
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2011-09-0577 1

OCCT: A One-Class Clustering Tree for
Implementing One-to-Many Data Linkage

Ma'ayan Gafny, Asaf Shabtai, Lior Rokach, Yuval Elovici

Abstract— One-to-many data linkage is an essential task in many domains, yet only a handful of prior publications have

addressed this issue. Furthermore, while traditionally data linkage is performed among entities of the same type, it is extremely

necessary to develop linkage techniques that link between matching entities of different types as well. In this paper we propose

a new one-to-many data linkage method that links between entities of different natures. The proposed method is based on a

one-class clustering tree (OCCT) which characterizes the entities that should be linked together. The tree is built such that it is

easy to understand and transform into association rules, i.e., the inner nodes consist only of features describing the first set of

entities, while the leaves of the tree represent features of their matching entities from the second dataset. We propose four

splitting criteria and two different pruning methods which can be used for inducing the OCCT. The method was evaluated using

datasets from three different domains. The results affirm the effectiveness of the proposed method and show that the OCCT

yields better performance in terms of precision and recall (in most cases it is statistically significant) when compared to a C4.5

decision tree-based linkage method.

Index Terms— Clustering, Classification, Data matching, Decision tree induction

—————————— ——————————

1 INTRODUCTION

ATA linkage is the task of identifying different
entries (i.e., data items) that refer to the same enti-
ty across different data sources [1]. The goal of the

data linkage task is joining datasets that do not share a
common identifier (i.e., a foreign key). Common data
linkage scenarios include: linking data when combin-
ing two different databases [2]; data deduplication (a
data compression technique for eliminating redun-
dant data) which is commonly done as a prepro-
cessing step for data mining tasks [3], [4]; identifying
individuals across different census datasets [5]; link-
ing similar DNA sequences [6]; and, matching astro-
nomical objects from different catalogues [7]. It is
common to divide data linkage into two types: one-to-
one and one-to-many [8]. In one-to-one data linkage,
the goal is to associate an entity from one dataset with
a single matching entity in another dataset. In one-to-
many data linkage, the goal is to associate an entity
from the first dataset with a group of matching enti-
ties from the other dataset. Most of the previous
works focus on one-to-one data linkage.

In this paper we propose a new data linkage meth-
od aimed at performing one-to-many (and can be ex-
tended to many-to-many) linkage. In addition, while
data linkage is usually performed among entities of
the same type, the proposed data linkage technique
can match entities of different types. For example, in a
student database we might want to link a student
record with the courses she should take (according to
different features which describe the student and fea-
tures describing the courses). The proposed method

links between the entities using a One-Class Clustering
Tree (OCCT). A clustering tree is a tree in which each
of the leaves contains a cluster instead of a single
classification. Each cluster is generalized by a set of
rules (e.g., a set of conditional probabilities) that is
stored in the appropriate leaf [9], [10].

The OCCT was evaluated using datasets from three
different domains; data leakage prevention, recommender
systems, and fraud detection. In the data leakage preven-
tion domain, the goal is to detect abnormal access to
database records that might indicate a potential data
leakage or data misuse. The goal is to match an action,
performed by a user within a specific context, with
records that can be legitimately retrieved within that
context. In the recommender systems domain the pro-
posed method is used for matching new users of the
system with the items that they are expected to like
based on their demographic attributes. In the fraud
detection domain, the goal is to identify online pur-
chase transactions that are executed by a fraudulent
user and not the legitimate user (i.e., identity theft).
The results show that the OCCT performs well in dif-
ferent linkage scenarios. In addition, it performs at
least as accurate as the well known C4.5 decision tree
data-linkage model, while incorporating the ad-
vantages of a one class solution. Additionally, the
OCCT is preferable over the C4.5 decision tree because
it can easily be translated to linkage rules.

The contribution of this work is twofold. First and
foremost, we propose a method that allows performing
one-to-many (and many-to-many) linkage between
objects of the same or of different types. This is opposed
to existing methods that are only able to link between
objects of the same type. Secondly, we use a one-class
approach. This is an important advantage because in
certain domains obtaining meaningful non-matching

xxxx-xxxx/0x/$xx.00 © 200x IEEE

D

————————————————

The authors are with the Department of Information Systems Engineering at

Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel (e-mail:

gafnym@bgu.ac.il; shabtaia@bgu.ac.il; rokach@bgu.ac.il; elovici@bgu.ac.il).

mailto:gafnym@bgu.ac.il
mailto:shabtaia@bgu.ac.il
mailto:liork@bgu.ac.il
mailto:elovici@bgu.ac.il

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2011-09-0577

examples can be difficult. For example, in the fraud
detection case we can easily obtain genuine matching
examples; these are actually legitimate transactions
performed by users. Non-matching examples (fraudu-
lent transactions) are rare and more difficult to obtain.
In such cases non-matching examples can be artificially
created and added to the training set; however, we can
receive examples that do not make sense. For example,
a fraudulent customer purchases a product that is not
being sold in the customer’s country.

The rest of the paper is organized as follows. In Sec-
tion 2 we review related works on data linkage and
decision trees. Section 3 describes the data linkage
problem, while Sections 4-7 present a description of the
proposed solution. In Section 8 we describe the evalua-
tion and the results. Section 9 presents a discussion of
the results, and Section 10 concludes the paper.

2 RELATED WORK

2.1 Data Linkage

Data linkage refers to the task of matching entities
from two different data sources that do not share a
common identifier (i.e., a foreign key). Data linkage is
usually performed among entities of the same type. It
is common to divide data linkage into two types,
namely, one-to-one and one-to-many. In one-to-one data
linkage, the goal is to associate one record in table TA
with a single matching record in table TB. In the case of
one-to-many data linkage, the goal is to associate one
record in TA with one or more matching records in TB.

One-to-one data linkage was implemented using
various algorithms including: an SVM classifier that is
trained to distinguish between matching and non
matching record pairs [11]; calculating Expectation
Maximization [11] or Maximum Likelihood Estima-
tion [5] in order to determine the probability of a rec-
ord pair being a match; employing hierarchal cluster-
ing in order to link between pairs of entities [3], [12];
and performing behavior analysis in order to find
matching entities [2]. These methods assume that the
same entities appear in the two datasets to be linked,
and try to match between records that refer to the
same entity. Therefore, these works are less relevant
for data linkage between entities of different types.

Only a few previous works have addressed one-to-
many data linkage. Storkey et al. [7] use the Expecta-
tion Maximization algorithm for two purposes: (1)
calculating the probability of a given record pair be-
ing a match, and (2) learning the characteristics of the
matched records. A Gaussian mixture model is used
to model the conditional magnitude distribution. No
evaluation was conducted on this work.

Ivie et al. [6] use one-to-many data linkage for ge-
nealogical research. In their work, they performed
data linkage using five attributes: an individual’s
name, gender, date of birth, location and the relation-
ships between the individuals. A decision tree was
induced using these five attributes. However, the
main drawback of this method is that it is tailored to
perform matches using specific attributes and there-

fore, very hard to generalize.
Christen and Goiser [13] use a C4.5 decision tree in

order to determine which records should be matched
to one another. In their work, they compare different
decision trees which are built based on different
string comparison methods. However, in their meth-
od, the attributes according to which the matching is
performed are predefined and only one or two attrib-
utes are usually used.

In this paper we propose a new data linkage meth-
od aimed at performing one-to-many linkage that can
match entities of different types. Following [13], we use
the J48 Weka implementation [14] of the C4.5 decision
tree [15] as a baseline for comparison with our meth-
od. The inner nodes of the tree consist of attributes
referring to both of the tables being matched (TA and
TB). The leaves of the tree will determine whether a
pair of records described by the path in the tree end-
ing with the current leaf is a match or a non-match.

Data linkage is closely related to the Entity Resolu-
tion problem. While in data linkage the goal is to link
between related entries in one or more data sources,
the goal of entity resolution is to identify non-
identical records that represent the same real-world
entity, and to merge them into a single representative
record (also known as deduplication) [16]. Joint entity
resolution attempts to improve entity resolution by
using additional information that can be derived by
joining the table with a related table [17].

Another related research domain is co-clustering
[18]. Co-clustering refers to a two-dimensional clus-
tering process in which the entities (i.e., instances)
and the attributes are clustered at the same time. The
OCCT model also results in clusters of instances, each
may be described with a different set of attributes.
The clusters are later modeled in a compact way. In
this sense the proposed OCCT method can also be
used for co-clustering; however, in this paper we fo-
cus on the linkage task.

2.2 Decision Trees

Traditionally, decision trees are used for classification
and regression tasks. The training set used for inducing
the tree must be labeled. However, acquiring a labeled
dataset is a costly task. Therefore, we believe that using
a decision model which requires examples of one class
only is highly preferable.

De Comit'e et al. [4] introduce POSC4.5, an adapta-
tion of the C4.5 algorithm for learning from positive
examples and unlabeled examples. In addition to the
given datasets, it requires knowledge of the ratio of
positive examples out of the whole dataset. The nov-
elty of this approach over the C4.5 algorithm is that it
proposes a modified entropy formula which consid-
ers the weight of the positive class in the given da-
taset and assumes the number of negative examples
in the unlabeled data according to the given distribu-
tion. In addition, only binary classification problems
can be considered.

Letouzey et al. [19] extend the above algorithm to
create a forest of trees by iterating over different pos-

GAFNY ET AL.: OCCT: A ONE-CLASS CLUSTERING TREE FOR IMPLEMENTING ONE-TO-MANY DATA LINKAGE 3

sible ratios of the positive class. Then, the model
which is the most accurate is chosen for use. Experi-
mental results show very good performance when the
number of positive and negative examples in the da-
taset is similar. However, it performs very poorly on
imbalanced datasets. Therefore, the solution proposed
by Letouzey et al. is not suitable for our problem.

Li et al. [20] also propose an extension to the
POSC4.5 algorithm, which iterates over different pos-
sible positive ratios and chooses the tree that achieves
the most accurate results. The uniqueness of their
method is that it can classify streams of data very
quickly. This algorithm is not suitable for our needs
as well, because it cannot handle cases in which the
ratio of positive examples is small.

Clustering trees are structured differently than tradi-
tional decision trees [9]. In clustering trees, each node
represents a cluster (or a concept). The tree as a whole
describes a hierarchy (e.g., a taxonomy). Blockeel et al.
[10] extend this idea and describe an approach in
which each of the leaves contains a cluster instead of
a single classification. Each leaf of the tree is charac-
terized by a logical expression (e.g., conjunction of
literals) representing the instances belonging to it.
According to [21] the main advantage of using clus-
tering trees is that they provide a description for each
of the clusters using a logical expression.

The OCCT is a decision model that is similar to a
clustering tree. Additionally, it learns and represents
only positive examples, and therefore it is a one-class
model. In our proposed method, each leaf represents
a cluster, while the characteristics of the cluster are
represented by a set of rules. Our method differs from
clustering trees mainly in its ability to link two differ-
ent types. In particular, we create the clusters by ex-
amining the attributes representing the first table (TA),
while the data that is clustered is from the table that is
linked to it (TB). The rules that are formed refer to
table TB’s attributes as well. Our method differs from
existing one-class decision trees due to the fact that it
represents only positive examples (examples that do
not fit the description represented in the tree are clas-
sified as negative).

