
Detecting unknown computer worm activity via
support vector machines and active learning

Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

Department of Information Systems Engineering,
Ben Gurion University of the Negev,
P.O.B. 653, Beer-Sheva, Israel 84105

Deutsche Telekom Laboratories at Ben Gurion University,
nirni, robertmo, liorrk, elovici@bgu.ac.il

Abstract. To detect the presence of unknown worms, we propose a
technique based on computer measurements extracted from the operat-
ing system. We designed a series of experiments to test the new technique
by employing several computer configurations and background applica-
tion activities. In the course of the experiments, 323 computer features
were monitored. Four feature-ranking measures were used to reduce the
number of features required for classification. We applied support vector
machines to the resulting feature subsets. In addition, we used active
learning as a selective sampling method to increase the performance of
the classifier and improve its robustness in the presence of misleading
instances in the data. Our results indicate a mean detection accuracy in
excess of 90%, and an accuracy above 94% for specific unknown worms
using just 20 features, while maintaining a low false-positive rate when
the active learning approach is applied.

1 Introduction

The detection of malicious code (malcode) transmitted over computer networks
has been researched intensively in recent years. Worms, a particularly widespread
malcode, proactively propagate across networks while exploiting vulnerabilities
in operating systems or in installed programs. Other types of malcode include
computer viruses, Trojan horses, spyware, and adware.

Nowadays, excellent technology (i.e., antivirus software packages) exists for
detecting known malicious code. Typically, antivirus software packages inspect
each file that enters the system, looking for known signs (signatures) that uniquely
identify a malcode. Antivirus technology cannot, however, be used for detecting
an unknown malcode, since it is based on prior explicit knowledge of malcode
signatures. Following the appearance of a new worm instance, operating sys-
tem providers provide a patch to deal with the problem, while antivirus vendors
update their signatures-base accordingly. This solution has obvious demerits,
however, since worms propagate very rapidly. By the time the antivirus software
has been updated with the new worm, very expensive damage has already been
inflicted [1].

manuscript 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



2 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

Intrusion detection, termed a network-based intrusion detection system (NIDS),
is commonly implemented at the network level. NIDS has been substantially re-
searched but remains limited in its detection capabilities (like any detection
system). In order to detect malcodes that have slipped through the NIDS at
the network level, detection operations are performed locally by implementing
a host-based intrusion detection system (HIDS). To monitor activities at the
host level, HIDS usually compare various states of the computer, such as the
changes in the file system, using checksum comparisons. The main drawback of
this approach is the ability of malcodes to disable antiviruses. The main problem
in using HIDS, however, is detection knowledge maintenance, which is usually
performed manually by the domain expert. This is apt to be time-consuming
and expensive.

Recent studies have proposed methods for detecting unknown malcode us-
ing machine-learning techniques. Given a training set of malicious and benign
binary executables, a classifier is trained to identify and classify unknown mali-
cious executables as malicious [2–4]. While this approach is potentially a good
solution, it is not complete. It can detect only executable files, and not malcodes
located entirely in the memory, such as the Slammer worm [5]. In a previous
research report, we presented a new method for detecting unknown computer
worms [6, 7]. The underlying assumption was that malcode within the same cat-
egory (e.g., worms, Trojans, spyware, adware) share similar characteristics and
behavior patterns and that these patterns can be induced using machine-learning
techniques. By continuously monitoring and matching the computer’s vital signs
(such as CPU and hard disk usage) against the previously induced malcode pat-
terns, we can gain an indication as to whether the computer is infected. While
this approach does not prevent infection, it enables its fast detection. Relevant
decisions and policies, such as disconnecting a single computer or a cluster, can
then be implemented.

The goal of this study is to assess the viability of employing support vector
machines (SVM) in an individual computer host to detect unknown worms based
on their behavior (measurements), and examine whether selective sampling can
improve the detection performance. The behavior of some of the worms is un-
stable, so that some of the time they tend to behave as a legitimate application
does. Thus by monitoring their behavior we would derive instances that would
negatively affect the model (hereafter we will call these instances it misleading
instances). The selection of the right instances to be included in the training-set
is therefore also very challenging.

This paper makes four contributions to our armory for combating malware:

1. Development of a selective sampling procedure using active learning: Active
learning is commonly used to reduce the amount of labeling required from an
expert (a time-consuming task). The Oracle is actively asked to label specific
examples in the dataset that the learner considers the most informative,
based on its current knowledge, which eventually reduces the acquisition cost.
In this study, all the training examples are labeled in advance. However, the

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 3

goal is to select intelligently the best examples that will increase the accuracy
by filtering misleading or non-informative instances.

2. Adaptation of support vector machines for malware detection: In our previ-
ous study [6] we used the algorithms decision trees, näıve Bayes, Bayesian
networks, and neural networks. In this paper, we study the performance of
support vector machines (SVM). Specifically, we examine which of the three
kernel functions (linear, polynomial, RBF) is most suitable for detecting un-
known worms. We argue that SVM will achieve better results when using
active learning as a selective sampling method.

3. Comparison of feature selection methods for improving malware detection:
We examine experimentally which feature selection method (if any) best fits
the worm detection task using SVM.

4. We investigate the contribution of specific worms to the detection perfor-
mance and examine if all worms are equally informative.

The rest of the article is structured as follows. Section 2 surveys the relevant
background for this work, while Section 3 describes the support vector ma-
chines, relevant kernel functions and active learning methods used in this study.
Section 4 discusses the research question, corresponding experimental plan, and
evaluation results. Finally, in Section 5 we conclude the paper with a discussion
of the evaluation results, conclusions, and future work.

2 Background and Related Work

2.1 Malicious Code and Worms

The term ’malicious code’ (malcode) refers to a piece of code, not necessarily
an executable file, the intention of which is to harm. In [8], the authors define a
worm according to how it can be distinguished from other types of malcode: 1)
network propagation or human intervention - worms propagate actively over a
network, while other types of malicious codes, such as viruses, commonly require
human activity to propagate; 2) standalone or file infecting - while viruses infect
a host, a worm does not require a host file and sometimes does not even require
an executable file since it may reside entirely in the memory. This was the case
with the Code Red worm [9].

Worm developers have different purposes and motivations [10]. Some are
motivated by experimental curiosity (ILoveYou worm [11]), while pride and the
desire for power lead others to flaunt their knowledge and skill through the
harm caused by the worm. Still other motivations are commercial advantage,
extortion and criminal gain, random and political protest, and terrorism and
cyber warfare.

The wide variety of motivations that we find among worm developers indi-
cates that computer worms will be a long-lasting phenomenon. To address the
challenge posed by worms effectively, as much meaningful experience and knowl-
edge as possible should be extracted from known worms by analyzing them.
Today, given the number of known worms, we have an excellent opportunity to

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

learn from these examples. We argue that active learning methods can be very
useful for learning and generalizing from previously encountered worms in order
to detect previously unseen worms effectively.

