42%) (3.83%) (3.85%) (11.15%)
16/16 ) . 0.04% 6.09% 6.11% 8.35%
Letter 26 20,000 max ratioof 1:1.1 (0.04%) (6.07%) (6.08%) (8.33%)
19/19 A A A A 0.46% 1.24% 1.08% 1.95%
Segment 7 2310 1:1:1:1:1:1:1 (0.46%) (1.24%) (1.08%) (1.95%)
. 18/18 . . . 2.92% 8.34% 8.07% 14.35%
Vehicle 4 846 1:1.065 :1.094 : 1.095 (2.98%) (8.51%) (8.18%) (14.52%)
10/13 hni.o.o. 1.47% 4.83% 4.61% 11.56%
Vowel 7 989 1:2:2:2:2:2:2 (1.18%) (4.5%) (4.22%) (10.77%)
40/40 . 11.17% 12.69% 12.69% 21.31%
Waveform | 3 5000 1:1:1 (11.18%) (12.7%) (12.80%) (21.33%)
Datasets properties include: the number of classesber of instances and the ratio between therityagmd minority classes.

The improvement in AUC, realtive to the original.E4algorithm, is presented for the three vanetiof the proposed method and for all datasetsghtéed average AUC is presented for multi-classsdasan

parentheses. RandomForest is also presented uppanbound

Results for the three versions of the proposed odeth
(ConfDTregorm, ConfDTregpst, and ConfDTregoms) are
presented in Table 1. As can be seen in Tabld laahtions

instances in which the proposed method had a sedffact

on the classification. One such example could be th

reduction of the certainty of a mistaken classtfara from

of the proposed method outperform the original C4.5100% to 51%. The results of the analysis are ptedeim

algorithm (J48 in Weka) except for the ConfDTFigg on
the datasets spam and MiniBooNE. The ConfDdgge
clearly performs best — it achieved high scoreslbof the
binary and multi-class datasets (Table 1).

Using both a paired t-test and the Wilcoxon testweee
able to determine that the proposed method outpesfahe
original decision tree witlp-value<0.05. From Table 2 we
can see that according to both tests the averagé ahd
weighted average AUC of the ConfDTfger and
ConfDTregows Were significantly better than the original
version of the decision tree for the multi-classadats. For
the binary datasets both the ConfDlygg and
ConfDTregorw Outperformed the original version of the
decision tree. To conclude, the combination ofstsibution
and normal distribution version of the ConfDTreetl®
preferable choice according to our experiments.

Since the proposed method is designed to tackle
specific problem, namely, of attributes whose valze
“uncharacteristic” of their class, it would be ingsible to
understand the results without knowing what peagatof
instances has been affected by the method. We ateda
define "affected" as instances whose assignmebgpilities
were modified by 10% or more. We chose this dedinit
because we believe that other definitions (for edem

Table 3.

It is clear that when using thevalue distribution for the
generation of the confidence intervals, the pesgmtof
affected instances is higher. This is due to tloe tfaat this
method can be applied on all nodes whose splibatés is
numeric (without the need for checking whether #pdit
attribute is normally distributed for each clas$pwever, to
our surprise, we were not able to find correlatbetween the
percentage of affected instances and the perforenahthe
proposed method.

B. Evaluation of the proposed method using varying
training set sizes

We hypothesized that the method proposed here would

be especially beneficial when applied on smalhirej sets.
Our rationale was that while small training setgtmimake
i more difficult for the C4.5 to generate accurspdit values
for many attributes, the proposed method will bke ab (at
least partially) compensate for incorrect clasatfims by
using confidence intervals to identify them.

We tested this hypothesis by generating differeatssof
training sets for all the algorithms presentedhi@ previous
section. By generating training set sizes varynognf 10% to
90% of the dataset, we hoped to identify cleardseim the

instances whose assigned class was changed) wepeoposed method's performance. For each trainihgize,
inadequate since they would not represent the marwye randomly created 10 divisions (while maintainiting



imbalance ratio) of the dataset and averaged thdelso
performance. For the multi-class datasets we pteten

comparison of their average-AUCs.

In the multi-class datasets, the downward trend chesr
for 4 out of the 7 datasetd dtter, Vowel, Segmerdnd
Vehiclg and a (relatively) fixed improvement existed for
additional dataset#\(itosandWaveforn). For the ¥ dataset

