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Abstract 

 The idea of ensemble methodology is to build a predictive model by integrating 

multiple models. It is well-known that ensemble methods can be used for improving 

prediction performance. Researchers from various disciplines such as statistics, 

machine learning, pattern recognition, and data mining have considered the use of 

ensemble methodology. Stacking is a general ensemble method in which a number of 

base classifiers are combined using one meta classifier which learns theirs outputs. 

The advantage of stacking is that it is simple, in most cases performs similar to the 

best classifier, and it is capable to combine classifiers induced by different inducers. 

The disadvantage of stacking is that on multiclass problems, stacking seems to 

perform worse than other meta-learning approaches. In this paper we present Troika, 

a new method for improving ensemble classifiers using stacking. The new scheme is 

built from three layers of combining classifiers. The new method was tested on 

various datasets and the results indicate the superiority of the proposed method to 

other legacy ensemble schemes, Stacking and StackingC, especially when the 

classification task consists of more than two classes  

Keywords: Machine Learning, Meta Combination, Ensemble of Classifiers, Stacked 

Generalization. 

1. Introduction 

A classifier is a classification model which assigns an unclassified instance to a 

predefined set of classes. The classifier may be induced by using a learning algorithm 
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(also known as an inducer), such as C4.5 (Quinlan, 1993) or SVM (Boser et. al. 1992; 

Vapnik 1998). Ensemble methodology considers combining multiple classifiers to 

work collectively in order to compensate each other‟s weaknesses and to generate 

better classifications through some kind of fusion strategy. Many works had been 

made to investigate new techniques of combining multiple classifiers to produce a 

single classifier (A very short list: Breiman, 1996c, Aydın et al. 2009, S. Cohen et al. 

2007 and G. Peter Zhang 2007), however, in this research we focus our investigation 

on three stacked generalization methods; Stacking (Wolpert, D., 1992), StackingC 

(Seewald, 2003) and our novel technique - Troika.  

The rest of the paper is organized as follows. In section 2 we present the related 

work, and focus on two important Stacked-Generalization Meta-classifiers – 

Stacking, and StackingC. We present some of their weaknesses. In section 3 we 

present a new ensemble schema called Troika which in contrary to Stacking and 

StackingC it has three layers of combining classifiers. In section 4 we report the 

results of an experimental study that was performed to determine which scheme 

performs better. Finally we present the conclusions and discuss open issues for future 

research. 

2. Related Work 

Meta-learning is a process of learning from learners (classifiers). The training of a 

meta-classifier is composed of two or more stages, rather than one stage, as with 

standard learners. In order to induce a meta classifier, first the base classifiers are 

trained (stage one), and then the Meta classifier (second stage). In the prediction 

phase, base classifiers will output their classifications, and then the Meta-classifier(s) 

will make the final classification (as a function of the base classifiers).   

2.1. Stacking 

Stacking is a technique whose purpose is to induce which classifiers are reliable 

and which are not. Stacking is usually employed to combine models built by different 

inducers. The idea is to create a meta-dataset containing a tuple for each tuple in the 

original dataset. However, instead of using the original input attributes, it uses the 

classifications predicted by the classifiers as the input attributes. The target-attribute 
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remains as in the original training set. A test instance is first classified by each of the 

base classifiers. These classifications are fed into a meta-level training set from which 

a meta-classifier is produced.  

This classifier (Meta-classifier) combines the different predictions into a final one. 

It is recommended that the original dataset should be partitioned into two subsets. The 

first subset is reserved to form the meta-dataset and the second subset is used to build 

the base-level classifiers. Consequently the meta-classifier predictions reflect the true 

performance of base-level learning algorithms. Stacking performance can be 

improved by using output probabilities for every class label from the base-level 

classifiers. It has been shown that with stacking the ensemble performs (at best) 

comparably to selecting the best classifier from the ensemble by cross validation 

(Dzeroski and Zenko, 2004). 

Table 1: Original training-set 

Attributes Class 

AttrVec1 

AttrVec2 

AttrVec3 

AttrVec4 

. 

. 

. 

AttrVecn 

Ca 

Cb 

Ca 

Cc 

. 

. 

. 

Cb 

 

Table 2: Sample class probability distribution 
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0.75 
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0.3 

. 

. 