2.2 Detecting Malicious Code Using Supervised Learning
Techniques

Supervised learning techniques have already been used for detecting malicious
codes and creating protection against them. For example, in [12], the authors
proposed a framework consisting of a set of algorithms for extracting anoma-
lies from a user’s normal behavior patterns. A normal behavior is learned and
any abnormal activity is considered intrusive. In order to determine what con-
stitutes normal, the authors suggest several techniques, such as classification,
meta-learning, association rules, and frequent episodes. The extracted knowl-
edge forms the basis of an anomaly-based intrusion detection system.

A näıve Bayesian classifier was suggested in [13], referring to its implemen-
tation within the ADAM system, developed in 2001 [14]. The classifier consists
of three main parts: (a) a network data monitor listening to TCP/IP protocol;
(b) a learning engine for acquiring association rules from the network data; and
(c) a classification module that classifies the nature of the traffic into two pos-
sible classes, normal and abnormal, that can later be linked to specific attacks.
Other soft computing algorithms proposed for detecting malicious code include:
artificial neural networks (ANN) [15–18]; self-organizing maps (SOM) [19], and
fuzzy logic [20–22].

2.3 Active Learning

Labeled examples are crucial when training classifiers. However, in certain do-
mains the labeling operation is costly and time-consuming. Active learning (AL)
[23] refers to learning policies, in which a learner actively selects unlabeled in-
stances for labeling, based on some criterion. The objective of most AL methods
is to minimize the cost of acquiring the labeled instances needed for inducing
an accurate model. In this paper, we scrutinize another aspect of AL. Instead of
minimizing the acquisition costs, our objective is to increase the generalization
accuracy by using an approach that disregards misleading instances. Several AL
frameworks are presented in the literature. In pool-based active learning [24],
the learner has access to a pool of unlabeled data and can request the true class
label for a certain number of instances in the pool. Other approaches focus on
the expected improvement of class entropy [25], or minimizing both labelling
and misclassification costs [26]. Although in our problem all the examples are
actually labeled, we decided to apply AL as the selective sampling approach for
choosing the most informative examples to reduce the number of the misleading
instances in the training data. In section 3.4, we explain how AL can be used to
achieve this goal.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 5

3 Methods

3.1 Dataset Creation

Since no benchmark dataset exists that we could use for this study, we created
our own. A controlled network with various computers (configurations) was de-
ployed into which we could inject worms, and monitor and log the computer op-
erating system features using a dedicated agent. In order to create the datasets,
we isolated the local network of computers, simulating a real Internet network
that allowed worms to propagate.

We designed several experiments centered around eight datasets, which we
created based on three aspects: hardware configuration, background applications,
and user activities. Using this model, we designed several experiments to achieve
our research goals:

a. To find out whether a classifier, trained on data collected from a computer
with a certain hardware configuration and specific background activity, is
capable of classifying correctly the behavior of a computer that has other
configurations.

b. To select the minimal subset of features required to classify new cases cor-
rectly. Reducing the number of features used in the model implies that less
monitoring effort would be needed in an operational system.

In the course of experimentation, we applied four classification algorithms on the
given datasets in a varied series of experiments in order to detect, first, known
worms in different environments and, later, completely new, previously unseen
worms.

Figure 1 depicts the process that was used in this study. The upper part
refers to the training phase. We collected a set of worms and used them to infect
the hosts in the controlled environment. An agent, which was installed on each
host, then recorded its behavior. Based on the collected dataset, we trained the
classifiers. The bottom part of Figure 1 refers to the test phase. In this phase,
we examined whether the induced classifier can be used to identify the existence
of an unknown worm.

Environment Description The laboratory network consisted of seven com-
puters, which contained heterogenic hardware, and a server computer simulating
the Internet. We used the Windows performance counters 1 which enabled us to
monitor system features that appeared in the following categories (the number of
features in each category appears in parentheses): Internet Control Message Pro-
tocol (27), Internet Protocol (17), Memory (29), Network Interface (17), Physical
Disk (21), Process (27), Processor (15), System (17), Transport Control Protocol
(9), Thread (12), User Datagram Protocol (5). In addition, we used VTrace [27],
a software tool that can be installed for monitoring purposes on a PC running

1 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/counter/counters2 lbfc.asp

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

Fig. 1. Outline of the Train phase and the Test Phase. The worms are injected into
the computers, which are monitored. Features are extracted and a SVM classifier is
induced. In the test step the monitored features are provided to the classifier, which
classifies whether there is worm activity or not.

Windows. VTrace collects traces of the file system, the network, the disk drive,
processes, threads, inter-process communication, cursor changes, etc. The Win-
dows performance counters were configured to measure the features every second
and to store them in a log file as a vector. VTrace stored, time-stamped events
were aggregated into the same fixed intervals, and merged with the Windows
performance log files. This body of data eventually consisted of a vector of 323
features collected every second. We worked with this granularity because these
loggers’ most granular level was one second. Larger time windows, in which we
could aggregate the measurements over longer time periods, might have been
too slow for worm activity detection.

Injected Worms When selecting worms for injection, we tried to include every
variety. Some of the worms had a heavy payload of Trojans for installation, in
parallel, on the distribution process of the network; others focused entirely on
distribution. Another feature that we desired to obtain was that the worms would
have different strategies for IP scanning that would result in varying communi-
cation behaviors, CPU consumption, and network usage. While all the worms
were different, we wanted to find common characteristics, which could be used
to detect an unknown worm. We briefly describe here the main characteristics
of the five worms included in this study. The information is based on the virus
libraries on the Web2 3 4

2 Symantec - www.symantec.com
3 Kasparsky - www.viruslist.com
4 Macfee - http://vil.nai.com

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 7

W32.Dabber.A
This worm randomly scans IP addresses and uses the W32.Sasser.D worm to
propagate and open the FTP server in order to upload itself to the vicitom’s
computer. The worm registers itself for implementation at the next user login
(human-based activation). It drops a backdoor, which listens in on a predefined
port. This worm is distinguished by its use of an external worm in order to prop-
agate.
W32.Deborm.Y
W32.Deborm.Y is a self-carried worm that prefers local IP addresses. It reg-
isters itself as an MS Windows service and is implemented upon user login
(human-based activation). This worm contains and implements three Trojans
as a payload: Backdoor.Sdbot, Backdoor.Litmus, and Trojan.KillAV. We chose
this worm because of its heavy payload.
W32.Korgo.X This is a self-carrying worm that uses a completely random
method for scanning IP addresses. It is self-activated and tries to inject itself via
a new thread of MS Internet Explorer. It contains a payload code that enables it
to connect to predefined websites in order to receive orders or download newer
worm versions.
W32.Sasser.D
W32.Sasser.D has a preference for local address optimization while scanning the
network. It divides its time, approximately half and half, between scanning local
addresses and random addresses. In particular, it opens 128 threads for scanning
the network. This requires heavy CPU consumption, as well as significant net-
work traffic. It is a self-carried worm and uses a shell to connect to the infected
computer’s FTP server and to upload itself.
W32.Slackor.A This is a self-carried worm that propagates by exploiting MS
Windows’ sharing vulnerability to propagate. The worm registers itself for exe-
cution upon user login. It contains a Trojan payload and opens an IRC server
on the infected computer in order to receive orders.