3 THE ONE-TO-MANY DATA LINKAGE PROBLEM

A typical data linkage problem consists of two data
tables that do not share a unique identifier. We will
denote these tables as TA and TB. In addition, we de-
note A as the set of attributes of TA, and B as the set of
attributes of TB. The goal is to match between the rec-
ords of TA with their corresponding records in TB. Usu-
ally, it is assumed that records in TA and TB refer to the
same type of entities. We define |𝑇 | as the number of
records in 𝑇 and |𝑇 | as the number of records in 𝑇 .
Since potentially, each record in 𝑇 can be linked to all
records in 𝑇 all record pairs (𝑟(, 𝑟(∈ 𝑇 × 𝑇 (where
𝑟(∈ 𝑇 and 𝑟(∈ 𝑇) must be considered. Therefore,
the problem space is |𝑇 | × |𝑇 |. However, advanced
indexing techniques can be used in order to make the
linkage process efficient and scalable [22]. The pairs

examined are split into two groups 𝑇 and 𝑇 ̅̅ ̅̅ where
𝑇 ⊆𝑇 × 𝑇 denoting the set of matching records, and
𝑇 ̅̅ ̅̅ ⊆𝑇 × 𝑇 denoting the set of non-matching records.
A pair of records can be classified either as matching or
as non-matching; therefore, 𝑇 ∪ 𝑇 ̅̅ ̅̅ = 𝑇 × 𝑇 and
𝑇 ∩ 𝑇 ̅̅ ̅̅ = ∅ [23]. The purpose of a data linkage algo-
rithm is to correctly identify as many true matching
pairs as possible (true positive), while minimizing the
classification error (false positive). Notions used
throughout the paper are summarized in Fig. 1.

𝑇 – a given table A

𝑇 – a given table B (our goal is to link records from table 𝑇 with one

or more records from 𝑇)

|𝑇 | – number of records in 𝑇

|𝑇 | – number of records in 𝑇

A – the set of attributes of table 𝑇 where ai is the i-th attribute

|A| – denotes the number of attributes in 𝑇

B – the set of attributes of table 𝑇 where bi is the i-th attribute

|B| – denotes the number of attributes in 𝑇

𝑟(∈ 𝑇 – a record from table 𝑇

𝑟(∈ 𝑇 – a record from table 𝑇

𝑇 × 𝑇 – a table that is generated by applying Cartesian product of

𝑇 and 𝑇

r=(r(a),r(b))⊆TA×TB – a record of 𝑇 × 𝑇

𝑇 ⊆𝑇 × 𝑇 – denoting the set of matching records

𝑇 ̅̅ ̅̅ ⊆𝑇 × 𝑇 – denoting the set of non-matching records

d – a node in the OCCT model

Ad⊆A – the subset of attributes of TA that were already selected as

splitting attributes in the path from the root of the tree to node

d.

𝑇
(

⊆𝑇 – the subset of matching instances at node d of the OCCT

tree

 (𝑇
(

) = 𝑇
((

 – the splitting of 𝑇
(

 into n subsets according to

attribute a such that = 𝑇
((

= 𝑟 ∈ 𝑇
(

| =

 (𝑇
(

 – selection operator that is used to select records in 𝑇
(

 that

satisfy the given predicate p (in this case p is a=vi)

 (𝑇
(

 – projection operator that is used to select a subset of attributes in

𝑇
(

 that appear in the attribute collection A

Fig. 1. Notations used in the paper.

Fig. 2 presents a general example of the data linkage
task. In the example, two tables, from two different
data sources, are presented. Note that in the example
the entities of the two tables are not of the same type.
The goal is to link records in TA (i.e., users) to their
matching records in TB (i.e., movies). Each possible
record pair is assigned a score that describes the prob-
ability of the records being a match. The probability of
two records being a match is assumed to be derived by
a pre-induced model. Such a model is induced during
a training phase by applying an inducing algorithm
(e.g., decision trees, SVM, or ANN) on a training set
containing labeled examples of matching (and optional-
ly non-matching) record pairs. Our basic requirements
from the induced models are: (1) the induced model
should provide a probability for each class
(match/non-match); (2) the model should handle both
numeric and nominal attributes; and (3) the model
should handle missing values. During the evaluation
(testing) phase, the induced model is applied on unla-
beled record pairs. In the example presented in Fig. 2,

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2011-09-0577

given the values of a user’s attributes (from TA) and the
values of movies’ attributes (from TB), the model de-
rives the level of linkage (i.e., linkage score). The level
of linkage is provided as a number between 0 and 1. In
order to reach a final binary decision (i.e., match or
non-match) a threshold has to be defined. If the score
exceeds the predefined threshold, the records are con-
sidered a match and linked together; otherwise, the
records are classified as non-match. For example, given
that the decision threshold is 0.5, only movies 1, 4, and
5 are considered to be matches for user 1.

To solve this task we propose a one-class clustering
tree that matches records originating from table TA
with records from table TB. The entities of TA may be of
a different type of entities of TB. The inner nodes of the
tree represent attributes of TA. The leaves of the tree
provide a compact representation of records from table
TB that should be linked to records from table TA, rep-
resented by the path from the root to the leaf.

Fig. 2. An example of a one-to-many data linkage task.

4 THE PROPOSED METHOD – AN OVERVIEW

The proposed solution is divided into the following
steps: (1) inducing a clustering tree linkage model; (2)
building probabilistic models to represent the leaves;
and (3) linking items according to the induced model.

1. Inducing a linkage model
The linkage model encapsulates the knowledge of
which records are expected to match each other. The
induction process includes deriving the structure of the
tree. Building the tree requires deciding which attribute
should be selected at each level of the tree. The inner
nodes of the tree consist of attributes from table TA on-
ly. Selecting the attribute is done by using one of the
possible splitting criteria presented in Section 5.1. The
splitting criteria ranks the attributes based on how
good they are in clustering the matching examples.

In addition, a pre-pruning process is implemented.
This means that the algorithm stops expanding a
branch whenever the sub-branch does not improve
the accuracy of the model (the proposed pruning
methods are described in Section 5.2). The inducer is
trained with matching examples only.

2. Representing the leaves using probabilistic models
Once the construction of the tree is completed, each
leaf contains a cluster (or set) of records. A set of prob-
abilistic models is induced for each of the leaves. Each
model Mi is used for deriving the probability of a value
of attribute bi∈B from table TB, given the values of all
other attributes from table TB. There are two motiva-
tions for performing this step. First, the sets of proba-
bilistic models result in a more compact representation
of the OCCT model. Second, by representing the

matching records as a set of probabilistic models, the
model is better generalized and avoids overfitting.

3. Linkage
During the linkage (i.e., testing) phase, each pair of
records in the testing set is cross-validated against the
linkage model. The output is a score representing the
probability of the record pair being a true match. The
score is calculated using maximum likelihood estima-
tion (MLE) [24]. The tested pair is classified as a match
if the score is greater than a given, predefined,
threshold or, if not, as a non-match. The threshold is
defined by taking into consideration the tradeoff be-
tween the false positive rate and the true positive rate.

In the next sections we describe in detail each of
the steps for generating the OCCT. In Section 5 we
describe the process of inducing the linkage model. In
Section 6, we describe how we represent the leaves,
and in Section 7 we describe the linkage process1.

5 INDUCING A LINKAGE MODEL

The OCCT is induced using one of the proposed split-
ting criteria. The splitting criterion is used to determine
which attribute should be used in each step of building
the tree. In addition, we use a pruning process in order
to decide which branches should be trimmed.

Fig. 3 describes the pseudo-code of the induction
process of the OCCT model. It consists of three proce-
dures: buildTree, which is the main function; choose-
BestSplit, in which the splitting attribute is chosen; and
createModelsForLeaves, in which a set of probabilistic
models are created for the given leaf.

The input of the algorithm is a training set of match-
ing instances TAB (each instance r is a pair of records
(r(a),r(b)): one from table TA and one from table TB; i.e.,
r=(r(a),r(b))∈ 𝑇 ⊆TA×TB), and two lists of attributes: A
describing the attributes of table TA, and B describing
the attributes originating from table TB.

The buildTree process for building the tree is an iter-
ative process. Let 𝑇

(
⊆𝑇 be the subset of matching

instances at node d of the tree, and let Ad⊆A be the set
of attributes of TA that were already selected as split-
ting attributes in the path from the root of the tree to
node d. Thus, A\Ad denotes the attributes of TA that
were not selected yet as splitting attributes. The process
terminates either when the subset of matching instanc-
es TAB is smaller than the given threshold t (i.e.,
|TAB|<t), or when there are no more candidate attrib-
utes for split in A; i.e., (A\Ad)=Ø (line 2). Otherwise, in
each iteration we find the next best splitting attribute
by evaluating every attribute ∈ (𝐴\𝐴 according to
the selected splitting criterion (line 5). Let a be an at-
tribute with n possible values v1,v2,..,vn. We define
 (𝑇

(
) = 𝑇

((
= {𝑇

((
, 𝑇

((
, , 𝑇

((
} as

the splitting of 𝑇
(

 into n subsets according to attribute
a such that = 𝑇

((
= 𝑟 ∈ 𝑇

(
| = . For

simplicity reasons, in the following Section 5.1 we as-
sume that a can have only two possible values v1 and v2

1An illustrative example is provided in:
http://tlabs.bgu.ac.il/index.php?option=com_content&view=article
&id=125&Itemid=108

Occupation
Age

Group
GenderUser ID

Programmer25-35Male1

Artist35-45Female2

Student18-25Male3

RomanceCrimeComedyDrama
Movie

ID

FTFT1

TTTF2

TTTF3

FFTT4

FTFT5

0.8

0.7
0.78

0.4
0.3

Table A Table B

GAFNY ET AL.: OCCT: A ONE-CLASS CLUSTERING TREE FOR IMPLEMENTING ONE-TO-MANY DATA LINKAGE 5

(i.e., binary attribute). Therefore, splitting 𝑇
(

 accord-
ing to attribute a results in two sets 𝑇

((
 and 𝑇

((

such that 𝑇
((

 includes all records of 𝑇
(

 for which
a=v1 and 𝑇

((
 includes all records of 𝑇

(
 for which

a=v2. At the end of Section 5.1 we explain how to ex-
tend the process of building the tree to multi-valued
attributes. Note that in order to handle continuous at-
tributes, a discritization process needs to be applied on
the continuous attribute prior to inducing the model.

buildTree(TAB,A,B,t)
Input: TAB - set of matching instances,

 A - set of attributes from table TA,

 B - set of attributes from table TB,

 t - threshold; the minimum size for split

Output: T (OCCT tree)

1: Node T newNode()

2: if |TAB|≤t OR (A)=∅ then

3: T.Models createModelsForLeaf(TAB,B)

4: else

5: a chooseBestSplit(TAB,A)

6: if not pruneTree(TAB,a) then

7: set T.attribute a

8: for each ∈ a

9: T.Child[i] buildTree(
(𝑇 ,(A\{a}),B,t)

10: end for

11: else

12: T.Models createModelsForLeaf(πB(TAB),B)

13: end if

14: end if

15: return T

chooseBestSplit(TAB,A)

Input: TAB - set of matching instances,

 A - set of attributes from table TA,

Output: a’ - the attribute chosen for the split

1: spopt 0

2: a' ∅

3: for each a in A

4: sp evaluateSplit(TAB,a)

5: if sp is better than spopt then

6: spopt sp

7: a' a

8: end if

9: end for

10: return a'

createModelsForLeaf(TB,B)
Input: TB - set of matching instances from table TB,

 B - set of attributes from table TB,

Output: M - set of models for given dataset

1: M ∅

2: for each b ∈ B

3: Set b as class attribute of TB

4: m Build probabilistic model for TB

5: M Mm

6: end for

7: return M

Fig. 3. The pseudo code of the tree induction process.