. 
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Table 3: Meta training set, Stacking 

 

 

Table 1 shows an example of dataset with three classes (a, b and c) and n 

examples. It shows the original training set with its attribute vectors and class values.  

Table 2 shows how a class probability distribution of one sensible classifier may 

appear. The maximum probabilities are shown in italics and denote the classes which 

would be predicted for each example. There is one such set of class probability 

distributions for each base classifier.  

Table 3 shows the Meta training set for Stacking with n base classifiers which is 

used to train a Meta classifier that will output the final prediction. Pi,j,m denotes the 

probability given by the base classifier i for class j on example number m.  The 

classes are mapped to an indicator variable such that only class "a" is mapped to 1, 

and all other classes are mapped to 0. In this example there are, of course, two other 

such training sets for class b and c which differ only in the last column and are thus 

not shown. 

2.2. StackingC 

StackingC is a Stacking variation. In empirical tests Stacking showed significant 

performance degradation for multi-class datasets. StackingC was designed to address 

this problem. In StackingC, each base classifier outputs only one class probability 

prediction (Seewald, 2003). Each base classifier is trained and tested upon one 

particular class while stacking output probabilities for all classes and from all 

Class Classifiern 

a       b       c 

 Classifier2 

a       b       c 

Classifier1 

a       b       c 

Ca 

Cb 

Ca 

Cc 

 

Cb 

PN,a,1  PN,b,1   PN,c,1 

PN,a,2  PN,b,2   PN,c,2 

PN,a,3  PN,b,3  PN,c,3 

PN,a,4  PN,b,4   PN,c,4 

 

PN,a,n  PN,b,n   PN,c,n 

… 

… 

… 

… 

 

… 

P2,a,1  P2,b,1  P2,c,1 

P2,a,2  P2,b,2   P2,c,2 

P2,a,3  P2,b,3   P2,c,3 

P2,a,4  P2,b,4   P2,c,4 

 

P2,a,n  P2,b,n   P2,c,n 

P1,a,1  P1,b,1   P1,c,1 

P1,a,2  P1,b,2   P1,c,2 

P1,a,3  P1,b,3   P1,c,3 

P1,a,4  P1,b,4   P1,c,4 

 

P1,a,n  P1,b,n   P1,c,n 
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component classifiers. Tables 4, show an illustration of StackingC on a dataset with 

three classes (a, b and c), n examples, and N base classifiers. Pi, j, m refers to the 

probability given by base classifier i for class j on example number m  

Table 4: Meta training set for classa, StackingC 

Class=a? Classifiern  Classifier2 Classifier1 

1 

0 

1 

0 

 

0 

PN,a,1   

PN,a,2   

PN,a,3   

PN,a,4   

 

PN,a,n  

… 

… 

… 

… 

… 

… 

P2,a,1   

P2,a,2   

P2,a,3   

P2,a,4   

 

P2,a,n  

P1,a,1   

P1,a,2   

P1,a,3   

P1,a,4   

 

P1,a,n  

 

Table 4 shows the corresponding Meta training set for StackingC which consists 

only of those columns from the original meta training set which are concerned with 

class = Ca, i.e., Pi, j ,m for all i, j and m. Concerning the Meta classifier‟s training-set, 

StackingC„s differs from Stacking„s not only in the last attribute (the class indicator 

variable), but also by the amount of attributes; StackingC have fewer attributes by a 

factor equal to the number of classes. This necessarily leads to more diverse linear 

models, which Seewald (2003) believes to be one mechanism by which it 

outperforms Stacking. Another reason may simply be that with fewer attributes, the 

learning problem becomes easier to solve, provided only irrelevant information is 

removed. The dimensionality of the Meta dataset is reduced by a factor equal to the 

number of classes, which leads to faster learning. In comparison to other ensemble 

learning methods this improves Stacking's advantage further, making it the most 

successful system by a variety of measures. 

StackingC improves on Stacking in terms of significant accuracy differences, 

accuracy ratios, and runtime. These improvements are more evident for multi-class 

datasets and have a tendency to become more pronounced as the number of classes 

increases. StackingC also resolves the weakness of Stacking in the extension 

proposed by Ting and Witten (1999) and offers a balanced performance on two-class 

and multi-class datasets. 