Computers Measurements We examined the influence of computer hard-
ware configuration, applications running in the background, and user activity.

1. Computer hardware configuration: We used two different configurations.
Both ran on Windows XP, which is considered the most widely used op-
erating system, having two configuration types: the “old” configuration has
a Pentium 3 800Mhz CPU, a bus speed of 133Mhz, and 512 Mb memory; the
“new” configuration has a Pentium 4 3Ghz CPU, a bus speed of 800Mhz,
and 1 Gb memory.

2. Background application: We ran an application that affects mainly the fol-
lowing features: processor object, processor time (usage of 100%); page faults/sec;
physical disk object; average disk bytes/transfer avg disk bytes/write, and
disk writes/sec.

3. User activity included several applications, among them: browsing, down-
loading, and streaming operations through Internet Explorer, Word, Excel,
chat through MSN messenger, and Windows Media Player. These activities

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

were implemented in such a way as to imitate user activity in a scheduled
way.

The data were collected in the presence or absence of Background Application
and User Activity in each of the hardware configurations. We therefore had
three binary aspects, which resulted in eight possible feature-collecting condi-
tions, shown in Table 1, representing a variety of dynamic computer configu-
rations and usage patterns. Each dataset contained monitored instances of all
the five injected worms separately, and instances of normal computer behavior
without any injected worm. Each instance was labeled with the relevant worm
(class), or ’none’ for ”clean” instances; Each worm was monitored for a period
of 20 minutes with a resolution of 1 second. Thus, each instance contained a
vector of measurements that represents a 1 second snapshot. Accordingly, each
dataset contained a few thousand such labeled instances. Worms and legitimate
applications were monitored in different configurations (computer hardware con-
figuration, existence of background application and also existence user-activity).
The outcome of this monitoring process was features that represent the appli-
cation’s (worm/non worm) behavior. Some of the worms tend to behave in one
environment similarly to a legitimate application in another environment; sim-
ilarly, a legitimate application might be perceived as non legitimate when its
behavior is monitored in different environments. Thus, these cases are also a
source of misleading instances in the data. In order to derive a training set that
included applications with distinctive behavior in any environment, we chose to
disregard applications whose behavior is not stable in all the environments.

Computer Background Application User Activity Dataset Name

Old No No o

Old No Yes ou

Old Yes No oa

Old Yes Yes oau

Old Yes Yes oau

New No Yes nu

New Yes No na

New Yes Yes nau

Table 1. The three aspects resulting in eight datasets, representing a variety of feature
collecting conditions of a monitored computer

3.2 Feature Selection

In machine-learning applications, the large number of features in many domains
presents a huge challenge. Typically, some of the features do not contribute to
the accuracy of the classification task and may even hamper it. Moreover, in
our approach, reducing the amount of features while maintaining a high level

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 9

of detection accuracy is crucial for meeting computer and resource consumption
requirements for the monitoring operations (measurements) and the classifier
computations. This state can be achieved using the feature selection technique.
Since this is not the focus of this paper, we will describe the feature selection
preprocessing only very briefly. In order to compare the performance of the
different kernels in the SVM, we used the filter approach, which is applied on the
dataset and is independent of any classification algorithm (unlike wrappers, in
which the best subset is chosen using an iterative evaluation experiment). Using
filters, a measure was calculated to quantify the correlation of each feature with
the class, in our case, the presence or absence of worm activity. Each feature
received a rank representing its expected contribution in the classification task.
Finally, the top ranked features were selected.

Feature Ranking Metrics We used three feature metrics, which resulted in
a list of ranked features for each metric and an ensemble incorporating all three
of them. We used chi-square (CS), gain ratio (GR) and RELIEF implemented
in the WEKA environment [28] and their ensemble.

Chi-Square
Chi-Square measures the lack of independence between a feature f and a class
ci (such as W32.Dabber.A) and can be compared to the chi-square distribution
with one degree of freedom to judge extremeness. Equation 1 shows how the
chi-square measure is defined and computed, where N is the total number of
documents, f refers to the presence of the feature (and f̄ its absence), and ci
refers to its membership in ci. P (f, ci) is the probability that the feature f occurs
in ci and the probability P (f̄ , ci) is the probability that the feature f does not
occur in ci. Similarly, P (f, c̄i) and P (f̄ , c̄i) are the probabilities that the feature
does or does not occur in a file that is not labeled to ci, respectively. P (f) is
the probability that the feature appears in a file, and P (f̄) is the probability
that the feature does not appear in the file. P (ci) is the probability that a file is
labeled to ci, and P (c̄i) is the probability that a file is not to be labeled to class
ci.

χ2(f, ci) =
N [P (f, ci)P (f̄ , c̄i)− P (f, c̄i)P (f̄ , ci)]

2

P (f)P (f̄)P (ci)P (c̄i)
. (1)

Gain Ratio
Gain Ratio (GR) was originally presented in 1993 [29] in the context of decision
trees [30]. It was designed to overcome a bias in the information gain (IG) mea-
sure, and measures the expected reduction of entropy caused by partitioning the
examples according to a chosen feature. Given entropy E(S) as a measure of the
impurity in a collection of items, it is possible to quantify the effectiveness of a
feature in classifying the training data. Equation 3 presents the entropy of a set
of items S, based on C subsets of S (for example, classes of the items), presented
by Sc. IG measures the expected reduction of entropy caused by partitioning the
examples according to attribute A, in which V is the set of possible values of A,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

as shown in Equation 2. These equations refer to discrete values; however, it is
possible to extend them to continuous valued attribute.

IG(S,A) = E(S)−
∑

v∈V (A)

| Sv |
| S |

× E(Sv) (2)

E(S) =
∑
c∈C

−| Sc |
| S |

· log2

| Sc |
| S |

. (3)

The IG measure favors features having a high variety of values over those with
only a few. GR overcomes this problem by considering how the feature splits the
data (Equations 4 and 5). Si are d subsets of examples resulting from partitioning
S by the d-valued feature A.

GR(S,A) =
IG(S,A)

SI(S,A)
(4)

SI(S,A) = −
d∑

i=1

| Si |
| S |

· log2

| Si |
| S |

. (5)

Relief
Relief [31] estimates the quality of the features according to how well their val-
ues distinguish between instances that are near each other. Given a randomly
selected instance x, from a dataset s with k features, Relief searches the dataset
for its two nearest neighbors from the same class, an action termed ”nearest hit
H”, and from a different class, referred to as ”nearest miss M”. The quality
estimation W [Ai] is stored in a vector of the features Ai, based on the values of
a difference function diff() given x, H and M as shown in Equation 6.

diff (Ai, x1i, x2i) =

 | x1i − x2i | if Ai is numeric,
0 if Ai is nominal and x1i = x2i,
1 if Ai is nominal and x1i 6= x2i.