Once the best splitting attribute a is determined, each
subset 𝑇

((
 of 𝑇

(
 will be sent recursively to the

procedure buildTree (line 8-10). The selection operator σ
of the form (𝑇

(
 is used to select records in 𝑇

(
 that

satisfy the given predicate p (in this case p is a=vi). The
projection operator of the form (𝑇

(
 is used to

select a subset of attributes in 𝑇
(

 that appear in the
attribute collection A.

5.1 The splitting criteria

The goal is to achieve a tree which contains a small
amount of nodes. Smaller trees better generalize the
data, avoid over fitting, and will be simpler for the
human eye to understand [26]. Therefore, it is crucial to
use an effective splitting criterion in order to build the
tree. We would choose to perform (𝑇

(
) (i.e.,

splitting 𝑇
(

 according to attribute a) if we were to
gain the most information out of this split. In this sec-
tion we propose four criteria that can be used for eval-
uating the splitting of 𝑇

(
 according to an attribute a.

Each splitting criterion is used for measuring the simi-
larity between two record sets T1 and T2, and is denot-
ed by sim(T1,T2). In the context of our research, the sim-
ilarity function that is defined by the selected splitting
criteria is used in order to determine the attribute that
creates the best split of a table; i.e., splits table T into
two tables, T1 and T2, which differ from each other as
much as possible.

In the ChooseBestSplit procedure described in Fig. 3,
each attribute in A is examined in order to determine
the quality of the split it will achieve. The attribute that
achieves the best score (highest/lowest- depending on
the splitting criterion) will be returned and used as the
next split of the tree. In this section, we present four
splitting criteria which we believe will be efficient for
inducing a small decision tree: coarse-grained Jaccard
coefficient, fine-grained Jaccard coefficient, least prob-
able intersection, and maximum likelihood estimation.

Coarse-grained Jaccard (CGJ) coefficient
The Jaccard similarity coefficient, a measure that is com-
monly used in clustering, measures the similarity be-
tween clusters [26]. In the context of our research we
use this coefficient in order to choose the splitting at-
tribute a, and define a subset 𝑇

((
 of a record set 𝑇

(

as a cluster. The goal is to choose the splitting attribute
which leads to the smallest possible similarity between
the subsets (i.e., an attribute that generates subsets that
are different from each other as much as possible). In
order to do so, we examine each of the possible (re-
maining) splitting attributes and measure the similarity
between the subsets. The similarity between two sub-
sets, denoted by 𝑠 𝑚(𝑇

((
, 𝑇

((
), is computed for

each possible splitting attribute, ∈ (𝐴\𝐴 , using the
Jaccard coefficient as the ratio between the number of
records belonging to both (\ ∪ (𝑇𝐴𝐵

(𝑑 (
 and

 (\ ∪ (𝑇𝐴𝐵
(𝑑2 (

 , and the total number of records, as
described in Equation (1). Records are considered in
the intersection only if they are completely identical (all
attributes share the same values).

𝑠 𝑚(𝑇
((

, 𝑇
((

)

=
|((\ ∪ (𝑇

((
) ∩ ((\ ∪ (𝑇

((
)|

|((\ ∪ (𝑇

((
) ∪ ((\ ∪ (𝑇

((
)|

 (

The goal is to choose the split that creates two subsets,
𝑇

((
 and 𝑇

((
, who are as different from each

other as much as possible. Therefore, we will favor the
attribute that minimizes the similarity measure above.

In order to minimize the computational complexity
of building the model using the CGJ criterion, the val-
ues of the fields from TB can be expressed as a single
(concatenated) string. Then, a string matching algo-
rithm can be used to find the intersection between the
two subsets of records. For example, Knuth et al. [27]
describe an algorithm for string matching whose com-
plexity is 𝑂(|𝑇

(
| + |𝐵|) for finding a match for a sin-

gle string. Thus, if we were to search for a match for
each of the strings in 𝑇

((
, the complexity would be

bounded by 𝑂 (|𝑇
(

|

+ |𝐵| ∙ |𝑇

(
|). Since 𝑇

(
⊆ 𝑇 ,

The complexity is bounded by 𝑂(|𝑇 |
 + |𝐵| ∙ |𝑇 | .

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2011-09-0577

There are |A| possible splitting attributes examined in
each level, and a total of |A| levels. Therefore the total
time complexity of building a model using the CGJ
criterion is 𝑂(|𝐴| ∙ (|𝑇 |

 + |𝐵| ∙ |𝑇 |).

Fine-grained Jaccard (FGJ) coefficient
The fine-grained Jaccard coefficient [26] is capable of

identifying partial record matches, as opposed to the
coarse-grained method, which identifies exact matches
only. It not only considers records which are exactly
identical, but also checks to what extent each possible
pair of records is similar. Assume that ri and rj are two
records originated from 𝑇

((
 and 𝑇

((
 respective-

ly. According to the fine-grained Jaccard coefficient,
their similarity would be calculated as the number of
attributes containing the same values in both ri and rj,
divided by the total number of attributes examined
that did not contain null in either of the records. This is
calculated for each possible pair of records in 𝑇

((
×

𝑇
((

. The similarity of 𝑇
((

 and 𝑇
((

 is there-
fore calculated as the sum of similarities of all possible
pairs of records, as described in Equation (2).

𝑠 𝑚(𝑇
((

, 𝑇
((

) = ∑
|𝑟 ∩ 𝑟 |

|𝑟 ∪ 𝑟 | ∈
((

 ∈
((

 (2

Due to the fact that comparing each record of one leaf
with all records in another node is a very expensive
process in terms of run-time, we tried to optimize the
calculations. In order to do so, we first take all instanc-
es of 𝑇

((
 and 𝑇

((
 and use the k-means algorithm

[28] in order to cluster these instances into k different
clusters (with k being a settable parameter that is pro-
vided as an input to the clustering algorithm). Finally,
we use FGJ to evaluate the similarity of each record
originally belonging to node 𝑇

((
 with each of the

other records belonging to the same cluster and are orig-
inally from 𝑇

((
. Since the similarity between rec-

ords is performed only between records that belong to
the same cluster, the total processing time is decreased
by a factor of k. Moreover, it lets us to easily perform
the calculation in parallel and by that additionally re-
duce the time span by a factor of k. This, of course, in-
troduces a tradeoff: as k (the number of clusters) is in-
creased, the time span is reduced by a factor of k2 in
total, however, this is on the account of accuracy of the
induced OCCT model. We recommend setting k as the
number of available cores in the machine, such that
each core will be assigned to process a different cluster.

Given that 𝑇
(

 is the original collection of instances
(i.e., the training set), and that we are evaluating a bi-
nary split into 𝑇

((
 and 𝑇

((
. In order to calculate

an intersection (or a partial intersection), |B| compari-
sons must be made. Then, calculating the number of
intersecting instances between 𝑇

((
 and 𝑇

((

would take 𝑂(|𝐵| ∙ |𝑇
((

| ∙ |𝑇
((

|). Since 𝑇

((
⊆

𝑇 , The complexity is bounded by 𝑂(|𝐵| ∙ |𝑇 |
 .

There are |A| possible attributes that are candi-
dates for splitting, and therefore, the total complexity
of identifying the first splitting attribute is 𝑂(|𝐴| ∙ |𝐵| ∙
|𝑇 |

 . If the tree is not pruned, there would be |A|
levels in the tree, therefore the process of selecting a

splitting attribute is performed |A| times. Thus, the
overall complexity of building the model using the FGJ
criterion is bounded by 𝑂(|𝐴| ∙ |𝐵| ∙ |𝑇 |

 .

Least probable intersections (LPI)
Gershman et al. [29] propose a heuristic in which the
optimal splitting attribute is the attribute that leads to
the minimum amount of instances that are shared be-
tween two item-sets. They propose a criterion which
relies on the cumulative distribution function (CDF) of
the Poisson distribution. Assuming a random binary
split of 𝑇

(
 into two subsets 𝑇

((
 and 𝑇

((
, the

probability Pi that a record ri∈ 𝑇
(

 belongs to both
 (\ ∪ (𝑇

((
 and (\ ∪ (𝑇

((
 is defined by

Equation (3), with oi denoting the number of appear-
ances of item ri in (\ ∪ (𝑇

(
 .

 = (
|𝑇

((
|

|𝑇

(
|

)

 (
|𝑇

((
|

|𝑇

(
|

)

 (

In the context of our research, we refer to a distinct
combination of attributes as a unique identifier of an
entity. Therefore, our goal is to find a splitting attribute
for which there is the least amount of identifiers that
are shared, in comparison to a random split of the
same size. Using the central limit theorem we assume
that the data we are using will distribute normally. Let
𝑗 = |((\ ∪ (𝑇

((
) ∩ ((\ ∪ (𝑇

((
)| and

𝜆 = ∑ ∈
(. In order to bring this distribution to the

standard normal form (where µ=0 and σ =), we use
the following approximation (4) to calculate Z (the test
statistic), where μ = λ, and σ = √λ. Z represents the
probability of the two subsets to be created randomly.

 (=
𝑗 λ

√ λ
 (

The goal is to find the splitting attribute which is the
least probable to generate the two subsets randomly.
Therefore, the candidate splitting attribute with the
highest score is chosen as the next attribute for split.
Specifically, Z(a) is calculated for each candidate attrib-
ute for split ∈ (𝐴\𝐴 . The next splitting attribute of
the tree will be the attribute that had achieved the
highest Z score.

In terms of computational complexity, building a
tree using this method is fairly cheap. In order to calcu-
late λ, it is necessary to go over each of the distinct rec-
ords in 𝑇

(
 and check the number of times they appear

in the records set. In addition, it is necessary to calcu-
late j (the intersection between 𝑇

((
 and 𝑇

((
) for

each possible splitting attribute. When using Knuth et
al. algorithm for string matching [27], the cost of calcu-
lating the intersection is 𝑂(|𝑇

(
| + |𝐵| ∙ |𝑇

(
|). Since

𝑇
(

⊆ 𝑇 , the complexity is bounded by 𝑂(|𝑇 |
 +

|𝐵| ∙ |𝑇 | . In order to choose the best splitting attrib-
ute, the intersection is calculated |A| times in each
level of the tree, and in |A| levels in total. Thus, the
time complexity of building a tree according to the LPI
criterion is 𝑂(|𝐴| ∙ (|𝑇 |

 + |𝐵| ∙ |𝑇 |).