2.3. Why use Stacking? 
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Seewald (2003) has shown that all ensemble learning systems, including 

StackingC (Seewald, 2002), Grading (Seewald and Fuernkranz, 2001) and even 

Bagging (Breiman, 1996) can be simulated by Stacking (Wolpert, 1992). To do this 

they give functionally equivalent definitions of most schemes as Meta-classifiers for 

Stacking. Dzeroski and Zenko (2004) indicated that the combination of SCANN 

(Merz, 1999), which is a variant of Stacking, and MDT (Ting and Witten, 1999) plus 

selecting the best base classifier using cross validation seems to perform at about the 

same level as Stacking with Multi-linear Response (MLR).  

2.4. Weaknesses of Stacking 

Seewald (2003) presented strong empirical evidence that Stacking in the 

extension proposed by Ting and Witten (1999) performs worse on multi-class than on 

two-class datasets, for all but one meta-learner he investigated. The explanation given 

was that when the dataset has a higher number of classes, the dimensionality of the 

meta-level data is proportionally increased. This higher dimensionality makes it 

harder for meta-learners to induce good models, since there are more features to be 

considered. The increased dimensionality has two more drawbacks. First, it increases 

the training time of the Meta classifier; in many inducers this problem is acute. 

Second, it also increases the amount of memory which is used in the process of 

training. This may lead to insufficient resources, and therefore may limit the number 

of training cases (instances) from which an inducer may learn, thus damaging the 

accuracy of the ensemble. 

2.5. Weaknesses of StackingC 

During the learning phase of StackingC it is essential to use one-against-all class 

binarization and regression learners for each class model. This class binarization is 

believed to be a problematic method especially when class distribution is highly non-

symmetric. It has been illustrated (Fürnkranz, 2002) that handling many classes is a 

major problem for the one-against-all binarization technique, possibly because the 

resulting binary learning problems increasingly skewed class distributions. An 

alternative to one-against-all class binarization is the one-against-one binarization in 

which the basic idea is to convert a multiple class problem into a series of two-class 

problems by training one classifier for each pair of classes, using only training 
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examples of these two classes and ignoring all others. Assuming a k-class problem, a 

new example is classified by submitting it to each of the 
2

)1( kk
  binary classifiers, 

and combining their predictions using k meta classifiers as described in section 2.2. 

We have found in our preliminary experiments that this binarization method yields 

noticeably poor accuracy results when the number of classes in the problem increases. 

Later, after performing a much wider and broader experiment on StackingC in 

conjunction with the one-against-one binarization method, we came to this same 

conclusion. An explanation might be that, as the number of classes in a problem 

increases, the greater is the chance that any of the 
2

)1( kk
   base classifiers will give 

a wrong prediction. There are two reasons for this. First, when predicting the class of 

an instance, only 1k  out of  
2

)1( kk
  classifiers may predict correctly. This is 

because only 1k  classifiers were trained on any specific class. We can see that as k 

increases, the percentage of classifiers which may classify correctly is decreasing, and 

will descend practically to zero: 

0
2

lim

2

)1(

1
lim 






kkk

k
kk    (1) 

The second reason is that in one-against-one binarization we use only instances of 

two classes – the instances of each one of the pair classes, while in one-against-all we 

use all instances, and thus the number of training instances for each base classifier in 

one-against-one binarization is much smaller than in the one-against-all binarization 

method. Thus using the one-against-one binarization method may yield inferior base 

classifier. 

2.6. Converting Multiclass Classification Problems into Binary Classification 

Problems 

There are several alternatives to decompose the multiclass problem into binary 

subtasks.  Lorena and de Carvalho (2007) and S. Cohen et al (2007) survey all 

popular methods. 
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The most straightforward method to convert k class classification problems into k-

two class classification problems has been proposed by Anand et al. (1995). Each 

problem considers the discrimination of one class to the other classes. Lu and Ito 

(1999) extend Anand's method and propose a new method for manipulating the data 

based on the class relations among the training data. By using this method, they 

divide a k class classification problem into a series of k(k-1)/2 two-class problems 

where each problem considers the discrimination of one class to each one of the other 

classes. The researchers used neural networks to examine this idea. 

A general concept aggregation algorithm called Error-Correcting Output Coding 

(ECOC) uses a code matrix to decompose a multi-class problem into multiple binary 

problems (Dietterich and Bakiri, 1995). ECOC for multi-class classification hinges on 

the design of the code matrix.  

