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OCCT: A One-Class Clustering Tree for 
Implementing One-to-Many Data Linkage  
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Abstract— One-to-many data linkage is an essential task in many domains, yet only a handful of prior publications have 

addressed this issue. Furthermore, while traditionally data linkage is performed among entities of the same type, it is extremely 

necessary to develop linkage techniques that link between matching entities of different types as well. In this paper we propose 

a new one-to-many data linkage method that links between entities of different natures. The proposed method is based on a 

one-class clustering tree (OCCT) which characterizes the entities that should be linked together. The tree is built such that it is 

easy to understand and transform into association rules, i.e., the inner nodes consist only of features describing the first set of 

entities, while the leaves of the tree represent features of their matching entities from the second dataset. We propose four 

splitting criteria and two different pruning methods which can be used for inducing the OCCT. The method was evaluated using 

datasets from three different domains. The results affirm the effectiveness of the proposed method and show that the OCCT 

yields better performance in terms of precision and recall (in most cases it is statistically significant) when compared to a C4.5 

decision tree-based linkage method. 

Index Terms— Clustering, Classification, Data matching, Decision tree induction 
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1 INTRODUCTION

ATA linkage is the task of identifying different 
entries (i.e., data items) that refer to the same enti-
ty across different data sources [1]. The goal of the 

data linkage task is joining datasets that do not share a 
common identifier (i.e., a foreign key). Common data 
linkage scenarios include: linking data when combin-
ing two different databases [2]; data deduplication (a 
data compression technique for eliminating redun-
dant data) which is commonly done as a prepro-
cessing step for data mining tasks [3], [4]; identifying 
individuals across different census datasets [5]; link-
ing similar DNA sequences [6]; and, matching astro-
nomical objects from different catalogues [7]. It is 
common to divide data linkage into two types: one-to-
one and one-to-many [8]. In one-to-one data linkage, 
the goal is to associate an entity from one dataset with 
a single matching entity in another dataset. In one-to-
many data linkage, the goal is to associate an entity 
from the first dataset with a group of matching enti-
ties from the other dataset. Most of the previous 
works focus on one-to-one data linkage. 

In this paper we propose a new data linkage meth-
od aimed at performing one-to-many (and can be ex-
tended to many-to-many) linkage. In addition, while 
data linkage is usually performed among entities of 
the same type, the proposed data linkage technique 
can match entities of different types. For example, in a 
student database we might want to link a student 
record with the courses she should take (according to 
different features which describe the student and fea-
tures describing the courses). The proposed method 

links between the entities using a One-Class Clustering 
Tree (OCCT). A clustering tree is a tree in which each 
of the leaves contains a cluster instead of a single 
classification. Each cluster is generalized by a set of 
rules (e.g., a set of conditional probabilities) that is 
stored in the appropriate leaf [9], [10]. 

The OCCT was evaluated using datasets from three 
different domains; data leakage prevention, recommender 
systems, and fraud detection. In the data leakage preven-
tion domain, the goal is to detect abnormal access to 
database records that might indicate a potential data 
leakage or data misuse. The goal is to match an action, 
performed by a user within a specific context, with 
records that can be legitimately retrieved within that 
context. In the recommender systems domain the pro-
posed method is used for matching new users of the 
system with the items that they are expected to like 
based on their demographic attributes. In the fraud 
detection domain, the goal is to identify online pur-
chase transactions that are executed by a fraudulent 
user and not the legitimate user (i.e., identity theft). 
The results show that the OCCT performs well in dif-
ferent linkage scenarios. In addition, it performs at 
least as accurate as the well known C4.5 decision tree 
data-linkage model, while incorporating the ad-
vantages of a one class solution. Additionally, the 
OCCT is preferable over the C4.5 decision tree because 
it can easily be translated to linkage rules. 

The contribution of this work is twofold. First and 
foremost, we propose a method that allows performing 
one-to-many (and many-to-many) linkage between 
objects of the same or of different types. This is opposed 
to existing methods that are only able to link between 
objects of the same type. Secondly, we use a one-class 
approach. This is an important advantage because in 
certain domains obtaining meaningful non-matching 
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examples can be difficult. For example, in the fraud 
detection case we can easily obtain genuine matching 
examples; these are actually legitimate transactions 
performed by users. Non-matching examples (fraudu-
lent transactions) are rare and more difficult to obtain. 
In such cases non-matching examples can be artificially 
created and added to the training set; however, we can 
receive examples that do not make sense. For example, 
a fraudulent customer purchases a product that is not 
being sold in the customer’s country. 

The rest of the paper is organized as follows. In Sec-
tion 2 we review related works on data linkage and 
decision trees. Section 3 describes the data linkage 
problem, while Sections 4-7 present a description of the 
proposed solution. In Section 8 we describe the evalua-
tion and the results. Section 9 presents a discussion of 
the results, and Section 10 concludes the paper. 

2 RELATED WORK 

2.1 Data Linkage 

Data linkage refers to the task of matching entities 
from two different data sources that do not share a 
common identifier (i.e., a foreign key). Data linkage is 
usually performed among entities of the same type. It 
is common to divide data linkage into two types, 
namely, one-to-one and one-to-many. In one-to-one data 
linkage, the goal is to associate one record in table TA 
with a single matching record in table TB. In the case of 
one-to-many data linkage, the goal is to associate one 
record in TA with one or more matching records in TB. 

One-to-one data linkage was implemented using 
various algorithms including: an SVM classifier that is 
trained to distinguish between matching and non 
matching record pairs [11]; calculating Expectation 
Maximization [11] or Maximum Likelihood Estima-
tion [5] in order to determine the probability of a rec-
ord pair being a match; employing hierarchal cluster-
ing in order to link between pairs of entities [3], [12]; 
and performing behavior analysis in order to find 
matching entities [2]. These methods assume that the 
same entities appear in the two datasets to be linked, 
and try to match between records that refer to the 
same entity. Therefore, these works are less relevant 
for data linkage between entities of different types. 

Only a few previous works have addressed one-to-
many data linkage. Storkey et al. [7] use the Expecta-
tion Maximization algorithm for two purposes: (1) 
calculating the probability of a given record pair be-
ing a match, and (2) learning the characteristics of the 
matched records. A Gaussian mixture model is used 
to model the conditional magnitude distribution. No 
evaluation was conducted on this work. 

Ivie et al. [6] use one-to-many data linkage for ge-
nealogical research. In their work, they performed 
data linkage using five attributes: an individual’s 
name, gender, date of birth, location and the relation-
ships between the individuals. A decision tree was 
induced using these five attributes. However, the 
main drawback of this method is that it is tailored to 
perform matches using specific attributes and there-

fore, very hard to generalize. 
Christen and Goiser [13] use a C4.5 decision tree in 

order to determine which records should be matched 
to one another. In their work, they compare different 
decision trees which are built based on different 
string comparison methods. However, in their meth-
od, the attributes according to which the matching is 
performed are predefined and only one or two attrib-
utes are usually used. 

In this paper we propose a new data linkage meth-
od aimed at performing one-to-many linkage that can 
match entities of different types. Following [13], we use 
the J48 Weka implementation [14] of the C4.5 decision 
tree [15] as a baseline for comparison with our meth-
od. The inner nodes of the tree consist of attributes 
referring to both of the tables being matched (TA and 
TB). The leaves of the tree will determine whether a 
pair of records described by the path in the tree end-
ing with the current leaf is a match or a non-match. 

Data linkage is closely related to the Entity Resolu-
tion problem. While in data linkage the goal is to link 
between related entries in one or more data sources, 
the goal of entity resolution is to identify non-
identical records that represent the same real-world 
entity, and to merge them into a single representative 
record (also known as deduplication) [16]. Joint entity 
resolution attempts to improve entity resolution by 
using additional information that can be derived by 
joining the table with a related table [17]. 

Another related research domain is co-clustering 
[18]. Co-clustering refers to a two-dimensional clus-
tering process in which the entities (i.e., instances) 
and the attributes are clustered at the same time. The 
OCCT model also results in clusters of instances, each 
may be described with a different set of attributes. 
The clusters are later modeled in a compact way. In 
this sense the proposed OCCT method can also be 
used for co-clustering; however, in this paper we fo-
cus on the linkage task. 

2.2 Decision Trees 

Traditionally, decision trees are used for classification 
and regression tasks. The training set used for inducing 
the tree must be labeled. However, acquiring a labeled 
dataset is a costly task. Therefore, we believe that using 
a decision model which requires examples of one class 
only is highly preferable. 

De Comit'e et al. [4] introduce POSC4.5, an adapta-
tion of the C4.5 algorithm for learning from positive 
examples and unlabeled examples. In addition to the 
given datasets, it requires knowledge of the ratio of 
positive examples out of the whole dataset. The nov-
elty of this approach over the C4.5 algorithm is that it 
proposes a modified entropy formula which consid-
ers the weight of the positive class in the given da-
taset and assumes the number of negative examples 
in the unlabeled data according to the given distribu-
tion. In addition, only binary classification problems 
can be considered. 

Letouzey et al. [19] extend the above algorithm to 
create a forest of trees by iterating over different pos-
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sible ratios of the positive class. Then, the model 
which is the most accurate is chosen for use. Experi-
mental results show very good performance when the 
number of positive and negative examples in the da-
taset is similar. However, it performs very poorly on 
imbalanced datasets. Therefore, the solution proposed 
by Letouzey et al. is not suitable for our problem. 

Li et al. [20] also propose an extension to the 
POSC4.5 algorithm, which iterates over different pos-
sible positive ratios and chooses the tree that achieves 
the most accurate results. The uniqueness of their 
method is that it can classify streams of data very 
quickly. This algorithm is not suitable for our needs 
as well, because it cannot handle cases in which the 
ratio of positive examples is small. 

Clustering trees are structured differently than tradi-
tional decision trees [9]. In clustering trees, each node 
represents a cluster (or a concept). The tree as a whole 
describes a hierarchy (e.g., a taxonomy). Blockeel et al. 
[10] extend this idea and describe an approach in 
which each of the leaves contains a cluster instead of 
a single classification. Each leaf of the tree is charac-
terized by a logical expression (e.g., conjunction of 
literals) representing the instances belonging to it. 
According to [21] the main advantage of using clus-
tering trees is that they provide a description for each 
of the clusters using a logical expression. 