Maximum likelihood estimation (MLE)
This splitting criterion uses the Maximum Likelihood
Estimation (MLE) [24] in order to choose the attribute

GAFNY ET AL.: OCCT: A ONE-CLASS CLUSTERING TREE FOR IMPLEMENTING ONE-TO-MANY DATA LINKAGE 7

that is most appropriate to serve as the next splitting
attribute. Each candidate attribute from the set of at-
tributes (A\Ad) splits the node dataset into subsets ac-
cording to its possible values. For each of the subsets, a
set of probabilistic models M1...M|B| is created, one for
each attribute of table TB. Each probabilistic model Mi
is built to describe the probability of bi given b1,b2,…bi-1,
bi+1,…,bn, p(bi|bj, j=1..|B|, j≠i). In order to create the
probabilistic models we used Weka’s J48 decision trees
[14]. Each of these trees represents the probability of its
class attribute values (i.e., bi) given the values of all
other attributes.
Once the set of models has been induced, the probabil-
ity of each record given these models is calculated. Let
a record in table TB be represented by r(b)=(v1,v2,..,v|B|)
where vi is the value assigned to attributes bi∈B. Then,
for each record r(b) in the subset, we compute:

 (𝑟() = ∑ ((

| |

= | = , 𝑗 = , 𝑗) (

where, (| = , 𝑗 = , 𝑗 is the condition-

al distribution provided by Mi.

A subset’s score is calculated as the sum of all L(r(b))
scores of the records belonging to it (i.e., 𝑟(∈
 (𝑇

((
 . The attribute’s final score is determined by

the sum of the subset’s individual scores.
Our goal is to choose the split that achieves the max-

imal likelihood, and therefore we choose the attribute
with the highest likelihood score as the next splitting
attribute in the tree.

The computational complexity of building a deci-
sion model using the MLE method is dependent on the
complexity of building a statistical model and the time
it takes to calculate the likelihood. Let us denote
 (|𝑇 |, |𝐵| as the complexity of building the probabil-
istic model. This complexity varies according to the
method chosen for representing the model (e.g., deci-
sion tree, naïve Bayes), to the size of the input dataset,
and to the number of attributes from which the dataset
is composed of. In each level, |B| models are built; one
for each attribute from table TB. Thus, the time com-
plexity of building a set of models for a single node is
𝑂(|𝐵| ∙ (|𝑇 |, |𝐵| . For example, in our implementa-
tion we are using the J48 decision tree [17] as the prob-
abilistic model. The time complexity of inducing a J48
decision tree is 𝑂(|𝐴| ∙ |𝑇 | ∙ log(|𝑇 | + |𝑇 | ∙
log |𝑇 | . Thus, the time complexity of building a set
of models for a given records set is 𝑂(|𝐵| ∙ (|𝐴| ∙ |𝑇 | ∙
log(|𝑇 | + |𝑇 | ∙ log

 |𝑇 |).
The complexity of calculating the likelihood of the

record set is affected by the model used and the attrib-
utes from which it was built. Thus, we denote it as
L(M,B). The likelihood estimation is conducted for each
record in the dataset and over the set of |B| models.
Therefore, the time complexity for calculating the like-
lihood is 𝑂((, 𝐵 ∙ |𝑇 | ∙ |𝐵| . Overall, the process of
building the model set is performed |A| times for a
single split (once for each possible split). This occurs
once for each level of the tree. Thus, the total time

complexity for building a model using MLE is
𝑂(|𝐴| ∙ (|𝐵| ∙ (|𝑇 |, |𝐵| + (,𝐵 ∙ |𝑇 | ∙ |𝐵| .

Dealing with multi-valued splits
For simplicity reasons the three measures which are
described above (CGJ, FGJ, and LPI) were presented
for binary attributes. However, in most datasets, dis-
crete attributes may have more than two possible val-
ues. When multi-values attributes exist in the dataset,
the proposed splitting criteria are adapted as follows.

The score of a candidate splitting attribute is calcu-
lated as a weighted average of a series of possible bina-

ry splits. Each binary split, splits 𝑇
(

 into two sets

𝑇
((

 and 𝑇
((

 such that 𝑇
((

 includes all rec-

ords of 𝑇
(

 for which a=v1 and 𝑇
((

 includes all rec-

ords of 𝑇
(

 for which a≠v1. A weight wi is calculated

for each binary split i such that wi=|𝑇
((

|/|𝑇
(

|. The
weights are proportional to the size of the subsets to
ensure that the resulted splitting value of an attribute
will be influenced mainly by records having more
dominant values and not by esoteric ones.

Note that only splitting methods that calculate the
similarity between record sets require the special
treatment we are proposing for multi-values splits (i.e.,
CGJ, FGJ, and LPI). This is because these methods are
capable of measuring the similarity of only two record
sets at a time, and therefore an adjustment is necessary
for multi-valued splits. The fourth measure (MLE) does
not measure the similarity between two given record
sets, and it is computed individually for each possible
subset. Then, the scores are accumulated regardless of
the number of subsets. Thus, no additional action is
needed in order to extend the measure from binary
splitting attributes to multi-valued splitting attributes.

5.2 Pruning

Pruning is an important task in the tree induction pro-
cess. A good pruning process will produce a tree which
is accurate on one hand, and avoids overfitting on the
other. There are two common approaches for pruning a
decision tree: pre-pruning and post-pruning [9]. In pre-
pruning, a branch is pruned during the induction pro-
cess if none of the possible splits are found to be more
beneficial than the current node. In post-pruning, the
tree is grown completely, followed by a bottom-up
process to determine which branches are not beneficial.

In our algorithm we follow the pre-pruning ap-
proach. This approach was chosen in order to reduce
the time complexity of the algorithm. The decision
whether to prune the branch or not is taken once the
next attribute for split is chosen, as described in Fig. 3
(line 6 in the buildTree process). We propose using one
of the following methods: maximum likelihood estima-
tion (MLE) and least probable intersections (LPI).

In the maximum likelihood method, an MLE score is
computed for each of the possible splits (as described
in Section 5.1). If none of the candidate attributes
achieve an MLE score which is higher than the current
node's MLE score, the branch is pruned and the current
node becomes a leaf.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2011-09-0577

In the least probable intersections method, Z is cal-
culated for each possible split (as described in Section
5.1). If for all possible splitting attributes Z is smaller
than a predefined threshold, then all of the possible
splits are likely to be formed by a random split. Thus,
we will not gain much information from any of the
possible splits and the branch will be pruned.

6 LEAF REPRESENTATION

Once the model is built (based on attributes from table
TA), each leaf holds a dataset containing the matching
records from table TB. In order to create a compact rep-
resentation of the linkage model and for it to be more
generalized each leaf is represented by a set of proba-
bilistic models. These models represent the probability
of an attribute, given the values if all other attributes in
B. Formally, let there be |B| attributes representing
records from table TB: B={b1,b2,…,b|B|}. For each attrib-
ute bi in B, a probabilistic model Mi is built to describe
the probability of bi given b1,b2,…bi-1,bi+1,…,bn, p(bi|bj,
j=1..|B|, j≠i). The pseudo code of building a set of
models for a given leaf is described in the function cre-
ateModelsForLeaves in Fig. 3.

We found that it is not necessary to save models for
all possible attribute of table TB. Instead, models are
created only for the attributes that are found to have
the most significant effect in the specific leaf. Therefore,
prior to building the models, a feature selection process
is executed on the leaf dataset in order to choose the
attributes that will be represented. The goal of the fea-
ture selection process is identifying the attributes that
best represent the records that appear in a leaf. There-
fore, a different set of attributes might be chosen for
representing each of the leaves.

In our implementation, each leaf is represented by a
set of Weka’s J48 decision trees [14]. We avoided the
usage of full conditional probability tables by using a
J48 classification tree with its generalization capabili-
ties for encoding the conditional probabilities in a
compact way. In this sense J48 is used as a probability
estimation tree [30] by avoid pruning and using La-
place correction. In particular, for each attribute bi we
induce a dedicated classification tree Mi, where bi is
used as the target attribute and all other attributes are
used as input attributes. A classification tree is capable
to provide a conditional probability for each possible
combination of the b1,…,bn because there is always a
path from the root to one of the leaves that fits a given
combination (assuming that for domain values of all
attributes are known); the path is usually represented
by a subset of the attributes of B that were selected by
the J48 algorithm, which makes the tree much more
compact than the full conditional probability table.
Note that each leaf provides a different conditional
probability and the number of leaves in the classifica-
tion tree is bounded by the training set size.

For the feature selection process, we use Weka’s im-
plementation of the Correlation-based Feature Subset
Selection algorithm [31] feature selection algorithm.
This feature selection algorithm searches for a subset of

features that have high correlation with the class at-
tribute and which have low correlation with one an-
other. In our case, we apply the feature selection pro-
cess on a leaf dataset and we choose the class attribute
to be the currently selected splitting attribute ∈ 𝐴.
Therefore, at the end of the feature selection process
we are left with a set of features that are highly corre-
lated with , but are uncorrelated with one another.

Each path from the root of the OCCT tree to a leaf is
represented by specific values of attributes of table TA.
Therefore, the records of each leaf are aggregated ac-
cording to the attributes of table TA. In this sense, in
each leaf, the attributes of TA are fixed and thus the
probability of each attribute of TB is conditioned, not
only on the values of the other attributes TB but also on
the attributes of TA.

7 APPLYING OCCT FOR DATA LINKAGE

During the linkage (i.e., test) phase, each possible pair
of test records is tested against the linkage model in
order to determine if the pair is a match. This process
produces a score representing the probability of the
record pair being a true match. An initial score is calcu-
lated using maximum likelihood estimation [25].

Fig. 4 presents the pseudo-code of the linkage process.

The input to the algorithm is an instance from TA, and an

instance of TB. The output of the algorithm is a Boolean

value determining whether the given instances should be

matched or not. First, the appropriate set of models is

retrieved by following the values of record a to the cor-

rect path of the tree (line 1). The likelihood for a match

between the records is calculated by deriving the proba-

bility of each value in b, given all other values and the

appropriate model (line 2-6).

linkInstances(r(a),r(b),th)

Input: TAB - set of matching instances,

 r(a) - an instance from table TA,

r(b) - an instance from table TB,

th - the threshold for match

Output: q - a boolean value determining if the records match or not

1: M the set of models matching the values of a

2: l 0

3: for each bi in b

4: li (= | = , 𝑗 = , 𝑗

5: l l + li

6: end for

7: l l*cardinality(a,b)

8: if l >= th then

9: q true

10: else

11: q false

12:end if

13: return q

Fig. 4. The pseudo code of the linkage process.

The probability of a match is also determined by the

cardinality of the examined instances (i.e., the number

of times that the record from table TB is linked to table

TA). For example, assume we are examining two possi-

ble pairs who achieved the same MLE score. However,

the record ri(b) entity from the first pair had only one

matching record from table TA in the training set, while

record rj(b) from the second pair was a match for hun-

dreds of records in the training set. It is reasonable to

assume that it is much more likely that the second pair

GAFNY ET AL.: OCCT: A ONE-CLASS CLUSTERING TREE FOR IMPLEMENTING ONE-TO-MANY DATA LINKAGE 9

would be a match rather than the first pair. Therefore, we

multiply the MLE score that was calculated by the cardi-

nality of the examined records (line 7).

Finally, it is determined whether the given records are

a match or not by comparing the likelihood score that was

calculated to the given threshold th (line 7-11). If the

pair’s score is greater than th, it is classified as a match

(lines 8-9); otherwise, it is classified as a non-match

(lines 10-11). The threshold is defined by taking into

consideration the tradeoff between the false positive rate

and the true positive rate.