(6)

Features Ensembles
Instead of selecting features based on feature selection methods, one can use the
ensemble strategy (see for instance [32–34]), which combines the feature subsets
that are obtained from several feature selection methods. Specifically, we combine
several methods by averaging the feature ranks as shown in Equation 7:

rank(fi) =

∑k
j=1 rank j(fi)

k
(7)

where fi is a feature and filter is one of the k filtering (feature selection) methods.
Specifically in our case k = 3.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 11

3.3 Support Vector Machines

We employed the SVM classification algorithm [35] using three different ker-
nel functions in a supervised learning approach. We now briefly introduce the
SVM classification algorithm and the principles and implementation of the ac-
tive learning method we used in this study. SVM is a binary classifier that finds
a linear hyperplane that separates the given examples into the two given classes.
SVM is known for its capability to handle a large amount of features, such as
text. We used the SVM-light implementation [36], given a training set in which
an example is a vector xi = 〈f1, f2 . . . n〉 labeled by yi = {−1,+1} where fi is a
feature.

The SVM attempts to specify a linear hyperplane that has a maximal margin,
defined by the maximal (perpendicular) distance between the examples of the
two classes. Figure 2 illustrates a two-dimensional space, in which the examples
are located according to their features; the hyperplane splits them according to
their label. The examples lying closest to the hyperplane are the ”supporting
vectors”. W, the normal of the hyperplane, is a linear combination of the most
important examples (supporting vectors), multiplied by LaGrange multipliers
(alphas).

Fig. 2. SVM that separates the training set into two classes with maximal margin

Since the dataset in the original space often cannot be separated linearly, a
kernel function K is used. By using a kernel function, the SVM actually projects
the examples into a higher dimensional space in order to create linear separation
of the examples. Note that when the kernel function satisfies Mercer’s condition
[37], then K can be written as shown in Equation (8), where Φ is a function that
maps the example from the original feature space into higher dimensional space,
while K captures the ”inner product” between the mappings of examples x1, x2.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

For the general case, the SVM classifier will be in the form shown in Equation
(9). Note that n is the number of examples in the training set. Equation 10
defines W .

K(x1, x2) = Φ(x1) · Φ(x2) (8)

f(x) = w · Φ(x) =

n∑
1

αiyiK(xix) (9)

w =

n∑
1

αiyiΦ(xi) (10)

The use of kernel functions, often referred to as the kernel trick [38], is of
great importance. Equation (8) means that inner products in the higher dimen-
sional space can be evaluated simply using the kernel function; it is therefore
not necessary to work explicitly in the higher dimensional whenever only inner
products are required. Therefore, the problem that arises from the high dimen-
sional feature space is alleviated, because it allows the computations to take
place in the original feature space of the problem, which involves the compu-
tation of inner products in Equation (8). After projecting the examples into
the higher dimension space, the SVM tries to identify the optimal hyperplane
that separates the two classes. Logically there can be more than one separating
hyperplane for a specific projection of a dataset; therefore, as a criterion of se-
lection, the one maximizing the margin is selected in an attempt to achieve a
better generalization capability in order to increase the expected accuracy.

Since the kernel function is derived from the theoretic basis of SVM, one
should select a kernel function that has the appropriate parameter configura-
tions, as was empirically demonstrated in [36].

Each kernel function creates a different separating plane in the original space
as demonstrated in Figure 3 and 4. Commonly, the kernel functions used are the
Polynomial and RBF kernel. One should note that the performance of the kernel
also depends on the true data distribution, which is usually unknown, and thus
one should scrutinize different kernels in order to determine the best kernel for
the specific problem and dataset.
Polynomial kernel
The polynomial kernel creates values of degree p, where the output depends on
the direction of the two vectors (examples x1, x2), as shown in Equation 11,
in the original problem space. A private case of the polynomial kernel, having
P = 1, is actually the linear kernel.

K(x1, x2) = (x1 · x2 + 1)P (11)

In order to convey the significance of the kernels, we provided an explanation
combined with visualizations. As can be seen in Figure 3, the same training set is
given to SVM with linear and polynomial kernels. While the SVM with a linear

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 13

kernel (right side) has not determined a hyperplane that separates the training
set, the SVM with the polynomial kernel (left side) has successfully determined
such a one:

Fig. 3. The same training set was given to polynomial (left) and linear kernels (right);
the polynomial kernel achieved better separation with its induced model. The figure
was produced by the applet provided in the LIBSVM software [39].

Radial Basis Function (RBF) kernel
The second most used kernel is a radial basis function (RBF), as shown in Equa-
tion 12, in which a Gaussian is used as the RBF and the output of the kernel
depends on the Euclidean distance of examples x1, x2.

K(x1, x2) = e

(
−‖x1 − x2‖

2

2σ2

)
. (12)

As Figure 4 shows, the same training set is given to the SVM with the RBF and
the polynomial kernels. While the SVM with the polynomial kernel (left side)
has not determined the hyperplane that separates the training set, the SVM
with the RBF kernel (right side) has successfully determined such a one:

The RBF has successfully separated the dataset, whereas the polynomial has
not.

There are several reasons for using the SVM as the classification algorithm.
Primarily, SVM was successfully used for the detection of worms as indicated in
four previous works [40–43]. Moreover, in the first work [40], it was indicated that
”SVM learns a black-box classifier that is hard for worm writers to interpret”.
In addition, SVM was very efficient when combined with AL methods in closely
related domains, as was presented in [44]. An additional reason is related to the
fact that the data contain misleading data (the misleading issue will be explained
in more detail in Section 3.4). In a nutshell, misleading data means that it is
hard to find a clear separation in the dataset between the worm and non-worm
instances due to the similarity between the behaviors of these two classes. Thus,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

Fig. 4. The same training set was given to polynomial (left) and RBF kernels (right),
the RBF kernel achieved better separation with its induced model. The figure was
produced by the applet provided in the LIBSVM software [39].

our goal was to detect the worm activity through system behavior, since, on the
one hand, the RBF kernel might help due to the fact that it is sophisticated
and very sensitive to misleading data, and, on the other hand, the linear kernel,
which is the simplest one, might find a simple separation between the classes.

3.4 Active Learning

Active learning (AL) is usually used to reduce the effort expended on labeling
examples, generally a time-consuming and costly task, while obtaining a high
accuracy rate. In AL, the learner actively acquires the labels of the most in-
formative instances. In our study, all the examples were labeled, since we knew
which worm was active during the measurements. However, since the data were
misleading, we used AL as a selective sampling technique that increases accu-
racy by selecting only those examples that lead to a better classifier. Some of the
worms behave as a legitimate application part of the time, and as a consequence,
they generate misleading instances. In order to prevent these instances from ef-
fecting the detection accuracy of our model negatively, we did not select them
for inclusion in the training set. The worms are not always active and even when
active they do not always behave in an illegitimate way. Thus, according to their
monitored behavior in this period, they seem to act like a non-worm instances.
This creates misleading instances in the dataset and makes their detection much
more difficult. The misleading data here were a greater problem; in the secu-
rity domain, worms are created in such a sophisticated way that they behave
similarly to a legitimate application in order to make their detection harder.
Thus, monitoring worm behavior creates many instances (snapshots) that are
very similar to non-worm instances and are therefore considered as misleading
instances that confuse the SVM. This phenomenon is called ”malicious noise”,
as presented in [45]. In most other domains, the misleading instances are not
purposefully created, but exist naturally. Here in worm detection, the task is
more complicated since the misleading data are inherent in the class, and even
present in a larger amount in the class we want to detect. Here we used the AL

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 15

idea to select the most informative instances among the existing ones so that the
misleading ones would not be selected, as was done in previous work [46] and
discussed in other work [47].