The OCCT is a decision model that is similar to a 
clustering tree. Additionally, it learns and represents 
only positive examples, and therefore it is a one-class 
model. In our proposed method, each leaf represents 
a cluster, while the characteristics of the cluster are 
represented by a set of rules. Our method differs from 
clustering trees mainly in its ability to link two differ-
ent types. In particular, we create the clusters by ex-
amining the attributes representing the first table (TA), 
while the data that is clustered is from the table that is 
linked to it (TB). The rules that are formed refer to 
table TB’s attributes as well. Our method differs from 
existing one-class decision trees due to the fact that it 
represents only positive examples (examples that do 
not fit the description represented in the tree are clas-
sified as negative). 

3 THE ONE-TO-MANY DATA LINKAGE PROBLEM 

A typical data linkage problem consists of two data 
tables that do not share a unique identifier. We will 
denote these tables as TA and TB. In addition, we de-
note A as the set of attributes of TA, and B as the set of 
attributes of TB. The goal is to match between the rec-
ords of TA with their corresponding records in TB. Usu-
ally, it is assumed that records in TA and TB refer to the 
same type of entities. We define |𝑇 | as the number of 
records in 𝑇  and |𝑇 | as the number of records in 𝑇 . 
Since potentially, each record in 𝑇  can be linked to all 
records in 𝑇  all record pairs (𝑟(  , 𝑟(   ∈ 𝑇 × 𝑇  (where 
𝑟(  ∈ 𝑇  and 𝑟(  ∈ 𝑇 ) must be considered. Therefore, 
the problem space is |𝑇 | × |𝑇 |. However, advanced 
indexing techniques can be used in order to make the 
linkage process efficient and scalable [22]. The pairs 

examined are split into two groups 𝑇   and 𝑇  ̅̅ ̅̅  where 
𝑇  ⊆𝑇 × 𝑇  denoting the set of matching records, and 
𝑇  ̅̅ ̅̅ ⊆𝑇 × 𝑇  denoting the set of non-matching records. 
A pair of records can be classified either as matching or 
as non-matching; therefore, 𝑇  ∪ 𝑇  ̅̅ ̅̅ = 𝑇 × 𝑇  and 
𝑇  ∩ 𝑇  ̅̅ ̅̅ = ∅ [23]. The purpose of a data linkage algo-
rithm is to correctly identify as many true matching 
pairs as possible (true positive), while minimizing the 
classification error (false positive). Notions used 
throughout the paper are summarized in Fig. 1. 

𝑇  – a given table A 

𝑇  – a given table B (our goal is to link records from table 𝑇  with one 

or more records from 𝑇 ) 

|𝑇 | – number of records in 𝑇  

|𝑇 | – number of records in 𝑇  

A – the set of attributes of table 𝑇  where ai is the i-th attribute 

|A| – denotes the number of attributes in 𝑇  

B – the set of attributes of table 𝑇  where bi is the i-th attribute 

|B| – denotes the number of attributes in 𝑇  

𝑟(  ∈ 𝑇  – a record from table 𝑇  

𝑟(  ∈ 𝑇  – a record from table 𝑇  

𝑇 × 𝑇  – a table that is generated by applying Cartesian product of  

𝑇  and 𝑇  

r=(r(a),r(b))⊆TA×TB – a record of 𝑇 × 𝑇  

𝑇  ⊆𝑇 × 𝑇  – denoting the set of matching records 

𝑇  ̅̅ ̅̅ ⊆𝑇 × 𝑇  – denoting the set of non-matching records 

d – a node in the OCCT model 

Ad⊆A – the subset of attributes of TA that were already selected as 

splitting attributes in the path from the root of the tree to node 

d. 

𝑇  
(  

⊆𝑇   – the subset of matching instances at node d of the OCCT 

tree 

      (𝑇  
(  

) = 𝑇  
(  (  

 – the splitting of 𝑇  
(  

 into n subsets according to 

attribute a such that   =       𝑇  
(   (  

=  𝑟 ∈ 𝑇  
(  

| =     

  (𝑇  
(  

  – selection operator that is used to select records in 𝑇  
(  

 that 

satisfy the given predicate p (in this case p is a=vi) 

  (𝑇  
(  

  – projection operator that is used to select a subset of attributes in 

𝑇  
(  

 that appear in the attribute collection A 

Fig. 1.  Notations used in the paper. 

Fig. 2 presents a general example of the data linkage 
task. In the example, two tables, from two different 
data sources, are presented. Note that in the example 
the entities of the two tables are not of the same type. 
The goal is to link records in TA (i.e., users) to their 
matching records in TB (i.e., movies). Each possible 
record pair is assigned a score that describes the prob-
ability of the records being a match. The probability of 
two records being a match is assumed to be derived by 
a pre-induced model. Such a model is induced during 
a training phase by applying an inducing algorithm 
(e.g., decision trees, SVM, or ANN) on a training set 
containing labeled examples of matching (and optional-
ly non-matching) record pairs. Our basic requirements 
from the induced models are: (1) the induced model 
should provide a probability for each class 
(match/non-match); (2) the model should handle both 
numeric and nominal attributes; and (3) the model 
should handle missing values. During the evaluation 
(testing) phase, the induced model is applied on unla-
beled record pairs. In the example presented in Fig. 2, 
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given the values of a user’s attributes (from TA) and the 
values of movies’ attributes (from TB), the model de-
rives the level of linkage (i.e., linkage score). The level 
of linkage is provided as a number between 0 and 1. In 
order to reach a final binary decision (i.e., match or 
non-match) a threshold has to be defined. If the score 
exceeds the predefined threshold, the records are con-
sidered a match and linked together; otherwise, the 
records are classified as non-match. For example, given 
that the decision threshold is 0.5, only movies 1, 4, and 
5 are considered to be matches for user 1. 

To solve this task we propose a one-class clustering 
tree that matches records originating from table TA 
with records from table TB. The entities of TA may be of 
a different type of entities of TB. The inner nodes of the 
tree represent attributes of TA. The leaves of the tree 
provide a compact representation of records from table 
TB that should be linked to records from table TA, rep-
resented by the path from the root to the leaf. 

 
Fig. 2. An example of a one-to-many data linkage task. 

4 THE PROPOSED METHOD – AN OVERVIEW 

The proposed solution is divided into the following 
steps: (1) inducing a clustering tree linkage model; (2) 
building probabilistic models to represent the leaves; 
and (3) linking items according to the induced model. 

1. Inducing a linkage model 
The linkage model encapsulates the knowledge of 
which records are expected to match each other. The 
induction process includes deriving the structure of the 
tree. Building the tree requires deciding which attribute 
should be selected at each level of the tree. The inner 
nodes of the tree consist of attributes from table TA on-
ly. Selecting the attribute is done by using one of the 
possible splitting criteria presented in Section 5.1. The 
splitting criteria ranks the attributes based on how 
good they are in clustering the matching examples. 

In addition, a pre-pruning process is implemented. 
This means that the algorithm stops expanding a 
branch whenever the sub-branch does not improve 
the accuracy of the model (the proposed pruning 
methods are described in Section 5.2). The inducer is 
trained with matching examples only. 

2. Representing the leaves using probabilistic models 
Once the construction of the tree is completed, each 
leaf contains a cluster (or set) of records. A set of prob-
abilistic models is induced for each of the leaves. Each 
model Mi is used for deriving the probability of a value 
of attribute bi∈B from table TB, given the values of all 
other attributes from table TB. There are two motiva-
tions for performing this step. First, the sets of proba-
bilistic models result in a more compact representation 
of the OCCT model. Second, by representing the 

matching records as a set of probabilistic models, the 
model is better generalized and avoids overfitting. 

3. Linkage 
During the linkage (i.e., testing) phase, each pair of 
records in the testing set is cross-validated against the 
linkage model. The output is a score representing the 
probability of the record pair being a true match. The 
score is calculated using maximum likelihood estima-
tion (MLE) [24]. The tested pair is classified as a match 
if the score is greater than a given, predefined, 
threshold or, if not, as a non-match. The threshold is 
defined by taking into consideration the tradeoff be-
tween the false positive rate and the true positive rate.  

In the next sections we describe in detail each of 
the steps for generating the OCCT. In Section 5 we 
describe the process of inducing the linkage model. In 
Section 6, we describe how we represent the leaves, 
and in Section 7 we describe the linkage process1. 

5 INDUCING A LINKAGE MODEL 

The OCCT is induced using one of the proposed split-
ting criteria. The splitting criterion is used to determine 
which attribute should be used in each step of building 
the tree. In addition, we use a pruning process in order 
to decide which branches should be trimmed. 

Fig. 3 describes the pseudo-code of the induction 
process of the OCCT model. It consists of three proce-
dures: buildTree, which is the main function; choose-
BestSplit, in which the splitting attribute is chosen; and 
createModelsForLeaves, in which a set of probabilistic 
models are created for the given leaf. 

The input of the algorithm is a training set of match-
ing instances TAB (each instance r is a pair of records 
(r(a),r(b)): one from table TA and one from table TB; i.e., 
r=(r(a),r(b))∈ 𝑇  ⊆TA×TB), and two lists of attributes: A 
describing the attributes of table TA, and B describing 
the attributes originating from table TB. 