8 EVALUATION

We set several goals for the evaluation process. Our
first goal was to examine the different settings which
were suggested; i.e., the four splitting criteria and the
pruning process, and to identify the most suitable set-
tings for the environment which was tested. Second,
we wanted to compare between OCCT and a binary
class decision tree, commonly used for one-to-many
data linkage. For this purpose we use Weka’s J48 deci-
sion tree. Third, we wanted to verify that the proposed
method is generic and can be used for data linkage
under different scenarios, and when executed on dif-
ferent domains.

To answer the first two research questions, we
measured the true positive rate (TPR) - the ratio be-
tween the number of pairs correctly classified as a
match and the total number of matching pairs, and
false positive rate (FPR) - the ratio between the number
of pairs incorrectly classified as a match, and the total
number of pairs which were actually non-matches.

In order to evaluate the tradeoff between the TPR
and the FPR, we used the receiver operating character-
istic (ROC) graph [32]. This graph plots the TPR vs. the
FPR as the threshold changes. The quality of the classi-
fication rates is measured using the area under the
curve (AUC). The goal is to reach the largest area pos-
sible (1.0), implicating that 100% of the records were
classified correctly. In general, a model which achieves
a larger area under the curve is considered to be a bet-
ter model. The curves of different settings of the OCCT
model and the J48 model were compared using the
ROCKIT platform [33] which statistically analyzes the
AUC results using the univariate z-score test (bivariate
binormal model). In our case, the null hypothesis (H0)
is that the two datasets are from binormal ROC curves
with equal area (i.e., equal AUC). The alternative hy-
pothesis (H1) is that one ROC curve is with a signifi-
cantly higher AUC than the other one. For each signifi-
cant level (we set the significant level to be =0.05), the
z-test has a single critical value which can be compared
with the test-statistic to determine whether to accept or
reject the null hypothesis. Therefore, when using
=0.05 the null hypothesis (two ROC with equal area
under the curve) will be rejected whenever the test-
statistics is smaller than the critical value of 1.65 (which
matches =0.05). Similarly, if the p-value, which is the
probability that matches the test-statistic, is smaller

than =0.05, the null hypothesis is rejected (i.e., the
difference between the ROCs is statistically significant).

In addition, we also calculated the recall and preci-
sion measurements which are often used for evaluating
data linkage methods. Recall is the number correctly
identified matching records (i.e., TP) divided by the
total number of matching records in the test set
(TP+FN). Precision is the number of correctly identi-
fied matching records (i.e., TP) divided by the number
of pair of records that were identified as matching
(TP+FP). The recall and precision measurements are
computed individually for each entity in table TA and
then averaged over all entities.

In order to answer the third research question, we
performed our evaluation by applying the method on
three different tasks, originating from three different
domains: the data leakage detection task, originating
from the information security domain; the task of rec-
ommending items to new users, originating from the
recommender systems domain; and the task of identi-
fying masquerade attacks, originating in the fraud de-
tection domain. The domains vary in the goal of the
linkage, in the cardinality between the tables, and in
the size of the datasets. In each experiment the dataset
is split into two mutually exclsive subsets: training set
and test set. The training set is used for inducing the
OCCT model and the test set is used for evaluating the
induced model. Using an independent test set helps to
objectively measure the strength of the predictive
model on one hand, and its level of generalization on
the other (making sure that the model does not suffer
from overfitting to the training data).

8.1 The Database Misuse Domain

8.1.1 Scope and purpose

Most of the research efforts in the database misuse
domain focus on deriving user profiles that define
normal access patterns to the data stored in the data-
base and issue an alert whenever a user’s behavior de-
viates from the normal profile. The most common ap-
proach is by extracting various features from the SQL
query string submitted by the application server to the
database (as a result of a user’s requests) [34]. Another
approach for representing a user's behavioral profile,
known as the data centric approach, focuses on analyz-
ing the data exposed to the user following her request,
i.e., the result-sets [35]. Mathew et al. [35] claim that
whenever analyzing a user's request for data, features
that define the context in which the request has been
issued (such as the time of request and location of the
user) should be considered. However, these features
have not been used in related works which focused
only on analyzing access to database records.

It is expected that the records retrieved following a
user’s request contain data which is legitimate for the
user to view in his line of duty. We define a request
which retrieves only legitimate records as a benign
request. However, some users, intentionally or unin-
tentionally, execute requests that retrieve records
which should not be exposed to them. Nevertheless, if

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2011-09-0577

the result-set contains a significant amount of illegiti-
mate records, the query is considered malicious.

The goal of using the OCCT in this domain is to link
a set of records, representing the context of the request
(i.e., the actual access to certain data), with a set of rec-
ords representing the data which can be legitimately
retrieved within the specific context. Thus, the inner
nodes of the OCCT represent contextual attributes in
which the request occurs (table TA), and the probabilis-
tic models in the leaves represent the data which can
be legitimately retrieved in the specific context (table
TB). Pairs which are detected as non-matching are as-
sumed to be illegitimate (i.e., malicious), and will trig-
ger an alert to the organization's security officer. By
analyzing both the context of the request as well as the
data that the user is exposed to, the OCCT method can
improve the detection accuracy and better distinguish
between a normal and abnormal request.

8.1.2 Evaluation environment

Since no real dataset was available for evaluation, we
opted to generate a simulated dataset which was used
in [36]. In the simulated scenario, customer data of an
organization is shared with a business partner. There-
fore, the simulated data includes requests for customer
records of an organization, submitted by a business
partner of the organization.

Contextual information (i.e., table TA attributes) on
the request includes the time of execution, day of exe-
cution, geographical location of the request, the user’s
role, and the type of request. Sensitive information of
customers (i.e., table TB attributes) includes the cus-
tomer’s name, address, zip code, place of work, and the
customer type (e.g., business, private).
The simulated requests were generated according to
one of the following three behavior types:

Normal: An employee searching for customer rec-
ords within the same geographical location, during store
opening hours.

Malicious1: An employee searching, during opening
hours, for a customer record that is not in the same geo-
graphical location as the store.

Malicious2: An employee searching for any customer
record after closing hours.

In addition, we defined two types of users; a benign
user who submits legitimate requests most of the time;
and a malicious user who queries the database for a
purpose other than his work (e.g., data harvesting). We
believe that a malicious user might try to hide his mali-
cious intentions by mixing malicious queries with legit-
imate ones. The settings for this evaluation were cho-
sen according to what we presumed to be typical be-
havior. Therefore, most users were benign (95%) and
only a small amount of users (5%) were malicious. 70%
of the queries performed by a malicious user were con-
sidered normal (type 'Benign') and only 30% were ma-
licious (type 'Malicious1' and 'Malicious2'). A benign
user was configured to perform normal actions (type
'Benign') 98% of the time with the rest being malicious.

Overall, the dataset consisted of almost 150,000
transactions and their matching result sets, ranging

over a period of two weeks. The transactions of the
first week (about 75,000 transactions) were used for
training, while the transactions of the second week
were used for testing the induced model.

8.1.3 Results

In Table 1 we compared the results achieved when us-
ing different settings. Four splitting criteria (CGJ, FGJ,
LPI, and MLE) and three pruning options (no pruning,
LPI, and MLE) resulted in 12 different settings. Table 1
summarizes the AUC achieved in each of the 12 possi-
ble configurations.

TABLE 1
AUCS FOR THE 12 POSSIBLE SETTINGS (DATABASE MISUSE)

 Splitting
Pruning CGJ FGJ LPI MLE

No pruning 0.9207 0.9201 0.9200 0.9201

LPI 0.9197 0.9268 0.9268 0.9194

MLE 0.9208 0.9230 0.9230 0.9206

We used the univariate z-test in order to compare
the AUCs of the 12 settings. When no pruning was ap-
plied, we found no significant difference between the
four splitting criteria (see Table 2). When using the LPI
pruning method the FGJ and the LPI splitting criteria
are both significantly better than the CGJ and the MLE
methods. When applying MLE as the pruning method,
we found the FGJ splitting criterion to be significantly
better than the CGJ and the MLE splitting criteria.

TABLE 2
COMPARING THE SPLITTING CRITERIA (DATABASE MISUSE)

 CGJ LPI MLE

No
pruning

FGJ
p-value= 0.461 (◊)
statistic= 0.0975

p-value= 0.693 (◊)
statistic= 0.2624

p-value= 0.440 (◊)
statistic= 0.1494

CGJ
 p-value= 0.33 (◊)

statistic= 0.4400
p-value= 0.445 (◊)
statistic= 0.1381

LPI
 p-value= 0.312 (◊)

statistic= 0.4899

LPI

FGJ
p-value= 0.001(◄)
statistic= 3.0221

p-value= 0.468 (◊)
statistic= 0.0787

p-value= 0.000(◄)
statistic= 3.1777

CGJ
 p-value= 0.001(◄)

statistic= 3.0355
p-value= 0.027(◄)
statistic= 1.9142

LPI
 p-value= 0.000(◄)

statistic= 3.1904

MLE

FGJ
p-value= 0.000(◄)
statistic= 9.3044

p-value= 0.463 (◊)
statistic= 0.0906

p-value= 0.00 (◄)
statistic= 7.6250

CGJ
 p-value= 0.041(▲)

statistic= 1.7308
p-value= 0.118 (◊)
statistic= 1.1805

LPI
 p-value= 0204. (◊)

statistic= 0.2473

The '◄' symbol indicates that the AUC of the Row's splitting criterion
is significantly higher than the Column's splitting criterion. The '▲'
symbol indicates that the AUC of the Row's criterion is significantly
lower, and the '◊' symbol indicates no significant difference.

Table 3 compares the three pruning methods. When
applying the CGJ and MLE splitting criteria, we found
that MLE pruning was better than LPI pruning. For the
FGJ and the LPI splitting criteria, we found that LPI
pruning was significantly better than no pruning at all.

Overall, we found that applying LPI pruning with
either the FGJ or the LPI splitting criteria yields the
best results in the inspected domain.

Fig. 5 depicts the ROC curves of OCCT and J48 al-
gorithms. By comparing the curves using the ROCKIT
tool [33] which statistically analyses the AUC results
using the univariate z-score test (bivariate binormal
model), we found that OCCT is significantly better

GAFNY ET AL.: OCCT: A ONE-CLASS CLUSTERING TREE FOR IMPLEMENTING ONE-TO-MANY DATA LINKAGE 11

than J48 (with p-value: 0.00, test statistic: 18.20), where
J48’s AUC is 0.7367.

TABLE 3
COMPARING THE PRUNING METHODS (DATABASE MISUSE)

 LPI MLE

CGJ
No pruning -------

p-value= 0.4137 (◊)
statistic= 0.2179

LPI
 p-value= 0.0162 (▲)

statistic= 2.2197

FGJ
No pruning

p-value= 0.0047 (▲)
statistic= 2.6007

p-value= 0.0752 (◊)
statistic= 1.4383

LPI
 p-value= 0.1096 (◊)

statistic= 1.2286

LPI
No pruning

p-value= 0.0047 (▲)
statistic=2.6007

p-value= 0.0752 (◊)
statistic= 1.4383

LPI
 p-value= 0.1096 (◊)

statistic= 1.2286

MLE
No pruning -------

p-value= 0.4137 (◊)
statistic= 0.2179

LPI
 p-value= 0.0132 (▲)

statistic= 2.2197

Fig. 5. ROC graphs of the OCCT (when using LPI as the splitting
criteria and LPI for pruning) and the J48 algorithms.