Misleading instances usually create confusion in the classification processes
and cause degradation in the classifier’s performance. Thus, these misleading
instances, generally, will not meet the AL selection criterion, that is, for the Error
reduction method, the instances whose addition to the training set will create a
classifier that is more confident in its capability to classify unknown instances
correctly. Selecting the misleading instances has the opposite effect: it changes
the decision function of the classifier so that the classifier is less accurate and
thus less confident in its capability to classify the unknown instances correctly.

In this study, we implemented an AL, termed ”error-reduction” [25] the ob-
jective of which is to reduce the expected generalization error. The task is to
select the most contributive examples for the classifier from a given pool of
unlabeled examples denoted by P . By estimating the expected error reduction
achieved through labeling an example and adding it to the training set, the ex-
ample that has the maximal error reduction will be selected for true labeling and
will also be added to the training set of the current actual classifier. Since the
real future error rates are unknown, the learner utilizes its current classifier in
order to estimate these errors, as will now be elaborated. At the beginning of an
AL trial, an initial classifier Pˆ

D(y | x) is trained over a randomly selected initial
set D, and for every candidate example (xi, y1) where xi ∈ P and its possible
labels y1 ∈ Y , the algorithm induces a new classifier Pˆ

D(yi | xi) trained on the
extended training set D′ = D+ (xi, yi). One should note that this new classifier
actually represents the addition of the new example with a specific label into
the training set - and these are the classifiers by which the selection criterion is
being calculated in order to select the most suitable examples.

EP ˆ
D′(yi|xi)

=
1

P

∑
x∈P

∑
y∈Y

Pˆ
D′(yi|xi)

(y | x)· | log
(
Pˆ
D′(yi|xi)

(y | x)
)
| (13)

SExi
=
∑
y∈Y

Pˆ
D(yi | xi) · EP ˆ

D′(yi|xi)
(14)

The future expected generalization error of the new classifier is then estimated
using the entropy of the new induced classifier itself, averaged over | P |, as given
in Equation 13. From Equation 13, it can be understood that the error calculation
is being done over all the examples in the pool, and the more confident the new
classifier Pˆ

D′(yi|xi)
is in knowing x’s true label, the lower is the expected error.

For example, Pˆ
D′(yi|xi)

(y | x) = 1 means that the classifier is confident that y is

the true label of x; thus, error = 0, and Pˆ
D′(yi|xi)

(y | x) = 0 means it is confident

that y is not the true label of x and error=0, while Pˆ
D′(yi|xi)

(y | x) = 0.5 means
that the classifier is most uncertain that y is the true label of x, and thus the
error is maximal. Note that Equation 13 actually calculates the expected error
of the new classifier over all the examples in the pool. Yet it is not enough,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

since it was calculated only for one label of xi; thus, for each candidate example,
Equation 13 is calculated one time for each possible label and it is averaged using
Equation 14 (in our context, there are only two labels: worm and non worm).
Equation 14 is the self-estimated average error of candidate example xi denoted
by SExi

, which is actually a weighted average of the error for all the examples
and its possible labels, as shown in Equation 13. The example xi with the lowest
expected self-estimated error (SExi

) is chosen and added to the training set. In
brief, an example is chosen from the pool only if it dramatically improves the
confidence of the current classifier for all the examples in the pool.

3.5 Evaluation Measures

For evaluation purposes, we measured: the true positive rate (TPR) measure,
which is the number of positive instances correctly classified, as shown in Equa-
tion 15; the false positive rate (FPR), which is the number of misclassified nega-
tive instances (Equation 15); and the Total Accuracy, which measures the number
of absolutely correct classified instances, either positive or negative, divided by
the entire number of instances shown in Equation 16.

TPR =
| TP |

| TP + FN |
; FPR =

| FP |
| FP + TN |

(15)

Total Accuracy =
| TP + TN |

| TP + FP + TN + FN |
(16)

We also measured a confusion matrix, which depicts the number of instances
from each class that were classified in each one of the classes (ideally all the
instances would be in their actual class).

4 Experiments and Results

In the first part of the study, our objective was to identify the best feature se-
lection measure, the best kernel function, and the minimal features required to
maintain a high level of accuracy. In the second part, we wanted to measure the
possibility of classifying unknown worms using a training set of known worms,
and to examine the possibility of increasing the detection performance using
selective sampling. In order to elucidate these issues, we designed three exper-
imental plans. We applied four different feature selection measures to generate
seventeen training sets such that each measure was used to extract the Top 5,
10, 20 and 30. In addition, the full feature set was also used.

4.1 Experiment I - Analysis the Effect of Feature Selection

We performed a wide set of experiments in order to evaluate how feature selection
affects the detection of unknown worms. Specifically, we compared the accuracy

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 17

performance obtained after selecting features by using each one of the above-
mentioned feature-ranking metrics (chi-square, gain ratio, relief, and ensemble).
Note that in this experimental study we examined the task of identifying worm
or no-worm activity. In certain scenarios, this binary classification is sufficient.
While identifying the exact worm is considered to be more challenging, we de-
cided to explore this direction because of the possibility of obtaining additional
insights. The evaluations were performed on different conditions, based on the
following factors:

1. Top n - Select top (best) 5, 10, 20, 30 or all features according to the features
ranking;

2. Feature consolidation (unified, averaged). In the first option, features were
ranked on a unified dataset, which contains all the eight datasets presented
in Table 1. In the second option, features were ranked separately on each
dataset. We then computed the average rank for each feature;

3. SVM Kernel Functions: Linear, Polynomial and RBF kernel;
4. Training set (selected from the eight datasets in Table 1) for inducing the

SVM classifier;
5. Test set (selected from Table 1) for evaluating the SVM classifier.

When the training and test sets were collected under the same conditions
(i.e., the same computer configuration, background application, and user activ-
ity), we employed a ten-fold cross-validation procedure for evaluating the ac-
curacy. In all other cases, we simply used the entire training/test set for the
corresponding training/testing. To analyze the results, we performed a factorial
ANOVA. Section 4.1.1 presents the results obtained when the training and test
set were collected in the same condition. Section 4.1.2 presents the results for all
other cases.

Training and Test on the same feature collecting condition Figure 5
presents the accuracy obtained by different feature ranking measures on dif-
ferent features subset sizes. The results indicate that for this scenario feature
selection reduces the accuracy. The GainRatio measure was particularly less ef-
fective in selecting the most relevant features, especially in small subsets (top
5 and top 10). The null-hypothesis, that all feature-ranking measures perform
equally and the observed differences are merely random, was rejected. Similarly,
the null-hypothesis that all feature subset sizes perform equally was also rejected.
Moreover, the interaction between the feature-ranking measure and the top se-
lect features was found to be statistically significant with F (12, 752) = 7.9533
and p < 1%.