The buildTree process for building the tree is an iter-
ative process. Let 𝑇  

(  
⊆𝑇   be the subset of matching 

instances at node d of the tree, and let Ad⊆A be the set 
of attributes of TA that were already selected as split-
ting attributes in the path from the root of the tree to 
node d. Thus, A\Ad denotes the attributes of TA that 
were not selected yet as splitting attributes. The process 
terminates either when the subset of matching instanc-
es TAB is smaller than the given threshold t (i.e., 
|TAB|<t), or when there are no more candidate attrib-
utes for split in A; i.e., (A\Ad)=Ø (line 2). Otherwise, in 
each iteration we find the next best splitting attribute 
by evaluating every attribute  ∈ (𝐴\𝐴   according to 
the selected splitting criterion (line 5). Let a be an at-
tribute with n possible values v1,v2,..,vn. We define 
      (𝑇  

(  
) = 𝑇  

(  (  
= {𝑇  

(   (  
, 𝑇  

(   (  
,   , 𝑇  

(   (  
} as 

the splitting of 𝑇  
(  

 into n subsets according to attribute 
a such that   =       𝑇  

(   (  
=  𝑟 ∈ 𝑇  

(  
| =    . For 

simplicity reasons, in the following Section 5.1 we as-
sume that a can have only two possible values v1 and v2 
 

1An illustrative example is provided in: 
http://tlabs.bgu.ac.il/index.php?option=com_content&view=article
&id=125&Itemid=108 

Occupation
Age 

Group
GenderUser ID

Programmer25-35Male1

Artist35-45Female2

Student18-25Male3

RomanceCrimeComedyDrama
Movie

ID

FTFT1

TTTF2

TTTF3

FFTT4

FTFT5

0.8

0.7
0.78

0.4
0.3

Table A Table B
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(i.e., binary attribute). Therefore, splitting 𝑇  
(  

 accord-
ing to attribute a results in two sets 𝑇  

(   (  
 and 𝑇  

(   (  
 

such that 𝑇  
(   (  

 includes all records of 𝑇  
(  

 for which 
a=v1 and 𝑇  

(   (  
 includes all records of 𝑇  

(  
 for which 

a=v2. At the end of Section 5.1 we explain how to ex-
tend the process of building the tree to multi-valued 
attributes. Note that in order to handle continuous at-
tributes, a discritization process needs to be applied on 
the continuous attribute prior to inducing the model. 

buildTree(TAB,A,B,t) 
Input: TAB - set of matching instances, 

 A  - set of attributes from table TA, 

 B  - set of attributes from table TB, 

 t  - threshold; the minimum size for split 

Output:  T  (OCCT tree) 

 

1: Node T  newNode() 

2: if |TAB|≤t OR (A)=∅ then 

3:  T.Models  createModelsForLeaf(TAB,B) 

4: else 

5:  a  chooseBestSplit(TAB,A) 

6:  if not pruneTree(TAB,a) then 

7:   set T.attribute  a 

8:   for each   ∈ a 

9:    T.Child[i]  buildTree(     
(𝑇   ,(A\{a}),B,t) 

10:   end for 

11:  else 

12:   T.Models  createModelsForLeaf(πB(TAB),B) 

13:  end if 

14: end if 

15:  return T 
 

chooseBestSplit(TAB,A) 

Input: TAB - set of matching instances, 

 A - set of attributes from table TA, 

Output: a’ - the attribute chosen for the split 

1: spopt  0 

2: a'  ∅ 

3: for each a in A  

4:  sp  evaluateSplit(TAB,a) 

5:  if sp is better than spopt then 

6:   spopt  sp 

7:   a'  a  

8:  end if 

9: end for 

10: return a' 
 

createModelsForLeaf(TB,B) 
Input: TB - set of matching instances from table TB, 

 B - set of attributes from table TB, 

Output: M - set of models for given dataset 

1: M  ∅ 

2: for each b ∈ B   

3:  Set b as class attribute of TB 

4:  m  Build probabilistic model for TB 

5:  M  Mm 

6: end for 

7: return M 

Fig. 3.  The pseudo code of the tree induction process. 

Once the best splitting attribute a is determined, each 
subset 𝑇  

(   (  
 of 𝑇  

(  
 will be sent recursively to the 

procedure buildTree (line 8-10). The selection operator σ 
of the form   (𝑇  

(  
  is used to select records in 𝑇  

(  
 that 

satisfy the given predicate p (in this case p is a=vi). The 
projection operator   of the form   (𝑇  

(  
  is used to 

select a subset of attributes in 𝑇  
(  

 that appear in the 
attribute collection A. 

5.1 The splitting criteria 

The goal is to achieve a tree which contains a small 
amount of nodes. Smaller trees better generalize the 
data, avoid over fitting, and will be simpler for the 
human eye to understand [26]. Therefore, it is crucial to 
use an effective splitting criterion in order to build the 
tree. We would choose to perform       (𝑇  

(  
) (i.e., 

splitting 𝑇  
(  

 according to attribute a) if we were to 
gain the most information out of this split. In this sec-
tion we propose four criteria that can be used for eval-
uating the splitting of 𝑇  

(  
 according to an attribute a. 

Each splitting criterion is used for measuring the simi-
larity between two record sets T1 and T2, and is denot-
ed by sim(T1,T2). In the context of our research, the sim-
ilarity function that is defined by the selected splitting 
criteria is used in order to determine the attribute that 
creates the best split of a table; i.e., splits table T into 
two tables, T1 and T2, which differ from each other as 
much as possible. 

In the ChooseBestSplit procedure described in Fig. 3, 
each attribute in A is examined in order to determine 
the quality of the split it will achieve. The attribute that 
achieves the best score (highest/lowest- depending on 
the splitting criterion) will be returned and used as the 
next split of the tree. In this section, we present four 
splitting criteria which we believe will be efficient for 
inducing a small decision tree: coarse-grained Jaccard 
coefficient, fine-grained Jaccard coefficient, least prob-
able intersection, and maximum likelihood estimation. 

Coarse-grained Jaccard (CGJ) coefficient 
The Jaccard similarity coefficient, a measure that is com-
monly used in clustering, measures the similarity be-
tween clusters [26]. In the context of our research we 
use this coefficient in order to choose the splitting at-
tribute a, and define a subset 𝑇  

(   (  
 of a record set 𝑇  

(  
 

as a cluster. The goal is to choose the splitting attribute 
which leads to the smallest possible similarity between 
the subsets (i.e., an attribute that generates subsets that 
are different from each other as much as possible). In 
order to do so, we examine each of the possible (re-
maining) splitting attributes and measure the similarity 
between the subsets. The similarity between two sub-
sets, denoted by 𝑠 𝑚(𝑇  

(   (  
, 𝑇  

(   (  
), is computed for 

each possible splitting attribute,  ∈ (𝐴\𝐴  , using the 
Jaccard coefficient as the ratio between the number of 
records belonging to both  ( \   ∪ (𝑇𝐴𝐵

(𝑑  (  
  and 

 ( \   ∪ (𝑇𝐴𝐵
(𝑑2 (  

 , and the total number of records, as 
described in Equation (1). Records are considered in 
the intersection only if they are completely identical (all 
attributes share the same values). 

𝑠 𝑚(𝑇  
(   (  

, 𝑇  
(   (  

)

=
|( ( \   ∪ (𝑇  

(   (  
 ) ∩ ( ( \   ∪ (𝑇  

(   (  
 )|

|( ( \   ∪ (𝑇  

(   (  
 ) ∪ ( ( \   ∪ (𝑇  

(   (  
 )|

  (   

The goal is to choose the split that creates two subsets, 
𝑇  

(   (  
 and 𝑇  

(   (  
, who are as different from each 

other as much as possible. Therefore, we will favor the 
attribute that minimizes the similarity measure above. 

In order to minimize the computational complexity 
of building the model using the CGJ criterion, the val-
ues of the fields from TB can be expressed as a single 
(concatenated) string. Then, a string matching algo-
rithm can be used to find the intersection between the 
two subsets of records. For example, Knuth et al. [27] 
describe an algorithm for string matching whose com-
plexity is 𝑂(|𝑇  

(  
| + |𝐵|) for finding a match for a sin-

gle string. Thus, if we were to search for a match for 
each of the strings in 𝑇  

(   (  
, the complexity would be 

bounded by 𝑂 (|𝑇  
(  

|
 
+ |𝐵| ∙ |𝑇  

(  
|). Since 𝑇  

(  
⊆ 𝑇  , 

The complexity is bounded by 𝑂(|𝑇  |
 + |𝐵| ∙ |𝑇  | . 
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There are |A| possible splitting attributes examined in 
each level, and a total of |A| levels. Therefore the total 
time complexity of building a model using the CGJ 
criterion is 𝑂(|𝐴| ∙ (|𝑇  |

 + |𝐵| ∙ |𝑇  | ). 

Fine-grained Jaccard (FGJ) coefficient 
The fine-grained Jaccard coefficient [26] is capable of 

identifying partial record matches, as opposed to the 
coarse-grained method, which identifies exact matches 
only. It not only considers records which are exactly 
identical, but also checks to what extent each possible 
pair of records is similar. Assume that ri and rj are two 
records originated from 𝑇  

(   (  
 and 𝑇  

(   (  
 respective-

ly. According to the fine-grained Jaccard coefficient, 
their similarity would be calculated as the number of 
attributes containing the same values in both ri and rj, 
divided by the total number of attributes examined 
that did not contain null in either of the records. This is 
calculated for each possible pair of records in 𝑇  

(   (  
×

𝑇  
(   (  

. The similarity of 𝑇  
(   (  

 and 𝑇  
(   (  

 is there-
fore calculated as the sum of similarities of all possible 
pairs of records, as described in Equation (2). 

𝑠 𝑚(𝑇  
(   (  

, 𝑇  
(   (  

) = ∑
|𝑟 ∩ 𝑟 |

|𝑟 ∪ 𝑟 |  ∈   
(   (  

   ∈   
(   (  

 (2  

Due to the fact that comparing each record of one leaf 
with all records in another node is a very expensive 
process in terms of run-time, we tried to optimize the 
calculations. In order to do so, we first take all instanc-
es of 𝑇  

(   (  
 and 𝑇  

(   (  
 and use the k-means algorithm 

[28] in order to cluster these instances into k different 
clusters (with k being a settable parameter that is pro-
vided as an input to the clustering algorithm). Finally, 
we use FGJ to evaluate the similarity of each record 
originally belonging to node 𝑇  

(   (  
 with each of the 

other records belonging to the same cluster and are orig-
inally from 𝑇  

(   (  
. Since the similarity between rec-

ords is performed only between records that belong to 
the same cluster, the total processing time is decreased 
by a factor of k. Moreover, it lets us to easily perform 
the calculation in parallel and by that additionally re-
duce the time span by a factor of k. This, of course, in-
troduces a tradeoff: as k (the number of clusters) is in-
creased, the time span is reduced by a factor of k2 in 
total, however, this is on the account of accuracy of the 
induced OCCT model. We recommend setting k as the 
number of available cores in the machine, such that 
each core will be assigned to process a different cluster. 