Fig. 6. Precision and recall for the OCCT (when using MLE as the
splitting criteria and LPI for pruning) and for the J48 algorithms.

Finally, in Fig. 6 we present the precision and recall
for the OCCT (when using MLE as the splitting criteria
and LPI for pruning, which yield the best preci-
sion/recall performance) and J48 algorithms. Using the
Pearson correlation test we found that both the preci-
sion and recall of the OCCT are significantly better
than the J48 (with p-value: 5.9463E-06, test statistic: -
4.5918 for the precision, and p-value: 2.3419E-05, test
statistic: -4.5918 for the recall).

8.2 The Movie Recommender Domain

8.2.1 Scope and purpose

There is a rapidly growing need for a personalized rec-

ommender system that presents users with items or
contents which are likely to interest them [37]. Burke
[38] describes the recommendation problem as a classi-
fication problem in which a classifier determines
whether or not the user is likely to like a certain item.

Decision trees have been extensively used in rec-
ommendation systems. Golbandi et al. [39] suggest us-
ing a decision tree in order to adjust the initial set of
questions that are presented to a new user in the sys-
tem. Kim et al. [40] propose using decision trees for
automatically extracting demographic marketing rules.
Gershman et al. [29] proposed a tree-based recommen-
dation system which produces lists of recommended
items at the leaves of the tree. Li and Yamada [41] pro-
pose modeling user preferences using a C4.5 decision
tree. Lee [42] proposes using decision trees, in order to
find links between items. Bouza et al. [43] induce a de-
cision tree model that can explain user ratings using
semantic information (features) available for the items.

The task of recommending items to new users with
whom the system is not familiar with is extremely dif-
ficult. Some existing researches propose profiling users
not as individuals, but rather according to their demo-
graphic characteristics. This is done by clustering users
(or finding similarities between users) according to
their demographic characteristics [44].

 In order to solve the problem of recommending
items to new users, we propose using our matching
algorithm and encapsulating both a demographic and
content-based recommendation approach. This is done
by matching demographic features that represent users
(attributes of table TA), with the content of the items
they typically like (attributes of table TB). The OCCT
model would cluster the users according to their de-
mographic attributes and describe the likelihood of
each group of users to like different features describing
the items (i.e. content features).

8.2.2 Evaluation environment

Movielens (www.movielens.org) is an online movie
recommender system whose main goal is to collect
ratings of different users regarding different movies for
research purposes. Users log on to the web site and
rate different movies, and in return, the system gener-
ates a personalized list of recommended movies ac-
cording to predicted user preferences. The dataset we
used consisted of 873,899 rating of 2,871 movies gener-
ated by 6,040 users. Three demographical features
were available for describing users: gender (male or
female), age group (split into six age intervals), and
occupation description (21 different possible values).

Different features describing the movies were col-
lected from IMDB, an internet movie database that fea-
tures information regarding movies and television se-
ries (www.imdb.com). We extracted seven types of
features describing a movie: the movie's directors, its
star actors, the countries in which it was filmed, the
languages spoken in the film, the genres to which it
belongs to, the year it was released, and a set of key-
words describing it. The collected data was pivoted to
fit a tabular format. Then, a feature selection process

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

OCCT

J48

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

P
re

ci
si

o
n

/R
e

ca
ll

@ k

MLE_LPI Precision

MLE_LPI Recall

J48 Precision

J48 Recall

www.movielens.org

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2011-09-0577

was executed, resulting in a table containing 140 differ-
ent features for each movie. The Movielens dataset
provides a rating for each movie on a scale of 1 (do not
like) to 5 (like very much). For the purposes of our re-
search, a binary scale was necessary, namely, like and
dislike. In order to convert the given ratings into a bi-
nary scale we calculated the average rating for each
user. If a movie's score was higher than the average, it
was assumed that the user liked the movie. Otherwise,
the movie was considered disliked by the user. Evalua-
tion was by splitting the dataset randomly into training
and testing sets; 80% of the data was used for training
and the remaining records were used for testing.

8.2.3 Results

Table 4 summarizes the AUC achieved in each of the
12 possible configurations. Overall, we found that ap-
plying the MLE pruning along with any of the four
splitting criteria yields the best results. When compar-
ing the AUCs of the 12 settings using the univariate z-
test, we found that when pruning is not applied, or is
applied using the MLE technique, all splitting methods
perform equally as good (see Table 3 in Appendix B).
However, when LPI pruning was applied, we found
that the FGJ method is significantly worse than all oth-
er methods. In addition, pruning (either LPI or MLE) is
always significantly better than the no pruning option,
while in most cases MLE pruning is better than the LPI
pruning (see Table 4 in Appendix B).

TABLE 4
AUCS FOR THE 12 POSSIBLE SETTINGS (MOVIE RECOMMENDER)

 Splitting
Pruning CGJ FGJ LPI MLE

No pruning 0.6315 0.6326 0.6304 0.6315
LPI 0.6426 0.6376 0.6435 0.6429
MLE 0.6457 0.6449 0.6493 0.6476

In Fig. 7 we compared the results of OCCT with the
results of the J48 algorithm. The graph shows minor
advantage of the OCCT model over the J48 algorithm,
especially for low FPRs, which are more relevant for
most practical cases. Moreover, when statistically com-
paring the curves (using the univariate z-score test),
the OCCT is significantly better than J48 (with p-value:
0.0001, test statistic: -3.0336), where J48's AUC is 0.6430.

Finally, in Fig. 8 we present the precision and recall
for the OCCT (when using MLE as the splitting criteria
and LPI for pruning, which yield the best preci-
sion/recall performance) and J48 algorithms. Using the
Pearson correlation test we found that the precision of
the OCCT is significantly better than the J48 (p-value:
0.0011, test statistic: -3.2634) and no difference in the
recall (p-value: 0.6274, test statistic: 0.4855).

We compared the performance of the proposed
method with nearest neighbors collaborative filtering
(NNCF) using Jaccard coefficient. The results indicate
that the proposed method has better performance.
More specifically while NNCF obtains a precision of
0.4 at k=5, OCCT obtains a precision of 0.85 at k=5 (note
that both methods have similar recall performance).
We choose to implement NNCF with Jaccard coeffi-
cient because we also employ the same metric in our

own algorithm. It should be noted that this comparison
does not intend to be exhaustive. There are other CF
methods like SVD, which may provide better results.
However the aim of this paper is not to introduce a
new CF method. In fact our method utilizes the users’
demographic and items’ properties. In this sense our
method builds a hybrid of demographic and content-
based recommender system and not a collaborative
filtering-based system. Hybrid content-demographic
recommender systems [45] are frequently solved by
converting the problem into a supervised learning task.
For example, classification tree models, which are hier-
archical like the OCCT model, were used successfully
in the past (e.g., [46]). Due to the last reason and due to
limited space we present a detailed comparison to J48
and not to collaborative filtering.

Fig. 7. ROC graphs of the OCCT (when using MLE as the splitting
criteria and MLE for pruning) and the J48 algorithms.

Fig. 8. Precision and recall for the OCCT (when using MLE as the
splitting criteria and LPI for pruning) and for the J48 algorithms.

8.3 The Fraud Detection Domain

8.3.1 Scope and purpose

In this section we address the scenario of detecting
online requests performed by entities that unauthoriz-
ingly logon to the system using the identity of another
legitimate user. This scenario is often addressed in the
literature as masquerade detection [47]. Most current
works address this problem by profiling normal user
behavior and alerting deviate behavior from the pro-
files learned [48], [49].

 In order to solve the problem of detecting online
masquerading attacks, we propose using our matching
algorithm. The model will match between demograph-

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

OCCT

J48

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.78

0.8

0.82

0.84

0.86

0.88

0 2 4 6 8 10 12 14 16 18 20

R
e

ca
ll

P
re

ci
si

o
n

@ k

J48 Precision

MLE-LPI Precision

J48 Recall

MLE-LPI Recall

GAFNY ET AL.: OCCT: A ONE-CLASS CLUSTERING TREE FOR IMPLEMENTING ONE-TO-MANY DATA LINKAGE 13

ic attributes describing the user (table TA), and the at-
tributes describing the transaction (table TB). The
OCCT will represent the characteristics of transactions
which are executed by legitimate users. If a transaction
deviates from the user's normal behavioral profile, it
might indicate that it was executed by a masquerader,
and in such case, a notification will be sent to the sys-
tem administrator.

8.3.2 Evaluation environment

For the purpose of evaluation, we used a real dataset of
an online shopping website. The dataset consists of
purchase transactions; data describing both the user
who is purchasing the item, and the transaction itself.

The dataset consisted of a total of 921 customers and
their purchases (a total of 14,192 transactions). The da-
taset was split randomly into training and testing sets;
80% of the data was used for training and the remain-
ing records were used for testing. Since the data con-
sisted only of transactions which were legitimately
executed by the users, 1000 non-matching transactions
were added to the test set. These transactions were
generated by matching between a random user and a
random transaction.

The goal of using the OCCT was to determine
whether a given user-transaction pair is indeed legiti-
mate or if user is actually a masquerader. Ten attrib-
utes described the user (e.g., the user's gender, residen-
tial city, residential country, age). The transaction was
described by 21 different attributes such as the pur-
chase amount, the means of payment (credit card/
debit card etc.), and the day of week and time of day in
which the acquisition was made.

8.3.3 Results

Table 5 summarizes the AUC results obtained in each
of the 12 settings. When comparing the AUCs of the 12
settings using the univariate z-test, we found that
when pruning is not applied, CGJ is significantly better
than the other splitting criteria. When LPI or MLE
pruning is applied, the LPI criterion is significantly
better than all other criteria (see Table 5 in Appendix
B). In addition, we found that LPI pruning is preferable
in all of the splitting criteria except for the CGJ in
which the no pruning option yielded the best results
(see Table 6 in Appendix B). Overall, we found that
using the LPI splitting criterion with LPI pruning
yielded the best results. When we compared the results
of this setting with the results of the J48 algorithm (us-
ing the univariate z-score test), we found no significant
difference between the results (with p-value: 0.1317,
test statistic: 0.6487), where J48's AUC is 0.6298.

Finally, in Fig. 9 we present the precision and recall
for the OCCT (when using MLE as the splitting criteria
and PLI for pruning, which yield the best preci-
sion/recall performance) and J48 algorithms. Using the
Pearson correlation test we found that both the preci-
sion and recall of the OCCT are significantly better
than the J48 (with p-value: 1.4935E-30, test statistic: -
12.0695 for the precision and p-value: 1.0722E-06, test
statistic: 7.2574 for the recall).

TABLE 5
AUCS FOR THE 12 POSSIBLE SETTINGS (FRAUD DETECTION)

 Splitting
Pruning CGJ FGJ LPI MLE

No pruning 0.6504 0.5668 0.5884 0.5868
LPI 0.6012 0.5948 0.6627 0.6437
MLE 0.5359 0.5682 0.6437 0.5474

Fig. 9. Precision and recall for the OCCT (when using LPI as the split-
ting criteria and LPI for pruning) and for the J48 algorithms.