Sivalingam et al. (2005) propose to transform a multiclass recognition problem 

into a minimal binary classification problem using the Minimal Classification Method 

(MCM) aided with error correcting codes.  The MCM requires only log2k 

classifications because instead of separating only two classes at each classification, 

this method separate two groups of multiple classes. Thus the MCM requires small 

number of classifiers and still provide similar accuracy performance.   

Data-driven Error Correcting Output Coding (DECOC) (Zhoua et al., 2008) 

explores the distribution of data classes and optimizes both the composition and the 

number of base learners to design an effective and compact code matrix.  Specifically, 

DECOC calculate the confidence score of each base classifier based on the structural 

information of the training data and use sorted confidence scores to assist the 

determination of code matrix of ECOC. The results show that the proposed DECOC 

is able to deliver competitive accuracy compared with other ECOC methods, using 

parsimonious base learners than the pairwise coupling (one-vs-one) decomposition 

scheme. 

It should be noted that finding new methods for converting multiclass 

classification problems into binary classification problems is not one of the goals of 

this paper. Still, we are using in our experimental study three different methods for 

this conversion. 
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3. Troika ensemble scheme 

A new ensemble methodology, Troika, is designed to address the Stacking and 

StackingC problems described above. Troika's ensemble scheme is general purpose 

and can be used to combine any type of base classifiers which were trained on any 

subgroup of possible classes of a problem‟s domain. In other words, it is possible 

with Troika to combine models (base classifiers) that were trained on, and therefore 

may later predict, non congruent datasets, in terms of instances classes.  

The main idea of Troika is to combine base classifier in three stages. In the first 

stage it will combine all base classifiers1 using specialist classifiers. The specialists 

are classifiers which have a dichotomous model2; each specialist's (specialist 

classifier) task is to distinguish between pairs of classes from the problem domain, 

and no two specialists are alike, i.e., each specialist is specialized in distinguishing 

between different pairs of classes. We will use the notation Spi-j to indicate the 

specialist <i,j> .  Spi-j's task is to output the probabilities that an input instance 

belongs either to classi or to classj 
3 via vector of two values: {P(classi ), P(classj)}; 

since those probabilities are complementary, we will later use only one these of the 

class with the smallest index. Let k be the number of classes in a problem domain, i= 

{0…k-2} and j= {i+1…k-1}. The exact specialist classifiers number equals 








2

k
, 

where k is the number of classes in the problem domain. A specialist classifier output, 

Pinst,i-j, is the computed probability that an input instance, inst, belongs to classi 4. 

Given an instance inst belonging to classi or classj, we will expect Spi-j to predict the 

inst class correctly most of the time. Conversely, when inst real class is not i or j the 

output of Spi-j will certainly be faulty in an unpredicted way. For example, Sp2-5 

indicates specialist2-5 which may distinguish between class2 and class5. If an instance 

inst of class0 is given to Sp2-5, we cannot make a preliminary assumption about Sp2-5's 

                                                           

1 Sometimes refer to as Level-0 or base layer 

2 A one-against-one binarization 

3 This raises the question: what if the input instance does not belongs to either classi or classj? 

The answer is that Spi-j will certainly be wrong in its predictions, because P(classi) and 

P(classj) must add to 1, what seemingly suggest that at least one probability will be equal or 

greater than 0.5 which translates to wrong classification. 

4 Input instance inst has a computed probability (1-Pinst,i-j) of belonging to classj 
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output5. This is why we need to learn the characteristics and patterns of the behavior 

of specialists to be able to predict when specialists are correct and when they are not. 

This is exactly what is done in the next stage, the meta-classifier layer.  

The second stage is the meta-classifiers layer. This layer's task is to learn the 

prediction characteristics of the specialist classifiers. The method used to accomplish 

this task is to combine the specialist classifiers using k meta-classifiers. Each meta-

classifier is in charge of one class only, and will combine all the specialist classifiers 

which are able to classify its own class; meta-classifierm
6 will combine all specialists 

Spi-j whose i=m or j=m. The meta-classifier will compute a probability Pinst,c as an 

output. Pinst,c stands for the computed probability that a given input instance inst 

belongs to classc 7. The meta-classifiers are trained in a one-against-all fashion, rather 

than one-against-one as with specialist classifiers. We will explain the logic behind 

this choice later.  