Given that 𝑇  
(  

 is the original collection of instances 
(i.e., the training set), and that we are evaluating a bi-
nary split into 𝑇  

(   (  
 and 𝑇  

(   (  
. In order to calculate 

an intersection (or a partial intersection), |B| compari-
sons must be made. Then, calculating the number of 
intersecting instances between 𝑇  

(   (  
 and 𝑇  

(   (  
 

would take 𝑂(|𝐵| ∙ |𝑇  
(   (  

| ∙ |𝑇  
(   (  

|). Since 𝑇  

(   (  
⊆

𝑇  , The complexity is bounded by 𝑂(|𝐵| ∙ |𝑇  |
  . 

There are |A| possible attributes that are candi-
dates for splitting, and therefore, the total complexity 
of identifying the first splitting attribute is 𝑂(|𝐴| ∙ |𝐵| ∙
|𝑇  |

  . If the tree is not pruned, there would be |A| 
levels in the tree, therefore the process of selecting a 

splitting attribute is performed |A| times. Thus, the 
overall complexity of building the model using the FGJ 
criterion is bounded by 𝑂(|𝐴| ∙ |𝐵| ∙ |𝑇  |

  . 

Least probable intersections (LPI) 
Gershman et al. [29] propose a heuristic in which the 
optimal splitting attribute is the attribute that leads to 
the minimum amount of instances that are shared be-
tween two item-sets. They propose a criterion which 
relies on the cumulative distribution function (CDF) of 
the Poisson distribution. Assuming a random binary 
split of 𝑇  

(  
 into two subsets 𝑇  

(   (  
 and 𝑇  

(   (  
, the 

probability Pi that a record ri∈ 𝑇  
(  

 belongs to both 
 ( \   ∪ (𝑇  

(   (  
  and  ( \   ∪ (𝑇  

(   (  
  is defined by 

Equation (3), with oi denoting the number of appear-
ances of item ri in  ( \   ∪ (𝑇  

(  
 . 

  =   (
|𝑇  

(   (  
|

|𝑇  

(  
|

)

  

 (
|𝑇  

(   (  
|

|𝑇  

(  
|

)

  

                              (   

In the context of our research, we refer to a distinct 
combination of attributes as a unique identifier of an 
entity. Therefore, our goal is to find a splitting attribute 
for which there is the least amount of identifiers that 
are shared, in comparison to a random split of the 
same size. Using the central limit theorem we assume 
that the data we are using will distribute normally. Let 
𝑗 = |( ( \   ∪ (𝑇  

(   (  
 ) ∩ ( ( \   ∪ (𝑇  

(   (  
 )| and 

𝜆 = ∑     ∈   
(  . In order to bring this distribution to the 

standard normal form (where µ=0 and σ =  ), we use 
the following approximation (4) to calculate Z (the test 
statistic), where μ =  λ, and σ = √λ. Z represents the 
probability of the two subsets to be created randomly. 

 (  =
𝑗  λ

√ λ
                                                                         (   

The goal is to find the splitting attribute which is the 
least probable to generate the two subsets randomly. 
Therefore, the candidate splitting attribute with the 
highest score is chosen as the next attribute for split. 
Specifically, Z(a) is calculated for each candidate attrib-
ute for split  ∈ (𝐴\𝐴  . The next splitting attribute of 
the tree will be the attribute that had achieved the 
highest Z score. 

In terms of computational complexity, building a 
tree using this method is fairly cheap. In order to calcu-
late λ, it is necessary to go over each of the distinct rec-
ords in 𝑇  

(  
 and check the number of times they appear 

in the records set. In addition, it is necessary to calcu-
late j (the intersection between 𝑇  

(   (  
 and 𝑇  

(   (  
) for 

each possible splitting attribute. When using Knuth et 
al. algorithm for string matching [27], the cost of calcu-
lating the intersection is 𝑂(|𝑇  

(  
| + |𝐵| ∙ |𝑇  

(  
|). Since 

𝑇  
(  

⊆ 𝑇  , the complexity is bounded by 𝑂(|𝑇  |
 +

|𝐵| ∙ |𝑇  | . In order to choose the best splitting attrib-
ute, the intersection is calculated |A| times in each 
level of the tree, and in |A| levels in total. Thus, the 
time complexity of building a tree according to the LPI 
criterion is 𝑂(|𝐴| ∙ (|𝑇  |

 + |𝐵| ∙ |𝑇  | ). 

Maximum likelihood estimation (MLE) 
This splitting criterion uses the Maximum Likelihood 
Estimation (MLE) [24] in order to choose the attribute 
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that is most appropriate to serve as the next splitting 
attribute. Each candidate attribute from the set of at-
tributes (A\Ad) splits the node dataset into subsets ac-
cording to its possible values. For each of the subsets, a 
set of probabilistic models M1...M|B| is created, one for 
each attribute of table TB. Each probabilistic model Mi 
is built to describe the probability of bi given b1,b2,…bi-1, 
bi+1,…,bn, p(bi|bj, j=1..|B|, j≠i). In order to create the 
probabilistic models we used Weka’s J48 decision trees 
[14]. Each of these trees represents the probability of its 
class attribute values (i.e., bi) given the values of all 
other attributes.  
Once the set of models has been induced, the probabil-
ity of each record given these models is calculated. Let 
a record in table TB be represented by r(b)=(v1,v2,..,v|B|) 
where vi is the value assigned to attributes bi∈B. Then, 
for each record r(b) in the subset, we compute: 

 (𝑟(  ) = ∑    ( (  

| |

   

=   |      =   , 𝑗 =     , 𝑗   )  (   

where,  (  |      =   , 𝑗 =     , 𝑗     is the condition-

al distribution provided by Mi. 

A subset’s score is calculated as the sum of all L(r(b)) 
scores of the records belonging to it (i.e.,  𝑟(  ∈
  (𝑇  

(   (  
 . The attribute’s final score is determined by 

the sum of the subset’s individual scores. 
Our goal is to choose the split that achieves the max-

imal likelihood, and therefore we choose the attribute 
with the highest likelihood score as the next splitting 
attribute in the tree. 

The computational complexity of building a deci-
sion model using the MLE method is dependent on the 
complexity of building a statistical model and the time 
it takes to calculate the likelihood. Let us denote 
 (|𝑇  |, |𝐵|  as the complexity of building the probabil-
istic model. This complexity varies according to the 
method chosen for representing the model (e.g., deci-
sion tree, naïve Bayes), to the size of the input dataset, 
and to the number of attributes from which the dataset 
is composed of. In each level, |B| models are built; one 
for each attribute from table TB. Thus, the time com-
plexity of building a set of models for a single node is 
𝑂(|𝐵| ∙  (|𝑇  |, |𝐵|  . For example, in our implementa-
tion we are using the J48 decision tree [17] as the prob-
abilistic model. The time complexity of inducing a J48 
decision tree is 𝑂(|𝐴| ∙ |𝑇  | ∙ log(|𝑇  | + |𝑇  | ∙
log |𝑇  | . Thus, the time complexity of building a set 
of models for a given records set is 𝑂(|𝐵| ∙ (|𝐴| ∙ |𝑇  | ∙
log(|𝑇  | + |𝑇  | ∙ log

 |𝑇  | ). 
The complexity of calculating the likelihood of the 

record set is affected by the model used and the attrib-
utes from which it was built. Thus, we denote it as 
L(M,B). The likelihood estimation is conducted for each 
record in the dataset and over the set of |B| models. 
Therefore, the time complexity for calculating the like-
lihood is 𝑂( ( , 𝐵 ∙ |𝑇  | ∙ |𝐵| . Overall, the process of 
building the model set is performed |A| times for a 
single split (once for each possible split). This occurs 
once for each level of the tree. Thus, the total time 

complexity for building a model using MLE is 
𝑂(|𝐴| ∙ (|𝐵| ∙  (|𝑇  |, |𝐵| +  ( ,𝐵 ∙ |𝑇  | ∙ |𝐵|  . 

Dealing with multi-valued splits 
For simplicity reasons the three measures which are 
described above (CGJ, FGJ, and LPI) were presented 
for binary attributes. However, in most datasets, dis-
crete attributes may have more than two possible val-
ues. When multi-values attributes exist in the dataset, 
the proposed splitting criteria are adapted as follows. 

The score of a candidate splitting attribute is calcu-
lated as a weighted average of a series of possible bina-

ry splits. Each binary split, splits 𝑇  
(  

 into two sets 

𝑇  
(   (  

 and 𝑇  
(   (  

 such that 𝑇  
(   (  

 includes all rec-

ords of 𝑇  
(  

 for which a=v1 and 𝑇  
(   (  

 includes all rec-

ords of 𝑇  
(  

 for which a≠v1. A weight wi is calculated 

for each binary split i such that wi=|𝑇  
(   (   

|/|𝑇  
(  

|. The 
weights are proportional to the size of the subsets to 
ensure that the resulted splitting value of an attribute 
will be influenced mainly by records having more 
dominant values and not by esoteric ones. 

Note that only splitting methods that calculate the 
similarity between record sets require the special 
treatment we are proposing for multi-values splits (i.e., 
CGJ, FGJ, and LPI). This is because these methods are 
capable of measuring the similarity of only two record 
sets at a time, and therefore an adjustment is necessary 
for multi-valued splits. The fourth measure (MLE) does 
not measure the similarity between two given record 
sets, and it is computed individually for each possible 
subset. Then, the scores are accumulated regardless of 
the number of subsets. Thus, no additional action is 
needed in order to extend the measure from binary 
splitting attributes to multi-valued splitting attributes. 

5.2 Pruning 

Pruning is an important task in the tree induction pro-
cess. A good pruning process will produce a tree which 
is accurate on one hand, and avoids overfitting on the 
other. There are two common approaches for pruning a 
decision tree: pre-pruning and post-pruning [9]. In pre-
pruning, a branch is pruned during the induction pro-
cess if none of the possible splits are found to be more 
beneficial than the current node. In post-pruning, the 
tree is grown completely, followed by a bottom-up 
process to determine which branches are not beneficial. 