9 DISCUSSION

The OCCT was evaluated using three datasets from
three different domains: the data leakage/misuse pre-
vention domain, the recommender systems domain,
and the fraud detection domain. The first goal of the
evaluation process was to identify the most suitable
settings for each of the domains. In Section 3, we pro-
posed four different splitting criteria which can be
used to induce the tree. The criteria differ from one
another in different aspects and are each suitable for
different types of domains. Additionally, three options
for pruning were proposed.

In both the data misuse and the movie recommend-
er domains, we found that when no pruning is applied,
all four criteria yield similar results in terms of the
linkage accuracy (measured by AUC). We explain this
by the fact that without pruning, the clusters that are
created in the leaves are actually identical, and thus the
four models are actually identical in their meaning (the
order of the inner nodes does not make a difference
when no pruning is applied).

However, we found that when pruning is applied,
some splitting criteria were better than others. When
applying LPI pruning in the recommender systems
domain, we found that FJG yielded significantly poorer
results than other settings. In the database misuse do-
main, we found that FJG and LPI, both with LPI prun-
ing, are equally effective and are significantly better
than the other criteria.

When applying MLE pruning, we found that in the
data misuse domain, the FGJ criterion is significantly
better than most others, while in the movie recommen-
dation domain, all four criteria are equally effective.

In the fraud detection domain we found that the LPI
criterion is significantly better than all other criteria
when either of the pruning methods is applied.

Overall, we had observed that in most cases, prun-
ing avoids overfitting and enhances the results of the
linkage process. Additionally, in the database misuse

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

P
re

ci
si

o
n

/R
e

ca
ll

@ k

LPI-LPI Precision

LPI-LPI Recall

J48 Precision

J48 Recall

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2011-09-0577

and the fraud detection domains, the settings which
produced the best results involved LPI pruning. How-
ever, they were not significantly better than the results
achieved by MLE pruning using the same criterion. In
addition, MLE pruning is preferable to LPI pruning as
it does not require fine-tuning of any parameters. Thus,
MLE pruning should be preferred in most domains.

Table 6 summarizes the pros and cons that were
identified for each of the criterions. Overall, there is no
specific criterion that is always preferred over others.
Instead, the four criteria should be tested on the do-
main in order to identify which one produces the best
results. However, if two or more criteria are equally
effective, we would recommend using the criterion
with the lowest computational complexity.

TABLE 6
SUMMARY OF THE SPLITTING CRITERIA

Method Advantages Disadvantages
Coarse-
grained
Jaccard
coefficient

- Low computational com-
plexity

- Can only handle binary splits
- Produces bias results when

the attributes are not distrib-
uted uniformly

Fine-
grained
Jaccard
coefficient

- Takes partial intersections
into consideration

- In some domains produces
results which are signifi-
cantly better than other
criteria

- Can only handle binary splits
- High computational complex-

ity

Least prob-
able inter-
sections

- Can be used as a criterion
for pruning

- Can handle non-uniformly
distributed attributes

- Most durable to noise in
the data

- Can only handle binary splits

Maximum
Likelihood
estimation

- Can handle multiple way
splits

- Can be used as a criterion
for pruning

- Assumes that the attributes
are independent with one
another

- High computational complex-
ity (dependent on the type of
probability model used)

Table 7 compares the execution time for inducing
the OCCT model in the fraud detection scenario. The
results indicate that the most time consuming settings
is the FGJ splitting measure. The clustering-based op-
timization reduces the execution time of FGJ calcula-
tion by 10, but still it is significantly higher than the
other three splitting measures. The CGJ and LPI split-
ting measures are the fastest approaches having a simi-
lar execution time as expected from the computational
analysis in Section 5.1. The fastest execution time is
accepted when using the LPI pruning method. We also
analyzed the execution time of each step: evaluating a
potential splitting attribute, feature selection, and cre-
ating models at leafs, for each possible setting. From
the results presented in Table 8, it can be observed that
the most time consuming step is evaluating a potential
splitting attribute, especially when FGJ is used as the
splitting criterion and when using MLE for pruning.

Another aspect of our evaluation process was the
comparison between the results of OCCT and the re-
sults of the J48 decision tree. The results show that in
the data misuse domain, OCCT works significantly
better than the J48 algorithm. In the recommender sys-
tems domain, there is a minor but significant difference
in the AUC scores, and the ROC curve of OCCT is bet-
ter than the J48 especially for low FPR values.

TABLE 7
OVERALL EXECUTION TIME FOR THE FRAUD DETECTION

SCENARIO (MILLISECOND)
 Splitting

Pruning
CGJ FGJ LPI MLE

No pruning 137,908
682,303

7,537,885 (no clustering)
145,989 297,829

LPI 91,294 633,396 107,222 157,760

MLE 120,482 565,659 123,587 107,004

Executed on 64-bit Windows Server 2008 Enterprise ed., Intel Xeon
CPU 1.6Ghz, 2Gb Memory (RAM).

TABLE 8
EXECUTION TIME FOR EACH STEP EXTRACTED FROM THE

FRAUD DETECTION SCENARIO (MILLISECOND)
Step Splitting

Pruning
CGJ FGJ LPI MLE

Evaluate
splitting

attribute

No Pruning 671 3,797 738 1,621

LPI 1,745 12,978 1,332 4,637

MLE 5,964 35,014 7,376 5,253

Feature
selection

No Pruning 114 73 145 103

LPI 402 330 298 886

MLE 1,560 889 1,919 1,045

Create
models at
leafs

No Pruning 62 55 61 57

LPI 83 78 79 78

MLE 94 83 87 80

Executed on 64-bit Windows Server 2008 Enterprise ed., Intel Xeon
CPU 1.6Ghz, 2Gb Memory (RAM).

In the fraud detection domain, no significant differ-
ence was found between the OCCT and J48. However,
the AUC of OCCT was higher than the AUC achieved
by J48. Overall, we conclude that the OCCT is as effec-
tive as the alternative binary-class linkage algorithm.

Finally, when comparing precision and recall
(which are often used for evaluating data linkage
methods) the OCCT yield better performance and in
most cases it is statistically significant.

Evaluation results show that the OCCT model be-
haves differently on different datasets and for different
evaluation measure (i.e., precision/recall or ROC). The
experimental results indicate that the preferred config-
uration for the AUC criterion is LPI-LPI (i.e., using LPI
for the splitting criteria and LPI for pruning). If the
precision and recall measures are used the preferred
configuration is MLE-LPI. Therefore, for a specific
problem we recommend to focus and check only the
four possible combinations defined by MLE and LPI.

The OCCT model also uses three types of thresh-
olds: threshold t is used to decide if to further split the
current node (based on the number of records left in
the node before splitting); threshold th is used to de-
cide whether a pair of records are matched or not
matched; and the last threshold is used when the LPI
method is used for pruning. The threshold th should be
set by the operator of the method/system based on the
required tradeoff of detection and error rates. In order
to set the two other thresholds we recommend apply-
ing a cross-validation parameter selection method as
proposed in [50]. In the experimental study we used
this procedure to tune the splitting threshold and the
LPI pruning threshold. We found that for the splitting
threshold t=10 provided the best performance in all
scenarios (i.e., a node will not be split if the number of
records in the node is less than 10).

GAFNY ET AL.: OCCT: A ONE-CLASS CLUSTERING TREE FOR IMPLEMENTING ONE-TO-MANY DATA LINKAGE 15

10 CONCLUSIONS AND FUTURE WORK

We present OCCT, a one-class decision tree approach
for performing one-to-many and many-to-many data
linkage. The proposed method is based on a one class
decision tree model that encapsulates the knowledge of
which records should be linked to each other. In addi-
tion, we proposed four possible splitting criteria and
two possible pruning methods that can be used for
inducing the data models. Our evaluation results show
that the proposed algorithm is effective when applied
in different domains. Our goal is to link a record from a
table TA with records from another table TB. The gener-
ated model is in the form of a tree in which the inner
nodes represent attributes from TA and the leafs hold a
compact representation of a subset of records from TB
which are more likely to be linked with a record from
TA, whose values are according to the path from the
root of the tree to the leaf.

Our decision to use only the attributes of TA as the
splitting attributes of the tree was taken in order to
keep the generated model simple and easy to under-
stand. Thus, the proposed OCCT tree can be easily
used to obtain all records in TB that match a given rec-
ord r(a) in TA. For this purpose we need only to traverse
the OCCT tree using r(a). The leaf that is ultimately be-
ing reached holds all predicted matching records in TB.
On the other hand, a regular classification tree which
mixes TA and TB attributes is less convenient for this
task. In particular, in order to get all records in TB that
match a given r(a), we need to classify all possible links
(i.e., r(a) with any record in TB) one-by-one as either
match or not-match using the classification tree. This
results in a tiresome process.

The J48 decision tree that we tested as our baseline
does consider attributes from both tables TA and TB;
however, it is less understandable because it mixes
attributes from TA and TB. Moreover, J48 requires both
matching and non-matching examples in the training
set. The proposed algorithm, on the other hand, needs
only matching instances. Note that we are interested in
reducing the computation of both the model induction
and the actual linkage. However, it is more critical to
reduce the linkage computation since inducing the
OCCT model can be done offline while the linkage
phase is more important for real world problems.
Therefore, splitting the tree by using attributes from
both TA and TB would increase the linkage time.

The contribution of this work is threefold. First and
foremost, our method allows performance of one-to-
many and many-to-many linkage between objects of
the same or of different types. Secondly, we used a
one-class approach, and thus the training set requires
only examples of matching pairs. Since the algorithm
assumes that all examples in the training set are posi-
tive, non-matching (negative) pairs would confuse the
algorithm and lead to a less accurate model. However,
preliminary experiments that we conducted showed
that the generalization capability of the proposed mod-
el can overcome training sets that contain a relatively
small number of non-matching (negative) pairs and

still generate an accurate model. The evaluation of the
proposed model on training sets that contain non-
matching examples as well is left for future work.
However, we believe that when enough non-matching
examples are available, the J48 model is preferable and
would probably work better. Third, an important ad-
vantage of the OCCT model over a decision tree-based
data linkage solution is the simplicity of the model
which can easily be transformed to rules of the type
AB. This is not the case in other decision tree based
linkage models where the inner nodes of the tree con-
sist of attributes from both tables TA and TB, thus mak-
ing them difficult to read and almost impossible to
translate into rules.

Although, our focus is on the one-to-many case, the
OCCT model can be used for many-to-many linkage,
for example, by simply changing the roles of the two
tables TA and TB and using table TB as the source table
instead. Note that in the Movielens dataset (movie rec-
ommender domain) we are actually solving a many-to-
many problem in which groups of users are matched
with common matching movies.

For future work we plan to compare the OCCT with
other data linkage methods. In addition, we plan to
extend the OCCT model to the many-to-many case and
to handle continuous attributes. We also propose eval-
uating the results on additional domains, and charac-
terizing which splitting criterion and pruning methods
should be applied for each type of domain.

REFERENCES

[1] I.P. Fellegi, and A.B. Sunter, "A Theory For Record Linkage,"
Journal of American Statistical Society, vol. 64, no. 328, pp.
1183-1210, Dec. 1969.