The trend in the results is that the more features added to the training set,
the higher the accuracy of worm detection is, where here it is strongly related
to the fact that the same feature collecting conditions were used for the training
and test sets. The more features given to the classifier, the more information the
classifier receives. Consequently, due to the fact that over a small set of features
some instances might appear similar, while expanding this set of features with

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

Fig. 5. The interaction between feature-ranking measures and the top selected features.
In general the FS reduces the accuracy, but the chi-square was found most effective.
The vertical bars denote 0.95 confidence intervals.

additional features will probably reveal a difference between them (if indeed it
exists), these additional features help the classifier to cope with the Misleading
instances. In addition, it implies that the features we have monitored are relevant
and actually help the classifier find patterns in the dataset that are necessary
for distinguishing between a worm and non-worm behavior.

Figure 6 presents the mean accuracy obtained by the different kernel func-
tions using different feature subset sizes. The results indicate that the polynomial
function performs best in terms of accuracy. The null-hypothesis, that all kernel
functions perform equally and the observed differences are merely random, was
rejected. Moreover, the interaction between the kernel function and the top se-
lect features was found to be statistically significant with F (7, 716) = 7.483 and
p < 1%.

Again, it can be seen that the amount of features that are taken into con-
sideration has a positive influence on the detection rate, and, although there
are differences in the accuracy rates among the various kernels, the trend is
quite similar: a steep incline in the accuracy when moving from top 5 to top 10,
while from top 10 to Full there is a moderate increase. That the linear kernel
achieved significantly lower results (mostly under top 20) implies a complicated
dataset that cannot be easily separated linearly: the instances of the worm and
non-worm tend to be similar and thus more features are needed to distinguish
between them.

Figure 7(a) shows a comparison of the accuracy obtained by the unified and
the averaged consolidation approaches. The one-way ANOVA indicates that the
averaged approach significantly outperforms the unified approach with F (1, 770) =
85.1, p < 1%. Nevertheless, a further investigation, shown in Figure 7(b), indi-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 19

Fig. 6. The interaction between the kernel function and the top selected features. The
vertical bars denote 0.95 confidence intervals.

cates that the averaged approach outperforms the unified approach only when
small feature sets are used. For the Top 30 and FULL feature sets the uni-
fied approach was found to be better. Moreover, the interaction effect of the
consolidation factor and feature subset size factor was found to be statistically
significant with F (3, 700) = 10.474 and p < 1%.

Training and Test on different feature collecting conditions We trained
each classifier on a single dataset and tested on it each one of the remaining seven
datasets. Thus, we had a set of eight iterations in which a dataset was used for
training, and seven corresponding evaluations of each one of the datasets. In
short, there were 56 evaluation runs for each combination.

Figure 8 presents the accuracy obtained by various feature-ranking mea-
sures on different features subset sizes. As expected, it can be seen that the
accuracy level in this case is significantly lower than the accuracy obtained in
section 4.1.1. Contrary to the results appearing in Figure 5, the GainRatio mea-
sure outperforms other measures. Generally, it can be seen that the above 20
features do not improve performance, possibly because the additional features
correlate less with the classes. The Top5 significant features when using Gain-
Ratio included: A 1ICMP: Sent Echo sec, Messages Sent sec, Messages sec, and
A 1TCP: Connections Passive and Connection Failures, which are Windows’
performance counters, related to ICMP and TCP, describing general communi-
cation properties.

The null-hypothesis, that all feature-ranking measures perform equally and
that the observed differences are merely random, was rejected. Similarly, the
null-hypothesis that all feature subset sizes perform equally was also rejected.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

Fig. 7. (a). One-way ANOVA of the consolidation method. The averaged approach
outperformed the unified approach. The vertical bars denote 0.95 confidence intervals.

Fig. 7. (b). The interaction between the consolidation method and the top selected fea-
tures. The averaged consolidation method was better for the small number of features
selected (5-20), while the unified was better for the Top30 and FULL. The vertical bars
denote 0.95 confidence intervals.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 21

Moreover, the interaction between the feature-ranking measure and the top select
features was found to be statistically significant with F (12, 5350) = 7.479 and
p < 1%.

Fig. 8. The interaction between feature ranking measures and the top selected features.
The GainRatio outperforms all the methods and selecting more than 20 features reduces
the accuracy. The vertical bars denote 0.95 confidence intervals.

Figure 9 presents the accuracy obtained by the different kernel functions
using different feature-ranking methods. The results indicate that the best com-
bination is obtained by first using GainRatio for selecting the features and then
building the SVM using the RBF function. The null-hypothesis, that all kernel
functions perform equally and that observed differences are merely random, was
rejected. Moreover, the interaction between the kernel function and the feature-
ranking measures was found to be statistically significant with F (7, 5392) =
7.2035 and p < 1%.

According to the experimental results given in 4.1.1 and 4.1.2, the different
feature selection methods performed significantly differently in our context of
worm detection. We understand that this is a result of the critical influence of
each relevant feature that was selected. Different methods select different fea-
tures, and it seems that the features we monitored are very diverse, which means
that we have a complementary set of features that are independent of each other.
Thus, the selection of different features had a significant impact on the results.
In addition, the results reveal an interesting phenomenon. Previous research [48]
showed a correlation between chi-square and information-gain. However, in our
experimental study, on the one hand, in the same feature-collecting conditions
(Figure 5), chi-square provided the best results, while information gain yielded

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

Fig. 9. The interaction between the kernel function and the top selected features. The
RBF kernel outperforms the other kernels. The vertical bars denote 0.95 confidence
intervals.

the worst results; on the other hand, in the different feature collecting conditions
(Figure 8), the dominance relation was reversed.

4.2 Experiment II - Unknown Worms Detection

To evaluate the capability of the suggested approach to classify unknown worm
activity, which was our main objective, an additional experiment was performed.
In this experiment the training set consisted of (5−k) worms and the testing set
contained the k excluded worms; the none activity appeared in both datasets.
This process was repeated for all the possible combinations of the k worms, for
k = 1 to 4. Note that in these experiments, unlike in the previous section, there
were two classes: (generally) worm, for any type of worm, and none for any other
cases. For selecting the features, we used the Top20 features of the GainRatio
with unified consolidation. The full training set, when no worm was excluded,
contained 7126 instances of worm and non-worm, while the full training set,
when 1,2,3,4 worms were excluded, contained 5881,4689,3497,2305 instances,
respectively.

Figure 10 presents the results when all training data were used. As more
worms were included in the training set, a monotonic improvement was observed.
However, RBF was less affected by the number of excluded worms. Consequently,
we prefer the RBF kernel when there are fewer worms in the training set. Ad-
ditionally the Linear kernel consistently outperformed the polynomial kernel.
Note that the number of worms in the x axis refers to the number of excluded
worms. The RBF outperformed all the other kernels, while the polynomial kernel
performed worse than the linear kernel.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 23

Fig. 10. The performance monotonically increases as fewer worms are excluded (and
more worms appear in the training set). The RBF kernel presents a different behavior,
in which a high level of accuracy is achieved even when learning from a single worm.