The third stage is the super classifier layer. This layer contains only one classifier: 

the super classifier. The goal of this stage is to produce Troika‟s final prediction. The 

inputs of the super classifier are the outputs Pinst,c produced by the meta classifiers in 

the previous stage. In the training phase, the Super classifier learns the conditions in 

which one or more of the meta-classifiers predict correctly or incorrectly.  The super 

classifier's output is a vector of probabilities (one value for each class) which forms 

the final decision of the Troika ensemble scheme. 

3.1. Troika Architecture 

Figure 1 presents the schematic of the Troika ensemble's architecture. Troika 

uses three distinguishable layers of combining classifiers, and is arranged in a 

tandem-like order. An instance of a problem‟s domain feeds the layer0 classifiers 

(base classifiers). Layer0 classifiers will output their predictions to layer1‟s inputs. 

Classifiers on layer1 (specialists classifiers) will combine layer0‟s classifiers, and then 

feed their predictions to layer2 inputs. Layer2 classifiers (meta-classifiers) in their 

                                                           

5 This is because in the training phase Sp2-5 had been given only instances of class2 and class5 

6 m={0…k-1} 

7 to remind: c={0…k-1} 
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turn, will combine layer1‟s classifiers predictions and feed their own predictions to 

layer3 inputs. The layer3 classifier (super classifier) will combine layer2‟s predictions, 

and ultimately, produce a final prediction. 

Super Classifier
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Figure 1: Troika architecture - showing three layers of combiners (level1 to level3) 

and a base classifier level (level0). 

3.2. Why do we need three layers of combining classifiers? 

Stacking and StackingC are both using only one layer of combining classifier(s). 

Isn‟t this enough? Experiments show it is not. Stacking, which uses one classifier as 

meta classifier (combiner) suffers from a dimensionality problem. It is not sufficiently 
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scalable. When increasing the number of classifiers, Stacking usually does not utilize 

them as well as StackingC will do, producing worse predictions than StackingC in 

many cases; when increasing classes count in a dataset, Stacking‟s accuracy 

deteriorates much more quickly than StackingC's does
8
.  

StackingC meta-classifiers, on the other hand, are trained in a one-against-all 

class binarization technique. Using this method, makes StackingC not scalable with 

classes count in the dataset. This is because the resulting binary learning problems 

which are input to the meta-classifier have increasingly skewed class distributions. It 

was mentioned earlier in this paper that one-against-one binarization is an even worse 

method for training StackingC meta-classifiers.  

To escape the dimensionality problem, it is advisable that layer1 will contain 

more than one combining classifier. To extricate us from the skewed class 

distributions produced by the one-against-all training method, we will use a one-

against-one binarization training method. We choose to call the combiners of layer1 

“specialists” because they specialize in differentiating between pairs of classes 

As explained before, a large majority of layer1 combiners will always predict 

falsely and it is for this reason alone that another layer of combiners must be applied.  

Let‟s assume we possess a second layer of combiners, layer2. Naturally, layer2 

combiners‟ goal is to predict to which class the input instant belongs. Each combiner 

is practiced on a specific class and its task is to predict whether a given input instance 

belongs to its practiced class.  For instance, combiner4 is practiced on predicting 

whether an input instance belongs (or does not belong) to class4. We choose to call 

the combiners of this layer “meta-classifiers”.  

For a successful fulfillment of layer2's task, it is required that its meta-classifiers 

will be able to distinguish between precisely three possible patterns of inputs. The 

first pattern is the „general agreement‟ in which most of meta-classifier‟s inputs (the 

specialists‟ outputs predictions) agree; the second is the „non-consent‟ in which meta-

classifier inputs clearly do not agree on the instance‟s class. Literally, the meta- 

classifier inputs divide almost equally between those which are in favor of predicting 

                                                           
8 Not including when base classifiers were trained in a one-against-one binarization 



13 

 

meta-classifier‟s practiced class and those which are not. The third pattern is the „in-

between‟ in which there is a clear majority in favor of one of two possible classes, but 

this majority can still not be considered as significant.  