[2] M. Yakout, A.K. Elmagarmid, H. Elmeleegy, M. Quzzani,
and A. Qi, "Behavior Based Record Linkage," in Proc. of the
VLDB Endowment, vol. 3, no. 1-2, pp. 439-448, 2010.

[3] J. Domingo-Ferrer, and V. Torra, "Disclosure Risk Assess-
ment in Statistical Microdata Protection via Advanced Rec-
ord Linkage," Statistics and Computing, vol. 13, no. 4, pp. 343-
354, 2003.

[4] F. De Comit'e, F. Denis, R. Gilleron, and F. Letouzey, "Posi-
tive and Unlabeled Examples Help Learning," Algorithmic
Learning Theory, Springer, pp. 219-230, 1999.

[5] M. D. Larsen, and D.B. Rubin, "Iterative Automated Record
Linkage Using Mixture Models," Journal of the American Sta-
tistical Association, vol. 96, no. 453. pp. 32-41, March 2001.

[6] S. Ivie, G. Henry, H. Gatrell, and C. Giraud-Carrier, "A Met-
ric-Based Machine Learning Approach to Genealogical Rec-
ord Linkage," in Proc. of the 7th Annual Workshop on Technolo-
gy for Family History and Genealogical Research, 2007.

[7] A. J. Storkey, C. K. I. Williams, E. Taylor, and R. G. Mann,
"An Expectation Maximisation Algorithm for One-to-Many
Record Linkage," University of Edinburgh Informatics Re-
search Report, 2005.

[8] P. Christen, and K. Goiser, "Quality and Complexity
Measures for Data Linkage and Deduplication," Quality
Measures in Data Mining, Springer, pp. 127-151, 2007.

[9] P. Langley, Elements of Machine Learning. San Francisco:
Morgan Kaufmann, 1996.

[10] H. Blockeel, L. D. Raedt, J. Ramon, "Top-Down Induction of
Clustering Trees," ArXiv Computer Science e-prints. pp. 55-63,
1998.

[11] D. J. Rohde, M. R. Gallagher, M. J. Drinkwater, and K. A.
Pimbblet, "Matching of Catalogues by Probabilistic Pattern

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2011-09-0577

Classification," Monthly Notices of the Royal Astronomical Soci-
ety, vol. 369, no. 1, pp. 2-14, May 2006.

[12] L. Gu, and R. Baxter, "Decision Models for Record Linkage,"
Data Mining, vol. 3755, Springer, pp. 146-160, 2006.

[13] P. Christen, and K. Goiser. "Towards Automated Data Link-
age and Deduplication," Australian National University,
Technical Report, 2005.

[14] E. Frank, M.A. Hall, G. Holmes, R. Kirkby, and B. Pfah-
ringer, "WEKA - A Machine Learning Workbench for Data
Mining," The Data Mining and Knowledge Discovery Handbook,
pp. 1305-1314, 2005.

[15] J. R. Quinlan, C4.5: programs for machine learning. Morgan
Kaufmann, 1993.

[16] O. Benjelloun, H. Garcia, D. Menestrina, Q. Su, S. Whang,
and J. Widom, "Swoosh: a generic approach to entity resolu-
tion," The VLDB Journal, vol. 18, no. 1, pp. 255–276, 2009.

[17] S.E. Whang, and H. Gercia-Molina, "Joint Entity Resolution,"
Stanford University, Technical Report, 2009.

[18] I. S. Dhillon, S. Mallela, and D. S. Modha, "Information-
theoretic co-clustering," In Proc. the 9th ACM SIGKDD Int.
Conf. on Knowledge discovery and data mining, pp. 89-98,
Washington, USA, 2003.

[19] F. Letouzey, F. Denis, and R. Gilleron, "Learning From Posi-
tive and Unlabeled Examples," Algorithmic Learning Theory,
Springer, pp. 71-85, 2009.

[20] C. Li, Y. Zhang, and X. Li, "OcVFDT: One-Class Very Fast
Decision Tree for One-Class Classification of Data Streams,"
in Proc. the 3rd Int. Workshop on Knowledge Discovery from
Sensor Data, pp. 79-86, Paris, France, 2009.

[21] J. Struyf, S. Dzeroski, "Clustering Trees with Instance Level
Constraints," in Proc. the 18th European Conf. on Machine
Learning, pp. 359-370, Warsaw, Poland, 2007.

[22] P. Christen, "A Survey of Indexing Techniques for Scalable
Record Linkage and Deduplication," IEEE trans. on knowledge
and data engineering, DOI:10.1109/TKDE.2011.127, 2011.

[23] V. Torra, and J. Domingo-Ferrer, "Record Linkage Methods
for Multidatabase Data Mining," Studies in Fuzziness and Soft
Computing, Springer, pp. 101-132, 2003.

[24] D. D. Dorfman, and E. Alf, "Maximum-Likelihood Estima-
tion of Parameters of Signal-Detection Theory and Determi-
nation of Confidence Intervals — Rating-Method Data,"
Journal of Math Psychology, vol. 6, no. 3, pp. 487–496, 1969.

[25] J. R. Quinlan, "Induction of Decision Trees," Machine learn-
ing, vol. 1, no. 1, pp. 81-106, March 1986.

[26] S. Guha, R. Rastogi, and K. Shim, "Rock: A Robust Cluster-
ing Algorithm for Categorical Attributes," Information Sys-
tems, vol. 25, no. 5, pp. 345-366, July 2000.

[27] D. E. Knuth, J. H. Morris Jr, and V. R. Pratt, "Fast pattern match-
ing in strings," SIAM Journal on Computing, vol. 6, no. 2, pp.

323-350, 1977.

[28] J. MacQueen, "Some Methods for Classification and Analysis
of Multivariate Observations," in Proc. the 5th Symposium on
Mathematical Statistics and Probability, pp. 281-297, 1967.

[29] A. Gershman et al., "A Decision Tree Based Recommender
System," in Proc. the 10th Int. Conf. on Innovative Internet
Community Services, pp. 170-179, Trondheim, Norway, 2010.

[30] F. Provost, and P. Domingos, "Tree induction for probabil-
ity-based ranking," Machine Learning, vol. 52, no. 3, pp 199-
215, 2003.

[31] M. A. Hall, "Correlation-based Feature Subset Selection for
Machine Learning," University of Waikato, New Zealand,
Technical Report, 1998.

[32] C. Ferri, P. Flach, and J. Hernández-Orallo, "Learning Deci-
sion Trees Using the Area Under the ROC Curve," in Proc.
the 9th Int. Conf. on Machine Learning, pp. 139-146, 2002.

[33] C. A. Metz, "ROCKIT software," http://metz-
roc.uchicago.edu/MetzROC, 2003.

[34] A. Kamra, E. Terzi, and E. Bertino, "Detecting Anomalous
Access Patterns in Relational Databases," Journal on Very
Large Databases, vol. 17, no. 5, pp. 1063-1177, 2008.

[35] S. Mathew, M. Petropoulos, H. Ngo, S. and Upadhyaya, "A
Data-Centric Approach to Insider Attack Detection in Data-
base Systems," Recent Advances in Intrusion Detection, Spring-
er, vol. 6307, pp. 382-401, 2009.

[36] M. Gafny, A. Shabtai, L. Rokach, and Y. Elovici, "Detecting Data

Misuse By Applying Context-Based Data Linkage," in Proc. ACM

CCS Workshop on Insider Threats, Chicago, USA, 2010.
[37] G. Adomavicius, and A. Tuzhilin, "Toward the Next Genera-

tion of Recommender Systems: A Survey of the State-Of-
The-Art and Possible Extensions," IEEE trans. on knowledge
and data engineering, vol. 17, no. 6, pp. 739-749, 2005.

[38] R. Burke, "Knowledge-Based Recommender Systems," Ency-
clopedia of Library and Information Systems, vol. 69, no. 32, pp.
175-186, 2000.

[39] N. Golbandi, Y. Koren, and R. Lempel, "Adaptive Boot-
strapping of Recommender Systems Using Decision Trees,"
in Proc. the 4th ACM Int. Conf. on Web search and data mining,
pp.595-604, Honk Kong, 2011.

[40] J. W. Kim, et al.,"Application of Decision-Tree Induction
Techniques to Personalized Advertisements on Internet
Storefronts," Int. Journal of Electronic Commerce, vol. 5, no. 3,
pp. 45-62, 2001.

[41] P. Li, and S. Yamada, "A Movie Recommender System Based
On Inductive Learning," in Proc. IEEE Conf. on Cybernetics
and Intelligent Systems, pp. 318-323, Singapore, 2004.

[42] S. L. Lee, "Commodity Recommendations Of Retail Business
Based On Decision Tree Induction," Expert Systems with Ap-
plications, vol. 37, no. 5, pp. 3685-3694, May 2010.

[43] A. Bouza, G. Reif, A. Bernstein, and H. Gall, "Semtree: On-
tology-based Decision Tree Algorithm for Recommender
Systems," Int. Semantic Web Conf., 2008.

[44] B. Krulwich, "Lifestyle Finder: Intelligent User Profiling
Using Large-Scale Demographic Data," Artificial Intelligence
Magazine, vol. 18, no. 3, pp. 37-46, 1997.

[45] M. Pazzani, and J. Michael "A framework for collaborative,
content-based and demographic filtering" Artificial Intelli-
gence Review vol. 13, no. 5, pp. 393-408, 1999.

[46] M. Pazzani, and D. Billsus, "Content-based recommendation
systems," The Adaptive Web, Springer, pp. 325—341, 2007.

[47] G. A. Wang, H. Chen, J. J. Xu, and H. Atabakhsh, "Automat-
ically detecting criminal identity deception: an adaptive de-
tection algorithm," IEEE Trans. on SMC, Part A: Systems and
Humans, vol. 36, no. 5, pp. 988-999, Sep. 2006.

[48] M. B. Salem, and S. J. Stolfo, "Modeling User Search Behav-
ior for Masquerade Detection," in Proc. the 14th Symposium
on Recent Advances in Intrusion Detection, Ca, USA, 2011.

[49] K. Wang, and S. J. Stolfo, "One-class training for masquerade
detection," in Proc. Workshop on Data Mining for Computer Se-
curity, pp. 19-22, Florida, USA, 2003.

[50] R. Kohavi, Wrappers for Performance Enhancement and
Oblivious Decision Graphs. Ph.D. Thesis, Stanford Universi-
ty, STAN-CS-TR-95-1560, 1995.

Prof. Lior Rokach is a senior lecturer at the Dept. of
Information Systems Eng. at Ben-Gurion University.
His main areas of interest are data mining and infor-
mation retrieval.
Prof. Yuval Elovici is an associate professor at the
Dept. of Information Systems Eng. at Ben-Gurion Uni-
versity. His main research interests are Computer and
Network Security, Cyber Security, Web Intelligence,
Information Warfare and Machine Learning.
Dr. Asaf Shabtai is a lecturer at the Dept. of Infor-
mation Systems Eng. at Ben-Gurion University. His
main areas of interests are computer and network se-
curity, machine learning and data mining.
Ma’ayan Dror holds a M.Sc. in Information Systems
Eng. from Ben-Gurion University.