In our algorithm we follow the pre-pruning ap-
proach. This approach was chosen in order to reduce 
the time complexity of the algorithm. The decision 
whether to prune the branch or not is taken once the 
next attribute for split is chosen, as described in Fig. 3 
(line 6 in the buildTree process). We propose using one 
of the following methods: maximum likelihood estima-
tion (MLE) and least probable intersections (LPI). 

In the maximum likelihood method, an MLE score is 
computed for each of the possible splits (as described 
in Section 5.1). If none of the candidate attributes 
achieve an MLE score which is higher than the current 
node's MLE score, the branch is pruned and the current 
node becomes a leaf. 
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In the least probable intersections method, Z is cal-
culated for each possible split (as described in Section 
5.1). If for all possible splitting attributes Z is smaller 
than a predefined threshold, then all of the possible 
splits are likely to be formed by a random split. Thus, 
we will not gain much information from any of the 
possible splits and the branch will be pruned. 

6 LEAF REPRESENTATION  

Once the model is built (based on attributes from table 
TA), each leaf holds a dataset containing the matching 
records from table TB. In order to create a compact rep-
resentation of the linkage model and for it to be more 
generalized each leaf is represented by a set of proba-
bilistic models. These models represent the probability 
of an attribute, given the values if all other attributes in 
B. Formally, let there be |B| attributes representing 
records from table TB: B={b1,b2,…,b|B|}. For each attrib-
ute bi in B, a probabilistic model Mi is built to describe 
the probability of bi given b1,b2,…bi-1,bi+1,…,bn, p(bi|bj, 
j=1..|B|, j≠i). The pseudo code of building a set of 
models for a given leaf is described in the function cre-
ateModelsForLeaves in Fig. 3. 

We found that it is not necessary to save models for 
all possible attribute of table TB. Instead, models are 
created only for the attributes that are found to have 
the most significant effect in the specific leaf. Therefore, 
prior to building the models, a feature selection process 
is executed on the leaf dataset in order to choose the 
attributes that will be represented. The goal of the fea-
ture selection process is identifying the attributes that 
best represent the records that appear in a leaf. There-
fore, a different set of attributes might be chosen for 
representing each of the leaves. 

In our implementation, each leaf is represented by a 
set of Weka’s J48 decision trees [14]. We avoided the 
usage of full conditional probability tables by using a 
J48 classification tree with its generalization capabili-
ties for encoding the conditional probabilities in a 
compact way. In this sense J48 is used as a probability 
estimation tree [30] by avoid pruning and using La-
place correction. In particular, for each attribute bi we 
induce a dedicated classification tree Mi, where bi is 
used as the target attribute and all other attributes are 
used as input attributes. A classification tree is capable 
to provide a conditional probability for each possible 
combination of the b1,…,bn because there is always a 
path from the root to one of the leaves that fits a given 
combination (assuming that for domain values of all 
attributes are known); the path is usually represented 
by a subset of the attributes of B that were selected by 
the J48 algorithm, which makes the tree much more 
compact than the full conditional probability table. 
Note that each leaf provides a different conditional 
probability and the number of leaves in the classifica-
tion tree is bounded by the training set size. 

For the feature selection process, we use Weka’s im-
plementation of the Correlation-based Feature Subset 
Selection algorithm [31] feature selection algorithm. 
This feature selection algorithm searches for a subset of 

features that have high correlation with the class at-
tribute and which have low correlation with one an-
other. In our case, we apply the feature selection pro-
cess on a leaf dataset and we choose the class attribute 
to be the currently selected splitting attribute   ∈ 𝐴. 
Therefore, at the end of the feature selection process 
we are left with a set of features that are highly corre-
lated with   , but are uncorrelated with one another. 

Each path from the root of the OCCT tree to a leaf is 
represented by specific values of attributes of table TA. 
Therefore, the records of each leaf are aggregated ac-
cording to the attributes of table TA. In this sense, in 
each leaf, the attributes of TA are fixed and thus the 
probability of each attribute of TB is conditioned, not 
only on the values of the other attributes TB but also on 
the attributes of TA. 

7 APPLYING OCCT FOR DATA LINKAGE 

During the linkage (i.e., test) phase, each possible pair 
of test records is tested against the linkage model in 
order to determine if the pair is a match. This process 
produces a score representing the probability of the 
record pair being a true match. An initial score is calcu-
lated using maximum likelihood estimation [25]. 

Fig. 4 presents the pseudo-code of the linkage process. 

The input to the algorithm is an instance from TA, and an 

instance of TB. The output of the algorithm is a Boolean 

value determining whether the given instances should be 

matched or not. First, the appropriate set of models is 

retrieved by following the values of record a to the cor-

rect path of the tree (line 1). The likelihood for a match 

between the records is calculated by deriving the proba-

bility of each value in b, given all other values and the 

appropriate model (line 2-6). 

linkInstances(r(a),r(b),th) 

Input: TAB - set of matching instances, 

 r(a) - an instance from table TA, 

r(b) - an instance from table TB, 

th - the threshold for match  

Output: q - a boolean value determining if the records match or not 

1: M  the set of models matching the values of a 

2: l  0   

3: for each bi in b   

4:   li       (  =   |      =   , 𝑗 =     , 𝑗      

5:   l  l + li 

6: end for 

7: l  l*cardinality(a,b)  

8: if l >= th then 

9:   q  true   

10: else 

11:   q  false 

12:end if 

13: return q 

 

Fig. 4.  The pseudo code of the linkage process. 

The probability of a match is also determined by the 

cardinality of the examined instances (i.e., the number 

of times that the record from table TB is linked to table 

TA). For example, assume we are examining two possi-

ble pairs who achieved the same MLE score. However, 

the record ri(b) entity from the first pair had only one 

matching record from table TA in the training set, while 

record rj(b) from the second pair was a match for hun-

dreds of records in the training set. It is reasonable to 

assume that it is much more likely that the second pair 
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would be a match rather than the first pair. Therefore, we 

multiply the MLE score that was calculated by the cardi-

nality of the examined records (line 7). 

Finally, it is determined whether the given records are 

a match or not by comparing the likelihood score that was 

calculated to the given threshold th (line 7-11). If the 

pair’s score is greater than th, it is classified as a match 

(lines 8-9); otherwise, it is classified as a non-match 

(lines 10-11). The threshold is defined by taking into 

consideration the tradeoff between the false positive rate 

and the true positive rate. 

8 EVALUATION 

We set several goals for the evaluation process. Our 
first goal was to examine the different settings which 
were suggested; i.e., the four splitting criteria and the 
pruning process, and to identify the most suitable set-
tings for the environment which was tested. Second, 
we wanted to compare between OCCT and a binary 
class decision tree, commonly used for one-to-many 
data linkage. For this purpose we use Weka’s J48 deci-
sion tree. Third, we wanted to verify that the proposed 
method is generic and can be used for data linkage 
under different scenarios, and when executed on dif-
ferent domains. 

To answer the first two research questions, we 
measured the true positive rate (TPR) - the ratio be-
tween the number of pairs correctly classified as a 
match and the total number of matching pairs, and 
false positive rate (FPR) - the ratio between the number 
of pairs incorrectly classified as a match, and the total 
number of pairs which were actually non-matches. 

In order to evaluate the tradeoff between the TPR 
and the FPR, we used the receiver operating character-
istic (ROC) graph [32]. This graph plots the TPR vs. the 
FPR as the threshold changes. The quality of the classi-
fication rates is measured using the area under the 
curve (AUC). The goal is to reach the largest area pos-
sible (1.0), implicating that 100% of the records were 
classified correctly. In general, a model which achieves 
a larger area under the curve is considered to be a bet-
ter model. The curves of different settings of the OCCT 
model and the J48 model were compared using the 
ROCKIT platform [33] which statistically analyzes the 
AUC results using the univariate z-score test (bivariate 
binormal model). In our case, the null hypothesis (H0) 
is that the two datasets are from binormal ROC curves 
with equal area (i.e., equal AUC). The alternative hy-
pothesis (H1) is that one ROC curve is with a signifi-
cantly higher AUC than the other one. For each signifi-
cant level (we set the significant level to be =0.05), the 
z-test has a single critical value which can be compared 
with the test-statistic to determine whether to accept or 
reject the null hypothesis. Therefore, when using 
=0.05 the null hypothesis (two ROC with equal area 
under the curve) will be rejected whenever the test-
statistics is smaller than the critical value of 1.65 (which 
matches =0.05). Similarly, if the p-value, which is the 
probability that matches the test-statistic, is smaller 

than =0.05, the null hypothesis is rejected (i.e., the 
difference between the ROCs is statistically significant). 

In addition, we also calculated the recall and preci-
sion measurements which are often used for evaluating 
data linkage methods. Recall is the number correctly 
identified matching records (i.e., TP) divided by the 
total number of matching records in the test set 
(TP+FN). Precision is the number of correctly identi-
fied matching records (i.e., TP) divided by the number 
of pair of records that were identified as matching 
(TP+FP). The recall and precision measurements are 
computed individually for each entity in table TA and 
then averaged over all entities. 

In order to answer the third research question, we 
performed our evaluation by applying the method on 
three different tasks, originating from three different 
domains: the data leakage detection task, originating 
from the information security domain; the task of rec-
ommending items to new users, originating from the 
recommender systems domain; and the task of identi-
fying masquerade attacks, originating in the fraud de-
tection domain. The domains vary in the goal of the 
linkage, in the cardinality between the tables, and in 
the size of the datasets. In each experiment the dataset 
is split into two mutually exclsive subsets: training set 
and test set. The training set is used for inducing the 
OCCT model and the test set is used for evaluating the 
induced model. Using an independent test set helps to 
objectively measure the strength of the predictive 
model on one hand, and its level of generalization on 
the other (making sure that the model does not suffer 
from overfitting to the training data). 