The inputs of each meta-classifier always form exactly one of the three possible 

patterns described above. When input values form a „general agreement‟ pattern it is 

very easy for the meta-classifier to make a correct prediction. The correct prediction 

will be „positive,‟ meaning that the meta-classifier predicts that the Troika`s input 

instance belongs to the class on which it is practiced9. When input values form a 

„non-consent‟ pattern it is also an easy task for the meta-classifier to make a correct 

prediction. The correct prediction will be „negative,‟ meaning that the meta-classifier 

predicts that the Troika`s input instance does not belong to the class on which it is 

practiced. When input values form an „in-between‟ pattern it is not a simple task for 

the meta-classifier to make a correct prediction. The correct prediction may be 

„positive‟ or „negative.‟ A meta-classifier can be best evaluated by examining its 

accuracy rate trying to classify meta-classifier instances which usually forms this kind 

of pattern. 

One might think that combining layer1 classifiers using the voting algorithm 

would yield good results; however, this is not so. While voting may distinguish well 

between the „general agreement‟ pattern and the „non-consent‟ pattern, it is the „in-

between‟ pattern that will make the most prediction errors and unfortunately, it is 

this pattern that occurs most frequently when dealing with multi-class problems. A 

more complex model should then be induced. Its job will be to distinguish 

successfully between all three patterns. Once it has identified the „in-between‟ 

pattern it has to make a correct prediction, sometimes against the majority of its 

inputs.  

In Troika, we had chosen that meta-classifiers will use the one-against-all 

binarization method. We had used this method although it produces biased 

predictions. In fact, we actually needed this property and welcomed it. It ensures a 

low false positive rate in the meta-classifiers' predictions, because they will always 

be biased to predict „negative.‟ Optimally, we would like to have only one meta-

                                                           
9 Each Meta-classifier is practiced on one particular class and no two Meta classifiers  are 

practiced on the same class. 
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classifier predict „positive‟ (and of course be correct) while all other Meta-classifiers 

predict „negative.‟ A more likely outcome is that more than one Meta-classifier will 

predict „positive‟ than that none will. Therefore, a fine bias may help push Troika‟s 

meta-classifiers to predict correctly. 

Although being slightly biased, ultimately, it is possible that more than one 

meta-classifier will predict „positive‟ and it is also possible that none will, In that 

case, we cannot use layer2 to produce a final decision regarding to which class an 

input instance belongs. This leads us to the conclusion that yet another layer of 

classifiers is needed. Layer3 it is. 

Layer3's task is to supply a final decision regarding to which class a Troika input 

instance belongs. It consists of one classifier; we call it the „super classifier.‟ Its 

inputs are the meta-classifiers outputs. To fulfill its task it should learn about the 

meta-classifiers performance as a function of input instances. 

In the next example we will assume a problem domain containing seven classes. 

The number of specialist classifiers therefore equals twenty one10 and each meta- 

classifier will combine exactly six specialists11 

In Figure 2, we show, without loss of generality, a schematic for a meta-

classifier for class C3. A specialist instance feeds to all specialists. Each specialist 

output is a prediction. The predictions are labeled prediction1 to prediction6. All six 

predictions are fed to the meta-classifiers for class C3. After some calculations, this 

meta classifier will output its own prediction regarding the question whether the input 

instance should be labeled as class C3 or not. An example of a “total agreement” 

pattern will be that any five or six out of six specialists will predict „positive.‟ If, on 

the other hand, three out of six Specialists predict „positive,‟ this will form the “non-

consent” pattern. 

 

                                                           

10  Having seven classes in a problem domain, we will train some  21
2

)17(7



  specialists 

11 Meta-classifiers will always combine k-1 specialist classifiers predictions, and since k=7, 

each meta-classifier will combine six specialist predictions. 
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Figure 2: The schematic of Meta classifier for class C3 

3.3. Troika’s Training Process 

Before one is able to use Troika to classify a new problem‟s instances, Troika, 

(and therefore all of its three combining layers of classifiers) must be trained. 

Algorithm 1 presents the proposed procedure. The most straightforward way of doing 

this is to train one layer of classifiers at a time. This leads to a training process which 

takes place in a sequence consisting of four stages.  At any one stage, a different 

layer of classifiers will be trained.  Since layer3 depends on layer2, layer2 depends on 

layer1 and layer1 depend on layer0, it is necessary first to train layer0, then layer1, 

followed by layer2 and lastly layer3. 