4.3 Experiment 3 - Using Selective Sampling

In this set of experiments, we wanted to maximize the performance achieved
by the RBF kernel function. Specifically, we examined whether improved results
can be achieved by using a selective sampling approach to reduce the number of
misleading instances in the training set, which poses a challenge for the RBF.
Thus, we employed a selective sampling approach based on AL.

The evaluation was made using the same setup as in the previous section, in
which worms excluded from the training set appeared in the test set. Specifically,
we repeated the same experiment with the entire set of examples as a baseline
using the selective sampling method. For the selective sampling process, first,
we randomly selected six examples from each type of class (worms/none); subse-
quently, in each AL iteration, an additional example was selected. Performances
were noted after selecting 50, 100 and 150 additional instances.

Figure 11 presents the obtained results. Two main outcomes can be observed.
First, the selective sampling significantly improved the baseline accuracy by more
than 10%. Second, actively selecting only 50 instances can be sufficient for ob-
taining high accuracy. When we used the entire dataset, the accuracy increased
as more worms were removed from the training set. This can be explained by the
fact that some worms behave most of the time as legitimate applications. Thus,
adding all their instances to the training set, without filtering out the confusing
instances, might affect the training of the SVM negatively. Another observation
that supports these insights is related to the fact that the fewer worms excluded,
the larger is the gap between the results of selective sampling and the learning
from the full training set, with the largest gap being at 1 excluded worm. This
means that as more misleading instances exist in the training set, thus the selec-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

tive sampling is more contributive in filtering the worm instances that are very
similar to the non-worm behavior.

One should note that most of the instances in the test set that are presented
to the SVM seem to be legitimate, yet the detection of the worm is done according
to its own process in which there are also abnormal instances by which the SVM
successfully determines that it is a indeed a worm; all the instances that belong
to the same process are classified as worm, although they seem to be legitimate.

Fig. 11. The selective sampling approach significantly improves accuracy. Generally,
an improvement of above 10% in accuracy was achieved.

Figure 12 presents the accuracy obtained when different worms were ex-
cluded from the training set. It can be seen that not all worms have the same
detection accuracy. The differences were found to be statistically significant with
F (4, 155) = 7.84 and p < 1%. Further investigation, as shown in Figure 13, in-
dicated that the exclusion of the W32.Deborm.Y decreased the performance of
both W32.Deborm.Y and W32.Sasser.D worms. This implies that some worms
can be detected by learning patterns sampled from other worms.

5 Conclusion and Future Work

We have presented a concept for detecting unknown computer worms based on
host behavior, using the SVM classification algorithm with different kernels.
The results show that the use of support vector machines in the task of detect-
ing unknown computer worms is possible. We used a feature-selection method
that enabled us to identify the most important computer features in order to
detect unknown worm activity. This sort of work is currently performed by hu-
man experts. We specifically focused on the use of active learning as a selective

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 25

Fig. 12. The accuracy obtained when different worms are excluded. The
W32.Deborm.Y seems to be most informative and crucial for use in the training set.
The vertical bars denote 0.95 confidence intervals.

Fig. 13. The interaction effect of excluding W32.Deborm.Y worm and the tested worm.
The vertical bars denote 0.95 confidence intervals. The interaction is statistically sig-
nificant with F (3, 2100) = 44.496 and p < 1%.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



26 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

sampling method to increase the performance of the unknown computer worm
detection with minimal human efforts. We rigorously analyzed the data from the
large set of experiments that we performed. In the case of different conditions (in
the training set and test set), the GainRatio measure for feature selection was
most effective. On average, the Top20 features produced the highest results and
the RBF kernel commonly outperformed other kernels. For detecting unknown
worms, the results show that it was possible to achieve a high level of accuracy;
accuracy improved as more worms were included in the training set. To reduce
the number of misleading instances in the training set and improve the learning,
we show that the AL approach, as a selective method, can improve the perfor-
mance. Selecting only 50 examples increased the accuracy to about 90%, and
94% when the training set contained four worms, in comparison to about 65%
and 75%, respectively. When we selected 100 and 150 examples, no improvement
was observed over the performance achieved with 50 examples. Furthermore, we
analyzed the importance of using each worm in the training set. We found that a
significant decrease in the performance occurred only when the W32.Deborm.Y
was excluded from the training set. This can be explained by its nature, which
is probably more general in its activity than are the other worms.

We conclude that selective sampling can be used to select the most infor-
mative examples from data that include misleading instances. These results are
highly encouraging and show that the propagation of unknown worms, which
commonly spread intensively, can be stopped in real time. The advantage of the
suggested approach is the automatic acquisition and maintenance of knowledge
based on inductive learning. This avoids the need for a human expert who may
not always be available or familiar with generating rules or signatures.

References

1. C. Fosnock. Computer worms: Past, present and future. Technical report, East
Carolina University, 2008.

2. Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J. Stolfo. Data
mining methods for detection of new malicious executables. In Proceedings of the
2001 IEEE Symposium on Security and Privacy, SP ’01, pages 38–, Washington,
DC, USA, 2001. IEEE Computer Society.

3. Tony Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Sweidan. N-gram-based
detection of new malicious code. In Proceedings of the 28th Annual International
Computer Software and Applications Conference - Workshops and Fast Abstracts
- Volume 02, COMPSAC ’04, pages 41–42, Washington, DC, USA, 2004. IEEE
Computer Society.

4. J. Zico Kolter and Marcus A. Maloof. Learning to detect and classify malicious
executables in the wild. J. Mach. Learn. Res.

5. D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside
the slammer worm. Security Privacy, IEEE, 1(4):33 – 39, july-aug. 2003.

6. Robert Moskovitch, Yuval Elovici, and Lior Rokach. Detection of unknown com-
puter worms based on behavioral classification of the host. Comput. Stat. Data
Anal., 52(9):4544–4566, May 2008.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 27

7. Eitan Menahem, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Improving mal-
ware detection by applying multi-inducer ensemble. Comput. Stat. Data Anal.,
53(4):1483–1494, February 2009.

8. Darrell M. Kienzle and Matthew C. Elder. Recent worms: a survey and trends.
In Proceedings of the 2003 ACM workshop on Rapid malcode, WORM ’03, pages
1–10, New York, NY, USA, 2003. ACM.

9. David Moore, Colleen Shannon, and k claffy. Code-red: a case study on the spread
and victims of an internet worm. In Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, IMW ’02, pages 273–284, New York, NY, USA,
2002. ACM.

10. Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunningham. A
taxonomy of computer worms. In Proceedings of the 2003 ACM workshop on
Rapid malcode, WORM ’03, pages 11–18, New York, NY, USA, 2003. ACM.

11. Cert. Multiple Denial-of-Service Problems in ISC BIND. http://www.cert.org/

advisories/CA-2000-20.html, 2000. [Online; accessed July 23, 2012)].
12. Wenke Lee, S.J. Stolfo, and K.W. Mok. A data mining framework for building

intrusion detection models. In Security and Privacy, 1999. Proceedings of the 1999
IEEE Symposium on, pages 120 –132, 1999.