8.1 The Database Misuse Domain 

8.1.1 Scope and purpose  

Most of the research efforts in the database misuse 
domain focus on deriving user profiles that define 
normal access patterns to the data stored in the data-
base and issue an alert whenever a user’s behavior de-
viates from the normal profile. The most common ap-
proach is by extracting various features from the SQL 
query string submitted by the application server to the 
database (as a result of a user’s requests) [34]. Another 
approach for representing a user's behavioral profile, 
known as the data centric approach, focuses on analyz-
ing the data exposed to the user following her request, 
i.e., the result-sets [35]. Mathew et al. [35] claim that 
whenever analyzing a user's request for data, features 
that define the context in which the request has been 
issued (such as the time of request and location of the 
user) should be considered. However, these features 
have not been used in related works which focused 
only on analyzing access to database records. 

It is expected that the records retrieved following a 
user’s request contain data which is legitimate for the 
user to view in his line of duty. We define a request 
which retrieves only legitimate records as a benign 
request. However, some users, intentionally or unin-
tentionally, execute requests that retrieve records 
which should not be exposed to them. Nevertheless, if 
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the result-set contains a significant amount of illegiti-
mate records, the query is considered malicious. 

The goal of using the OCCT in this domain is to link 
a set of records, representing the context of the request 
(i.e., the actual access to certain data), with a set of rec-
ords representing the data which can be legitimately 
retrieved within the specific context. Thus, the inner 
nodes of the OCCT represent contextual attributes in 
which the request occurs (table TA), and the probabilis-
tic models in the leaves represent the data which can 
be legitimately retrieved in the specific context (table 
TB). Pairs which are detected as non-matching are as-
sumed to be illegitimate (i.e., malicious), and will trig-
ger an alert to the organization's security officer. By 
analyzing both the context of the request as well as the 
data that the user is exposed to, the OCCT method can 
improve the detection accuracy and better distinguish 
between a normal and abnormal request. 

8.1.2 Evaluation environment 

Since no real dataset was available for evaluation, we 
opted to generate a simulated dataset which was used 
in [36]. In the simulated scenario, customer data of an 
organization is shared with a business partner. There-
fore, the simulated data includes requests for customer 
records of an organization, submitted by a business 
partner of the organization. 

Contextual information (i.e., table TA attributes) on 
the request includes the time of execution, day of exe-
cution, geographical location of the request, the user’s 
role, and the type of request. Sensitive information of 
customers (i.e., table TB attributes) includes the cus-
tomer’s name, address, zip code, place of work, and the 
customer type (e.g., business, private). 
The simulated requests were generated according to 
one of the following three behavior types: 

Normal: An employee searching for customer rec-
ords within the same geographical location, during store 
opening hours. 

Malicious1: An employee searching, during opening 
hours, for a customer record that is not in the same geo-
graphical location as the store. 

Malicious2: An employee searching for any customer 
record after closing hours. 

In addition, we defined two types of users; a benign 
user who submits legitimate requests most of the time; 
and a malicious user who queries the database for a 
purpose other than his work (e.g., data harvesting). We 
believe that a malicious user might try to hide his mali-
cious intentions by mixing malicious queries with legit-
imate ones. The settings for this evaluation were cho-
sen according to what we presumed to be typical be-
havior. Therefore, most users were benign (95%) and 
only a small amount of users (5%) were malicious. 70% 
of the queries performed by a malicious user were con-
sidered normal (type 'Benign') and only 30% were ma-
licious (type 'Malicious1' and 'Malicious2'). A benign 
user was configured to perform normal actions (type 
'Benign') 98% of the time with the rest being malicious. 

Overall, the dataset consisted of almost 150,000 
transactions and their matching result sets, ranging 

over a period of two weeks. The transactions of the 
first week (about 75,000 transactions) were used for 
training, while the transactions of the second week 
were used for testing the induced model. 

8.1.3 Results 

In Table 1 we compared the results achieved when us-
ing different settings. Four splitting criteria (CGJ, FGJ, 
LPI, and MLE) and three pruning options (no pruning, 
LPI, and MLE) resulted in 12 different settings. Table 1 
summarizes the AUC achieved in each of the 12 possi-
ble configurations. 

TABLE 1 
AUCS FOR THE 12 POSSIBLE SETTINGS (DATABASE MISUSE) 

       Splitting 
Pruning CGJ FGJ LPI MLE 

No pruning 0.9207 0.9201 0.9200 0.9201 

LPI 0.9197 0.9268 0.9268 0.9194 

MLE 0.9208 0.9230 0.9230 0.9206 

We used the univariate z-test in order to compare 
the AUCs of the 12 settings. When no pruning was ap-
plied, we found no significant difference between the 
four splitting criteria (see Table 2). When using the LPI 
pruning method the FGJ and the LPI splitting criteria 
are both significantly better than the CGJ and the MLE 
methods. When applying MLE as the pruning method, 
we found the FGJ splitting criterion to be significantly 
better than the CGJ and the MLE splitting criteria. 

TABLE 2 
COMPARING THE SPLITTING CRITERIA (DATABASE MISUSE) 

  CGJ LPI MLE 

No 
pruning 

FGJ 
p-value= 0.461 (◊) 
statistic= 0.0975  

p-value= 0.693 (◊) 
statistic= 0.2624 

p-value= 0.440 (◊) 
statistic= 0.1494 

CGJ 
 p-value= 0.33 (◊) 

statistic= 0.4400 
p-value= 0.445 (◊) 
statistic= 0.1381 

LPI 
  p-value= 0.312 (◊) 

statistic= 0.4899 

LPI 

FGJ 
p-value= 0.001(◄) 
statistic= 3.0221 

p-value= 0.468 (◊) 
statistic= 0.0787 

p-value= 0.000(◄) 
statistic= 3.1777 

CGJ 
 p-value= 0.001(◄) 

statistic= 3.0355 
p-value= 0.027(◄) 
statistic= 1.9142 

LPI 
  p-value= 0.000(◄) 

statistic= 3.1904 

MLE 

FGJ 
p-value= 0.000(◄) 
statistic= 9.3044 

p-value= 0.463 (◊) 
statistic= 0.0906 

p-value= 0.00 (◄) 
statistic= 7.6250 

CGJ 
 p-value= 0.041(▲) 

statistic= 1.7308 
p-value= 0.118 (◊) 
statistic= 1.1805 

LPI 
  p-value=  0204. (◊) 

statistic= 0.2473 

The '◄' symbol indicates that the AUC of the Row's splitting criterion 
is significantly higher than the Column's splitting criterion. The '▲' 
symbol indicates that the AUC of the Row's criterion is significantly 
lower, and the '◊' symbol indicates no significant difference. 

Table 3 compares the three pruning methods. When 
applying the CGJ and MLE splitting criteria, we found 
that MLE pruning was better than LPI pruning. For the 
FGJ and the LPI splitting criteria, we found that LPI 
pruning was significantly better than no pruning at all. 

Overall, we found that applying LPI pruning with 
either the FGJ or the LPI splitting criteria yields the 
best results in the inspected domain. 

Fig. 5 depicts the ROC curves of OCCT and J48 al-
gorithms. By comparing the curves using the ROCKIT 
tool [33] which statistically analyses the AUC results 
using the univariate z-score test (bivariate binormal 
model), we found that OCCT is significantly better 
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than J48 (with p-value: 0.00, test statistic: 18.20), where 
J48’s AUC is 0.7367. 

TABLE 3 
COMPARING THE PRUNING METHODS (DATABASE MISUSE) 

  LPI MLE 

CGJ 
No pruning ------- 

p-value= 0.4137 (◊) 
statistic= 0.2179 

LPI 
 p-value= 0.0162 (▲) 

statistic= 2.2197 

FGJ 
No pruning 

p-value= 0.0047 (▲) 
statistic= 2.6007 

p-value= 0.0752 (◊) 
statistic= 1.4383 

LPI 
 p-value= 0.1096 (◊) 

statistic= 1.2286 

LPI 
No pruning 

p-value= 0.0047 (▲) 
statistic=2.6007 

p-value= 0.0752 (◊) 
statistic= 1.4383 

LPI 
 p-value= 0.1096 (◊) 

statistic= 1.2286 

MLE 
No pruning ------- 

p-value= 0.4137 (◊) 
statistic= 0.2179 

LPI 
 p-value= 0.0132 (▲) 

statistic= 2.2197 

 
Fig. 5. ROC graphs of the OCCT (when using LPI as the splitting 
criteria and LPI for pruning) and the J48 algorithms. 

 
Fig. 6. Precision and recall for the OCCT (when using MLE as the 
splitting criteria and LPI for pruning) and for the J48 algorithms. 

Finally, in Fig. 6 we present the precision and recall 
for the OCCT (when using MLE as the splitting criteria 
and LPI for pruning, which yield the best preci-
sion/recall performance) and J48 algorithms. Using the 
Pearson correlation test we found that both the preci-
sion and recall of the OCCT are significantly better 
than the J48 (with p-value: 5.9463E-06, test statistic: -
4.5918 for the precision, and p-value: 2.3419E-05, test 
statistic: -4.5918 for the recall). 

8.2 The Movie Recommender Domain 

8.2.1 Scope and purpose  

There is a rapidly growing need for a personalized rec-

ommender system that presents users with items or 
contents which are likely to interest them [37]. Burke 
[38] describes the recommendation problem as a classi-
fication problem in which a classifier determines 
whether or not the user is likely to like a certain item. 

Decision trees have been extensively used in rec-
ommendation systems. Golbandi et al. [39] suggest us-
ing a decision tree in order to adjust the initial set of 
questions that are presented to a new user in the sys-
tem. Kim et al. [40] propose using decision trees for 
automatically extracting demographic marketing rules. 
Gershman et al. [29] proposed a tree-based recommen-
dation system which produces lists of recommended 
items at the leaves of the tree. Li and Yamada [41] pro-
pose modeling user preferences using a C4.5 decision 
tree. Lee [42] proposes using decision trees, in order to 
find links between items. Bouza et al. [43] induce a de-
cision tree model that can explain user ratings using 
semantic information (features) available for the items. 

The task of recommending items to new users with 
whom the system is not familiar with is extremely dif-
ficult. Some existing researches propose profiling users 
not as individuals, but rather according to their demo-
graphic characteristics. This is done by clustering users 
(or finding similarities between users) according to 
their demographic characteristics [44]. 