Each layer is trained using a different dataset; first, layer0 dataset is derived from 

the original dataset which was supplied to Troika as input; layer1 dataset will be 

generated using predictions of layer0 classifiers; layer2 dataset will be generated 

using predictions of level1 classifiers, and, finally, level3 dataset will be generated 
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using predictions of level2 classifiers. The technique of generating a derived dataset 

using predictions of classifiers will be discussed later. 

Each layer is trained in a k-fold cross validation method. The process of training 

each layer (except for layer3) is as follows: Start with splitting the layer‟s dataset into 

training-set and test-set. Then, all layer's classifiers are built using the training set 

(compound of k-1 parts of the layer‟s dataset). Next, the successor layer‟s dataset 

instances will be produced by applying the test-sets‟ instances on the layer‟s 

classifier. Later, all test-sets‟ instances are fed to layer‟s classifiers that will yield 

predictions. These predictions will be assembled to form a new instance for the 

successor dataset. A cross-validation fold is completed when the generating of 

successor instances from all the test-set‟s instances is finished. On the next fold, the 

new produced successor‟s dataset instances will be added to those of the previous 

fold. By the end of all k folds, the successor layer‟s dataset will contain exactly the 

same amount of instances as the present layer‟s dataset.  

Finally, all layer‟s classifiers will be trained using the entire layer‟s datasets (not 

using only k-1 out of k parts of the dataset), so when Troika will be used for 

prediction, each layer will be trained on maximal number of instances.   

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Procedure: Train-Troika 

Input: original-dataset: Dataset, folds: Integer 

{ 

datasetoriginal-dataset 

define Array-Of-Classifiers as array of classifiers 

For layer = 0 to 3 do: 

{ 

For each fold in folds do: 

{          

Split dataset to train-set and test-set  (according to current fold number) 

If layer ≠3 Do: 

Array-Of-ClassifiersTrain_SingleLayer( layer, train-set, folds)                

new-InstancesClassify(test-set, Array-Of-Classifiers) 

Add new-Instances to dataset[layer+1] 

Else Train_SingleLayer( layer, train-set, folds) 

  } 

layer = layer + 1 

} 

Train-Single-Layer(layer0, original-dataset) //Rebuild Base classifiers using                                                                                         

// the original dataset 

} 

Algorithm 1: Pseudo-Code of Troika Main Function 
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Procedure: Train-Single-Layer 

Input: LayerNumber: Integer, dataset: Dataset, folds: Integer 

Output: successor-Dataset: Dataset  

{ 

Successor_Dataset  emptyGroup 

For each fold in folds do: 

   { 

          Split original-dataset to train-set and test-set    

         (according to current fold  number)    

         Build_Classifiers(LayerNumber , train-set) 

         For each instance in test-set 

         { 

                Produce probabilities-vector by applying instance on current layer's classifiers.  

                Generate a new Instance from probabilities-vector 

                Add the new Instance to successor-Dataset 

          } 

   } 

Return successor-Dataset 

} 

Algorithm 2: Pseudo code of Troika training process for each one of its four 

layers, which is systematically called by the Main Procedure 

3.4. Transformations of input Instance in Troika 

There are four kinds of instance in Troika. The first type is the original training 

set. The second kind is the specialists' instances. These are derived from the base 

classifiers' predictions. The third kind of instance is the meta-classifiers' instances. 

These instances are derived from the specialists' predictions. The last kind of instance 

is the super classifier instance. These instances are derived from meta-classifiers 

predictions.  

Given l is the number of base classifiers and k is the number of classes in the problem 

domain, each base classifier output vector, BCl, can be presented 

as: )}(),...,(),({ 00 kl CPCPCPBC  . From these vectors, we produce the specialists' 

instances.  