13. Peyman Kabiri and Ali A. Ghorbani. Research on intrusion detection and response:
A survey. International Journal of Network Security, 1:84–102, 2005.

14. Daniel Barbará, Ningning Wu, and Sushil Jajodia. Detecting Novel Network In-
trusions using Bayes Estimators. In Proceedings of the First SIAM Conference on
Data Mining, April 2001.

15. Stefano Zanero and Sergio M. Savaresi. Unsupervised learning techniques for an
intrusion detection system. In Proceedings of the 2004 ACM symposium on Applied
computing, SAC ’04, pages 412–419, New York, NY, USA, 2004. ACM.

16. H.G. Kayacik, A.N. Zincir-Heywood, and M.I. Heywood. On the capability of an
som based intrusion detection system. In Neural Networks, 2003. Proceedings of
the International Joint Conference on, volume 3, pages 1808 – 1813 vol.3, july
2003.

17. J.Z. Lei and A. Ghorbani. Network intrusion detection using an improved compet-
itive learning neural network. In Communication Networks and Services Research,
2004. Proceedings. Second Annual Conference on, pages 190 – 197, may 2004.

18. Dima Stopel, Robert Moskovitch, Zvi Boger, Yuval Shahar, and Yuval Elovici.
Using artificial neural networks to detect unknown computer worms. Neural Com-
puting and Applications, 18:663–674, 2009.

19. PingZhao Hu and M.I. Heywood. Predicting intrusions with local linear models.
In Neural Networks, 2003. Proceedings of the International Joint Conference on,
volume 3, pages 1780 – 1785 vol.3, july 2003.

20. J.E. Dickerson and J.A. Dickerson. Fuzzy network profiling for intrusion detec-
tion. In Fuzzy Information Processing Society, 2000. NAFIPS. 19th International
Conference of the North American, pages 301 –306, 2000.

21. Susan M. Bridges, Rayford B. Vaughn, Associate Professor, and Associate Profes-
sor. Fuzzy data mining and genetic algorithms applied to intrusion detection. In
In Proceedings of the National Information Systems Security Conference (NISSC,
pages 16–19, 2000.

22. Martin Botha and Rossouw von Solms. Utilising fuzzy logic and trend analysis for
effective intrusion detection. Computers and amp; Security, 22(5):423 – 434, 2003.

23. David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with
statistical models. Technical report, Cambridge, MA, USA, 1995.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



28 Nir Nissim, Robert Moskovitch, Lior Rokach, Yuval Elovici

24. David D. Lewis and William A. Gale. A sequential algorithm for training text
classifiers. In Proceedings of the 17th annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’94, pages 3–12, New
York, NY, USA, 1994. Springer-Verlag New York, Inc.

25. Nicholas Roy and Andrew McCallum. Toward optimal active learning through
sampling estimation of error reduction. In Proceedings of the Eighteenth Interna-
tional Conference on Machine Learning, ICML ’01, pages 441–448, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

26. Dragos D. Margineantu. Active cost-sensitive learning. In IJCAI, pages 1622–1613,
2005.

27. Jacob R. Lorch and Alan Jay Smith. Building vtrace, a tracer for windows nt and
windows 2000. Technical Report UCB/CSD-00-1093, EECS Department, Univer-
sity of California, Berkeley, Feb 2000.

28. Francisco Azuaje. Witten ih, frank e: Data mining: Practical machine learning
tools and techniques. BioMedical Engineering OnLine, 5:1–2, 2006.

29. J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993.

30. Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
31. J Pearl. Fusion, propagation, and structuring in belief networks. Artif. Intell.,

29(3):241–288, September 1986.
32. Lior Rokach, Oded Maimon, and Reuven Arbel. Selective voting - getting more

for less in sensor fusion. IJPRAI, 20(3):329–350, 2006.
33. Lior Rokach, Barak Chizi, and Oded Maimon. A methodology for improving the

performance of non-ranker feature selection filters. IJPRAI, 21(5):809–830, 2007.
34. L. Rokach, R. Romano, and O. Maimon. Negation recognition in medical narrative

reports. Information Retrieval, 11(6):499–538, 2008.
35. Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algo-

rithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on
Computational learning theory, COLT ’92, pages 144–152, New York, NY, USA,
1992. ACM.

36. Thorsten Joachims. Advances in kernel methods. chapter Making large-scale sup-
port vector machine learning practical, pages 169–184. MIT Press, Cambridge,
MA, USA, 1999.

37. Christopher J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Min. Knowl. Discov., 2(2):121–167, 1998.

38. A. Aizerman, E.M. Braverman, and LI Rozoner. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and remote
control, 25:821–837, 1964.

39. Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector ma-
chines. ACM Trans. Intell. Syst. Technol.

40. Xun Wang, Wei Yu, Adam Champion, Xinwen Fu, and Dong Xuan. Detecting
worms via mining dynamic program execution. In Security and Privacy in Com-
munications Networks and the Workshops, 2007. SecureComm 2007. Third Inter-
national Conference on, pages 412 –421, sept. 2007.

41. Mohammad M. Masud, Latifur Khan, and Bhavani Thuraisingham. Feature based
techniques for auto-detection of novel email worms. In Proceedings of the 11th
Pacific-Asia conference on Advances in knowledge discovery and data mining,
PAKDD’07, pages 205–216, Berlin, Heidelberg, 2007. Springer-Verlag.

42. Robert Moskovitch, Nir Nissim, Dima Stopel, Clint Feher, Roman Englert, and
Yuval Elovici. Improving the detection of unknown computer worms activity using

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 29

active learning. In Proceedings of the 30th annual German conference on Advances
in Artificial Intelligence, KI ’07, pages 489–493, Berlin, Heidelberg, 2007. Springer-
Verlag.

43. Y. ZHU, X. WANG, and H. SHEN. Detection method of computer worms based
on svm. Mechanical & Electrical Engineering Magazine, 8, 2008.

44. Robert Moskovitch, Nir Nissim, and Yuval Elovici. Malicious code detection using
active learning. In Francesco Bonchi, Elena Ferrari, Wei Jiang, and Bradley Malin,
editors, Privacy, Security, and Trust in KDD, volume 5456 of Lecture Notes in
Computer Science, pages 74–91. Springer Berlin Heidelberg, 2009.

45. Rocco A. Servedio. Smooth boosting and learning with malicious noise. J. Mach.
Learn. Res., 4:633–648, December 2003.

46. Chen Yabi and Zhan Yongzhao. Co-training semi-supervised active learning algo-
rithm based on noise filter. In Proceedings of the 2009 WRI Global Congress on
Intelligent Systems - Volume 03, GCIS ’09, pages 524–528, Washington, DC, USA,
2009. IEEE Computer Society.

47. Greg Schohn and David Cohn. Less is more: Active learning with support vector
machines. In Proceedings of the Seventeenth International Conference on Machine
Learning, ICML ’00, pages 839–846, San Francisco, CA, USA, 2000. Morgan Kauf-
mann Publishers Inc.

48. George Forman. An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