 In order to solve the problem of recommending 
items to new users, we propose using our matching 
algorithm and encapsulating both a demographic and 
content-based recommendation approach. This is done 
by matching demographic features that represent users 
(attributes of table TA), with the content of the items 
they typically like (attributes of table TB). The OCCT 
model would cluster the users according to their de-
mographic attributes and describe the likelihood of 
each group of users to like different features describing 
the items (i.e. content features). 

8.2.2 Evaluation environment  

Movielens (www.movielens.org) is an online movie 
recommender system whose main goal is to collect 
ratings of different users regarding different movies for 
research purposes. Users log on to the web site and 
rate different movies, and in return, the system gener-
ates a personalized list of recommended movies ac-
cording to predicted user preferences. The dataset we 
used consisted of 873,899 rating of 2,871 movies gener-
ated by 6,040 users. Three demographical features 
were available for describing users: gender (male or 
female), age group (split into six age intervals), and 
occupation description (21 different possible values). 

Different features describing the movies were col-
lected from IMDB, an internet movie database that fea-
tures information regarding movies and television se-
ries (www.imdb.com). We extracted seven types of 
features describing a movie: the movie's directors, its 
star actors, the countries in which it was filmed, the 
languages spoken in the film, the genres to which it 
belongs to, the year it was released, and a set of key-
words describing it. The collected data was pivoted to 
fit a tabular format. Then, a feature selection process 
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was executed, resulting in a table containing 140 differ-
ent features for each movie. The Movielens dataset 
provides a rating for each movie on a scale of 1 (do not 
like) to 5 (like very much). For the purposes of our re-
search, a binary scale was necessary, namely, like and 
dislike. In order to convert the given ratings into a bi-
nary scale we calculated the average rating for each 
user. If a movie's score was higher than the average, it 
was assumed that the user liked the movie. Otherwise, 
the movie was considered disliked by the user. Evalua-
tion was by splitting the dataset randomly into training 
and testing sets; 80% of the data was used for training 
and the remaining records were used for testing. 

8.2.3 Results  

Table 4 summarizes the AUC achieved in each of the 
12 possible configurations. Overall, we found that ap-
plying the MLE pruning along with any of the four 
splitting criteria yields the best results. When compar-
ing the AUCs of the 12 settings using the univariate z-
test, we found that when pruning is not applied, or is 
applied using the MLE technique, all splitting methods 
perform equally as good (see Table 3 in Appendix B). 
However, when LPI pruning was applied, we found 
that the FGJ method is significantly worse than all oth-
er methods. In addition, pruning (either LPI or MLE) is 
always significantly better than the no pruning option, 
while in most cases MLE pruning is better than the LPI 
pruning (see Table 4 in Appendix B). 

TABLE 4 
AUCS FOR THE 12 POSSIBLE SETTINGS (MOVIE RECOMMENDER) 

       Splitting 
Pruning CGJ FGJ LPI MLE 

No pruning 0.6315 0.6326 0.6304 0.6315 
LPI 0.6426 0.6376 0.6435 0.6429 
MLE 0.6457 0.6449 0.6493 0.6476 

In Fig. 7 we compared the results of OCCT with the 
results of the J48 algorithm. The graph shows minor 
advantage of the OCCT model over the J48 algorithm, 
especially for low FPRs, which are more relevant for 
most practical cases. Moreover, when statistically com-
paring the curves (using the univariate z-score test), 
the OCCT is significantly better than J48 (with p-value: 
0.0001, test statistic: -3.0336), where J48's AUC is 0.6430. 

Finally, in Fig. 8 we present the precision and recall 
for the OCCT (when using MLE as the splitting criteria 
and LPI for pruning, which yield the best preci-
sion/recall performance) and J48 algorithms. Using the 
Pearson correlation test we found that the precision of 
the OCCT is significantly better than the J48 (p-value: 
0.0011, test statistic: -3.2634) and no difference in the 
recall (p-value: 0.6274, test statistic: 0.4855). 

We compared the performance of the proposed 
method with nearest neighbors collaborative filtering 
(NNCF) using Jaccard coefficient. The results indicate 
that the proposed method has better performance. 
More specifically while NNCF obtains a precision of 
0.4 at k=5, OCCT obtains a precision of 0.85 at k=5 (note 
that both methods have similar recall performance). 
We choose to implement NNCF with Jaccard coeffi-
cient because we also employ the same metric in our 

own algorithm. It should be noted that this comparison 
does not intend to be exhaustive. There are other CF 
methods like SVD, which may provide better results. 
However the aim of this paper is not to introduce a 
new CF method. In fact our method utilizes the users’ 
demographic and items’ properties. In this sense our 
method builds a hybrid of demographic and content-
based recommender system and not a collaborative 
filtering-based system. Hybrid content-demographic 
recommender systems [45] are frequently solved by 
converting the problem into a supervised learning task. 
For example, classification tree models, which are hier-
archical like the OCCT model, were used successfully 
in the past (e.g., [46]). Due to the last reason and due to 
limited space we present a detailed comparison to J48 
and not to collaborative filtering. 

 
Fig. 7. ROC graphs of the OCCT (when using MLE as the splitting 
criteria and MLE for pruning) and the J48 algorithms. 

 
Fig. 8. Precision and recall for the OCCT (when using MLE as the 
splitting criteria and LPI for pruning) and for the J48 algorithms. 

8.3 The Fraud Detection Domain 

8.3.1 Scope and purpose 

In this section we address the scenario of detecting 
online requests performed by entities that unauthoriz-
ingly logon to the system using the identity of another 
legitimate user. This scenario is often addressed in the 
literature as masquerade detection [47]. Most current 
works address this problem by profiling normal user 
behavior and alerting deviate behavior from the pro-
files learned [48], [49]. 

 In order to solve the problem of detecting online 
masquerading attacks, we propose using our matching 
algorithm. The model will match between demograph-
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ic attributes describing the user (table TA), and the at-
tributes describing the transaction (table TB). The 
OCCT will represent the characteristics of transactions 
which are executed by legitimate users. If a transaction 
deviates from the user's normal behavioral profile, it 
might indicate that it was executed by a masquerader, 
and in such case, a notification will be sent to the sys-
tem administrator. 

8.3.2 Evaluation environment 

For the purpose of evaluation, we used a real dataset of 
an online shopping website. The dataset consists of 
purchase transactions; data describing both the user 
who is purchasing the item, and the transaction itself. 

The dataset consisted of a total of 921 customers and 
their purchases (a total of 14,192 transactions). The da-
taset was split randomly into training and testing sets; 
80% of the data was used for training and the remain-
ing records were used for testing. Since the data con-
sisted only of transactions which were legitimately 
executed by the users, 1000 non-matching transactions 
were added to the test set. These transactions were 
generated by matching between a random user and a 
random transaction. 

The goal of using the OCCT was to determine 
whether a given user-transaction pair is indeed legiti-
mate or if user is actually a masquerader. Ten attrib-
utes described the user (e.g., the user's gender, residen-
tial city, residential country, age). The transaction was 
described by 21 different attributes such as the pur-
chase amount, the means of payment (credit card/ 
debit card etc.), and the day of week and time of day in 
which the acquisition was made. 

8.3.3 Results  

Table 5 summarizes the AUC results obtained in each 
of the 12 settings. When comparing the AUCs of the 12 
settings using the univariate z-test, we found that 
when pruning is not applied, CGJ is significantly better 
than the other splitting criteria. When LPI or MLE 
pruning is applied, the LPI criterion is significantly 
better than all other criteria (see Table 5 in Appendix 
B). In addition, we found that LPI pruning is preferable 
in all of the splitting criteria except for the CGJ in 
which the no pruning option yielded the best results 
(see Table 6 in Appendix B). Overall, we found that 
using the LPI splitting criterion with LPI pruning 
yielded the best results. When we compared the results 
of this setting with the results of the J48 algorithm (us-
ing the univariate z-score test), we found no significant 
difference between the results (with p-value: 0.1317, 
test statistic: 0.6487), where J48's AUC is 0.6298. 

Finally, in Fig. 9 we present the precision and recall 
for the OCCT (when using MLE as the splitting criteria 
and PLI for pruning, which yield the best preci-
sion/recall performance) and J48 algorithms. Using the 
Pearson correlation test we found that both the preci-
sion and recall of the OCCT are significantly better 
than the J48 (with p-value: 1.4935E-30, test statistic: - 
12.0695 for the precision and p-value: 1.0722E-06, test 
statistic: 7.2574 for the recall). 

TABLE 5 
AUCS FOR THE 12 POSSIBLE SETTINGS (FRAUD DETECTION) 

       Splitting 
Pruning CGJ FGJ LPI MLE 

No pruning 0.6504 0.5668 0.5884 0.5868 
LPI 0.6012 0.5948 0.6627 0.6437 
MLE 0.5359 0.5682 0.6437 0.5474 

 
Fig. 9. Precision and recall for the OCCT (when using LPI as the split-
ting criteria and LPI for pruning) and for the J48 algorithms. 

9 DISCUSSION 

The OCCT was evaluated using three datasets from 
three different domains: the data leakage/misuse pre-
vention domain, the recommender systems domain, 
and the fraud detection domain. The first goal of the 
evaluation process was to identify the most suitable 
settings for each of the domains. In Section 3, we pro-
posed four different splitting criteria which can be 
used to induce the tree. The criteria differ from one 
another in different aspects and are each suitable for 
different types of domains. Additionally, three options 
for pruning were proposed. 

In both the data misuse and the movie recommend-
er domains, we found that when no pruning is applied, 
all four criteria yield similar results in terms of the 
linkage accuracy (measured by AUC). We explain this 
by the fact that without pruning, the clusters that are 
created in the leaves are actually identical, and thus the 
four models are actually identical in their meaning (the 
order of the inner nodes does not make a difference 
when no pruning is applied). 

However, we found that when pruning is applied, 
some splitting criteria were better than others. When 
applying LPI pruning in the recommender systems 
domain, we found that FJG yielded significantly poorer 
results than other settings. In the database misuse do-
main, we found that FJG and LPI, both with LPI prun-
ing, are equally effective and are significantly better 
than the other criteria. 