TABLEIl.  PAIR-TTEST ANDWILCOXON TEST RESULTS (Glasg there was an upward trend which was later rederse
Measure | Datase Decision tree Wilcoxon | Paired-t to a downward trend.
AVG Multi-class| Org vs. ConfDTregmm T;:'g-gié t; ;166155( When attempting to understand these results, three
=2 36¢ =2 40¢ factors need to be considered — the size of thasdgtthe
AVG Multi-class Org vs. ConfDTregst | 18| p=0.004|  NUMber of classes and the degree of imbalance. divedf
el ; 7 = 2.36€| t=4.33. that two of the three datasets in which there was n
AVG Multi-class Org vs. ConfDTregowe | —51¢ | p =0.00! downward trend AutosandGlasg have a small number of
Weighted . z=-2.36€|t=1.71¢ instances (around 200), a large number of clagesn@ the
Multi-clasg Org vs. ConfDTreg _ _ . . . ! .
AVG ™| p=0.01t | p=0.13 highest degree of imbalance of all datasets. Insdegical
Xv\fghmd Multi-class Org vs. ConfDTregysr Zp‘:'g'gfé tp‘:‘g'ggg to assume that this combination makes it very daiiffi for
Weighted : 7 =2 366 1=2.25] reliable confidence intervals to be created fos¢hdatasets
AVG Multi-class Org vs. ConfDTregows | °, -0 918 | p =0.005 Witﬂ verydfew sar(rjlples.dllvn thfe r(':Dla?’le of the thirda}éa:1
. 7 =280 | t=4.18; without a downward trendNaveforn) the case is exactly the
AVG Binary | Org vs. ConfDTre@ru | |, 20,005 | p =0.002 opposite; it has a relatively large number of insts (5000),
AVG Binary | Orgvs. ConfDTregsr Z=_-8-§S§ ti%-%f;ﬁ only 3 classes and no imbalance. We believe thicates
p—_zlso"- tp_‘4'38; that even a small percentage of the dataset wésienf for
AVG Binary | Orgvs. ConfDTregws | 2 oo | Lo an accurate model to be created.
p =0.00¢ | p =0.00:
0.1
TABLE IIl. PERCENTAGE OF INSTANCES AFFECTED BY THE PROPOSED '\ ‘
METHODS IN THE BINARY-CLASS AND MULTI-CLASS DATASETS 0.09 oMulti-class
ConfDTree ConfDTree ConfDTree s = Binary-class
Dataset [NORM] [TDIST] [COME] z oo
Cancer 5.80% 70.10% 6.6% E o0 '\\
Contraceptive 2.1% 44.20% 12.5% £ *——‘\
- ———
Credit 1.10% 3.50% 2.2% 3 006 ——,
Diabetes 4% 78.40% 15% g 005
Ecoli 3.90% 56% 7.2% g |
lonosphere 49.40% 83% 81.7% g 0.04
Pima 5.50% 84.30% 14.2% <
Spam 10.10% 99% 16.6% 0.03
Yeast 1.20% 7.90% 0.7% 00
MiniBooNE 14.3% 99% 29.4% i 02 03 o4 o5 06 07 os oo
Autos 11.3% 18.2% 17.1% Size of training set
Glass 1'12/0 12'7:/" 5%0 Figure 6. The relative improved (averged over all multi-classl binary-
Letter 11.8 OA’ 74'40/ 0 73'890/ 0 class datasets) of the proposed method over thmakiC4.5 as a function
Segment 3.8% 87% 76.3% of the percentage of the training set of all ins&m
Vehicle 10.4% 78.7% 47.8%
Vowel 21% 71.4% 40.7% V. DISCUSSION
Waveform 16.8% 99% 36.9%

In this paper we present and evaluate a method for

The results of the comparison are presented inr&igu
which shows theaverage relative improvementfor the
binary and multi-class datasets. It is clear tlegre is a
downward trend in the relative improvement for bothes
of datasets as the size of the training set ineseas

We found that in the binary datasets, the downvireral
in relative improvement was best observed in tdaasets —
Ecoli, lonosphere and Yeast These results are very
interesting, as they are the three most imbalauegdsets,
and Ecoli and lonosphere are also the two smallsisets.
Moreover, the three datasets in which there wdsally no on the smallest training sets), a testament toptioposed
decline in relative improvementCredit Cancer and  method’s robustness. In addition, the results st the
MiniBooNe are also the most balanced (see Table 1). Thigore imbalanced or diverse the dataset, the greheer
leads us to conclude that the proposed methodoiscesly  improvement the proposed method is likely to yield.
beneficial in cases where the available trainirigssemall or The fact that the proposed method performs better o
highly imbalanced. imbalanced and diverse datasets is not surprising.

imbalanced datasets it is less likely that the megeesented

enhancing decision trees. The method can be useigab
with three important problems of decision treeduced
performance when applied on small training setsg th
rigidness of the classification process and outlittribute
values that interfere with correctly classifyingiastance.
Evaluation results show that the proposed method
performs significantly better than the original &4.
algorithm, both for binary and multi-class datasefse
improvement was even larger when the size of thiaitrg
sets was reduced (from an average 5% improvemedoto



class will be correctly classified, while in mutiass datasets [6]
the decision process is prolonged because of tbe toeuse
binary splits to classify multiple examples.

every decision tree algorithm is important. Thislges the
most suitable algorithm to be selected for a sjpediftaset
and still have the benefit of using confidencerives.

The proposed algorithm has also two drawbacksit(1)

slightly increases the computational cost of cfgs®j a new
instance; and (2) it reduces the comprehensibiitythe
model. In particular some instances are affectedoby
method and eventually assigned a different clastsilglition.
This also indicates that a simple transformation tloé
decision tree to a set of if-then rules is notiamgpke.

We believe, however, that the loss of comprehélitgibi

of the model is minimal since most of classifiedtances
will not be affected by the proposed model, as nlg target
"outliers”. For the classification of outliers, ttanty fines"
(whose meaning is clear) can be easily annotatdadeopath
shown to the user. Only the alternative routes aztyally
reduce comprehensibility; however they also camlaeked
to indicate that additional paths were inspected.

considered. The first direction regards the issuenigsing
values. Currently, we do not apply the method bdytire
point in which such values are detected. We arsidering
using the values of the instance’s other normakyrithuted
attributes in order to determine the paths to wiiticthould
be classified and their relative weight. The secoeskarch
direction deals with the issue of imbalance. Theppsed
method already performs better on imbalanced dataset
we would like to add additional improvements sustiaking

the

relative imbalance

alternative routes and certainty fines. The thigalion is
an attempt to use the method in conjuncture wittestble
algorithms which utilize decision trees (e.g., RotaForest

and RandomForest). We will try to determine in ihic

scenarios the use of the method improves resuttswdrat
modifications (if any) are required for the algbnit. The
final research direction currently being consideigdthe

expansion of the method to nominal values. We wastry

and adapt the method so that it can infer whethetesn’s

nominal attributes are unlikely when considerirsgassigned
class. Techniques similar to those used by SMOBE §2d

similar algorithms will also be considered.
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