When applying MLE pruning, we found that in the 
data misuse domain, the FGJ criterion is significantly 
better than most others, while in the movie recommen-
dation domain, all four criteria are equally effective. 

In the fraud detection domain we found that the LPI 
criterion is significantly better than all other criteria 
when either of the pruning methods is applied. 

Overall, we had observed that in most cases, prun-
ing avoids overfitting and enhances the results of the 
linkage process. Additionally, in the database misuse 
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and the fraud detection domains, the settings which 
produced the best results involved LPI pruning. How-
ever, they were not significantly better than the results 
achieved by MLE pruning using the same criterion. In 
addition, MLE pruning is preferable to LPI pruning as 
it does not require fine-tuning of any parameters. Thus, 
MLE pruning should be preferred in most domains. 

Table 6 summarizes the pros and cons that were 
identified for each of the criterions. Overall, there is no 
specific criterion that is always preferred over others. 
Instead, the four criteria should be tested on the do-
main in order to identify which one produces the best 
results. However, if two or more criteria are equally 
effective, we would recommend using the criterion 
with the lowest computational complexity. 

TABLE 6 
SUMMARY OF THE SPLITTING CRITERIA 

Method Advantages Disadvantages 
Coarse-
grained 
Jaccard 
coefficient  

- Low computational com-
plexity 

- Can only handle binary splits 
- Produces bias results when 

the attributes are not distrib-
uted uniformly 

Fine-
grained 
Jaccard 
coefficient 

- Takes partial intersections 
into consideration 

- In some domains produces 
results which are signifi-
cantly better than other 
criteria 

- Can only handle binary splits 
- High computational complex-

ity 

Least prob-
able inter-
sections 

- Can be used as a criterion 
for pruning 

- Can handle non-uniformly 
distributed attributes 

- Most durable to noise in 
the data 

- Can only handle binary splits 

Maximum 
Likelihood 
estimation 

- Can handle multiple way 
splits 

- Can be used as a criterion 
for pruning 

- Assumes that the attributes 
are independent with one 
another 

- High computational complex-
ity (dependent on the type of 
probability model used) 

Table 7 compares the execution time for inducing 
the OCCT model in the fraud detection scenario. The 
results indicate that the most time consuming settings 
is the FGJ splitting measure. The clustering-based op-
timization reduces the execution time of FGJ calcula-
tion by 10, but still it is significantly higher than the 
other three splitting measures. The CGJ and LPI split-
ting measures are the fastest approaches having a simi-
lar execution time as expected from the computational 
analysis in Section 5.1. The fastest execution time is 
accepted when using the LPI pruning method. We also 
analyzed the execution time of each step: evaluating a 
potential splitting attribute, feature selection, and cre-
ating models at leafs, for each possible setting. From 
the results presented in Table 8, it can be observed that 
the most time consuming step is evaluating a potential 
splitting attribute, especially when FGJ is used as the 
splitting criterion and when using MLE for pruning. 

Another aspect of our evaluation process was the 
comparison between the results of OCCT and the re-
sults of the J48 decision tree. The results show that in 
the data misuse domain, OCCT works significantly 
better than the J48 algorithm. In the recommender sys-
tems domain, there is a minor but significant difference 
in the AUC scores, and the ROC curve of OCCT is bet-
ter than the J48 especially for low FPR values. 

TABLE 7 
OVERALL EXECUTION TIME FOR THE FRAUD DETECTION 

SCENARIO (MILLISECOND) 
          Splitting 

Pruning 
CGJ FGJ LPI MLE 

No pruning 137,908  
682,303 

7,537,885 (no clustering) 
145,989  297,829  

LPI 91,294 633,396 107,222 157,760 

MLE 120,482 565,659 123,587 107,004 

Executed on 64-bit Windows Server 2008 Enterprise ed., Intel Xeon 
CPU 1.6Ghz, 2Gb Memory (RAM). 

TABLE 8 
EXECUTION TIME FOR EACH STEP EXTRACTED FROM THE 

FRAUD DETECTION SCENARIO (MILLISECOND) 
Step          Splitting 

Pruning 
CGJ FGJ LPI MLE 

Evaluate 
splitting 

attribute 

No Pruning 671 3,797 738 1,621 

LPI 1,745 12,978 1,332 4,637 

MLE 5,964 35,014 7,376 5,253 

Feature 
selection 

No Pruning 114 73 145 103 

LPI 402 330 298 886 

MLE 1,560 889 1,919 1,045 

Create 
models at 
leafs 

No Pruning 62 55 61 57 

LPI 83 78 79 78 

MLE 94 83 87 80 

Executed on 64-bit Windows Server 2008 Enterprise ed., Intel Xeon 
CPU 1.6Ghz, 2Gb Memory (RAM). 

In the fraud detection domain, no significant differ-
ence was found between the OCCT and J48. However, 
the AUC of OCCT was higher than the AUC achieved 
by J48. Overall, we conclude that the OCCT is as effec-
tive as the alternative binary-class linkage algorithm. 

Finally, when comparing precision and recall 
(which are often used for evaluating data linkage 
methods) the OCCT yield better performance and in 
most cases it is statistically significant. 

Evaluation results show that the OCCT model be-
haves differently on different datasets and for different 
evaluation measure (i.e., precision/recall or ROC). The 
experimental results indicate that the preferred config-
uration for the AUC criterion is LPI-LPI (i.e., using LPI 
for the splitting criteria and LPI for pruning). If the 
precision and recall measures are used the preferred 
configuration is MLE-LPI. Therefore, for a specific 
problem we recommend to focus and check only the 
four possible combinations defined by MLE and LPI. 

The OCCT model also uses three types of thresh-
olds: threshold t is used to decide if to further split the 
current node (based on the number of records left in 
the node before splitting); threshold th is used to de-
cide whether a pair of records are matched or not 
matched; and the last threshold is used when the LPI 
method is used for pruning. The threshold th should be 
set by the operator of the method/system based on the 
required tradeoff of detection and error rates. In order 
to set the two other thresholds we recommend apply-
ing a cross-validation parameter selection method as 
proposed in [50]. In the experimental study we used 
this procedure to tune the splitting threshold and the 
LPI pruning threshold. We found that for the splitting 
threshold t=10 provided the best performance in all 
scenarios (i.e., a node will not be split if the number of 
records in the node is less than 10). 
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10 CONCLUSIONS AND FUTURE WORK 

We present OCCT, a one-class decision tree approach 
for performing one-to-many and many-to-many data 
linkage. The proposed method is based on a one class 
decision tree model that encapsulates the knowledge of 
which records should be linked to each other. In addi-
tion, we proposed four possible splitting criteria and 
two possible pruning methods that can be used for 
inducing the data models. Our evaluation results show 
that the proposed algorithm is effective when applied 
in different domains. Our goal is to link a record from a 
table TA with records from another table TB. The gener-
ated model is in the form of a tree in which the inner 
nodes represent attributes from TA and the leafs hold a 
compact representation of a subset of records from TB 
which are more likely to be linked with a record from 
TA, whose values are according to the path from the 
root of the tree to the leaf. 

Our decision to use only the attributes of TA as the 
splitting attributes of the tree was taken in order to 
keep the generated model simple and easy to under-
stand. Thus, the proposed OCCT tree can be easily 
used to obtain all records in TB that match a given rec-
ord r(a) in TA. For this purpose we need only to traverse 
the OCCT tree using r(a). The leaf that is ultimately be-
ing reached holds all predicted matching records in TB. 
On the other hand, a regular classification tree which 
mixes TA and TB attributes is less convenient for this 
task. In particular, in order to get all records in TB that 
match a given r(a), we need to classify all possible links 
(i.e., r(a) with any record in TB) one-by-one as either 
match or not-match using the classification tree. This 
results in a tiresome process. 

The J48 decision tree that we tested as our baseline 
does consider attributes from both tables TA and TB; 
however, it is less understandable because it mixes 
attributes from TA and TB. Moreover, J48 requires both 
matching and non-matching examples in the training 
set. The proposed algorithm, on the other hand, needs 
only matching instances. Note that we are interested in 
reducing the computation of both the model induction 
and the actual linkage. However, it is more critical to 
reduce the linkage computation since inducing the 
OCCT model can be done offline while the linkage 
phase is more important for real world problems. 
Therefore, splitting the tree by using attributes from 
both TA and TB would increase the linkage time. 

The contribution of this work is threefold. First and 
foremost, our method allows performance of one-to-
many and many-to-many linkage between objects of 
the same or of different types. Secondly, we used a 
one-class approach, and thus the training set requires 
only examples of matching pairs. Since the algorithm 
assumes that all examples in the training set are posi-
tive, non-matching (negative) pairs would confuse the 
algorithm and lead to a less accurate model. However, 
preliminary experiments that we conducted showed 
that the generalization capability of the proposed mod-
el can overcome training sets that contain a relatively 
small number of non-matching (negative) pairs and 

still generate an accurate model. The evaluation of the 
proposed model on training sets that contain non-
matching examples as well is left for future work. 
However, we believe that when enough non-matching 
examples are available, the J48 model is preferable and 
would probably work better. Third, an important ad-
vantage of the OCCT model over a decision tree-based 
data linkage solution is the simplicity of the model 
which can easily be transformed to rules of the type 
AB. This is not the case in other decision tree based 
linkage models where the inner nodes of the tree con-
sist of attributes from both tables TA and TB, thus mak-
ing them difficult to read and almost impossible to 
translate into rules. 

Although, our focus is on the one-to-many case, the 
OCCT model can be used for many-to-many linkage, 
for example, by simply changing the roles of the two 
tables TA and TB and using table TB as the source table 
instead. Note that in the Movielens dataset (movie rec-
ommender domain) we are actually solving a many-to-
many problem in which groups of users are matched 
with common matching movies. 

For future work we plan to compare the OCCT with 
other data linkage methods. In addition, we plan to 
extend the OCCT model to the many-to-many case and 
to handle continuous attributes. We also propose eval-
uating the results on additional domains, and charac-
terizing which splitting criterion and pruning methods 
should be applied for each type of domain. 
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