In general, specialist classifier, Spi-j, instances are composed using the probabilities P 

(Ci) and P (Cj) of each BCi. It is possible also that one or more BCl will not contain P 

(Ci) or P (Cj) or both. In this case, its prediction will not be included in the dataset for 

specialist classifier Spi-j.  
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Class=i? Classifierl  Classifier2 Classifier1  

1 

0 

1 

0 

… 

0 

Pl,j,1   

Pl,j,2 

Pl,j,3 

Pl,j,4 

…  

Pl,j,n  

Pl,i,1   

Pl,i,2 

Pl,i,3 

Pl,i,4   

… 

Pl,i,n  

… 

… 

… 

… 

… 

… 

P2,j,1   

P2,j,2 

P2,j,3 

P2,j,4   

… 

P2,j,n 

P2,i,1   

P2,i,2 

P2,i,3 

P2,i,4   

… 

P2,i,n 

P1,j,1   

P1,j,2 

P1,j,3 

P1,j,4   

… 

P1,j,n 

P1,i,1   

P1,i,2 

P1,i,3 

P1,i,4   

… 

P1,i,n  

Table 5: Troika‟s dataset for Spi-j classifier 

In Stacking, each example m (instance number m) of a Stacking meta-level 

dataset contains all, Pl,j,m
12

, produced by l base classifier‟s for all k classes in the 

problem domain; there are therefore nlk **  fields to the meta-classifier dataset. On 

the other hand, in Troika each instance m of Spi-j dataset contains only two values per 

base classifier, P(Ci) and P(Cj), and the average number of instances is 
k

n
n




2
'  

because, on average, 
k

n
 instances are related with each class and each specialist‟s 

dataset contain instances related to two classes. Therefore, there are 
k

n
l

2
**2  

fields to a specialist dataset. 

The reduction of dimensionality in Troika's first combining layer‟s dataset compared 

to the Stacking meta-level dataset is: 

2

4

**

**4

___

__

knlk

k

n
l

volumedatasetlevelmetastacking

volumedatasetSpecialist
r 


    (2) 

We can see that as k, the number of classes in the problem, increases there is a 

linear to k growth in Stacking‟s meta-level dataset while in Troika there is a linear to 

k decrease in specialists‟ dataset size. This is a big advantage for Troika, because it 

makes it possible to combine a very large group of base classifiers without being 

caught in the dimensionality course. In our experiments we used Troika and Stacking 

to combine as many as 3900 base classifiers (with letter dataset); Troika showed a 

                                                           
12 Pl,j,m refers to the probability given by base classifier l for class j on example 

number m 
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clear advantage in terms of accuracy. We suspect that the reason for Troika's triumph 

in this case derives from the huge dimensions (dimensionality course) of the meta-

level dataset, making it hard for the Stacking meta-classifier to produce a good 

model. This weakness of Stacking had been shown in several previous studies and 

again in this study. 

Given that each pair of classes i and j have a dedicated  Spi-j, and k is the number 

of classes in the problem domain, there are some 








2

k
 specialist classifiers in Troika.  

Each specialist classifier outputs a single prediction, Pi-j (inst), which stands for the 

probability, which was computed by Spi-j, that a specialist instance, inst, is of class i. 

Troika has exactly k meta-classifiers, where k denotes the number of classes in 

the problem domain. Each meta-classifier has a different dataset that derives from a 

different projection of the output predictions of the specialists. Each meta dataset has 

one instance for each instance in the dataset which was given as an input to Troika. 

The meta-classifiers are trained using one-against-all binarization; for each meta 

instance, if the corresponding instance in the input dataset is of class Ck, then its class 

attribute is positive. Otherwise, the meta instance class attribute is negative. The 

attributes of each meta-classifier (meta-classifierk in general) instances are the 

probabilities Pi-j (inst) produced by all specialist, Spi-j, where which j equals k;  there 

are therefore always k attributes for each meta-classifier instance (not including the 

class attribute).  

Class=a? Spa-k  Spa-(a+1) Sp(a-1)-a  Sp1-a Sp0-a 

1 

0 

1 

0 

… 

0 

Pa,k,1 

Pa,k,2 

Pa,k,3 

Pa,k,4 

… 

Pa,k,n 

… 

… 

… 

… 

… 

… 

Pa,a+1,1 

P a,a+1,2 

P a,a+1,3 

P a,a+1,4 

… 

P a,a+1,n 

Pa-1,a,1 

P a-1,a,2 

P a-1,a,3 

P a-1,a,4 

… 

P a-1,a,n 

… 

… 

… 

… 

… 

… 

P2,a,1 

P2,a,2 

P2,a,3 

P2,a,4 

… 

P2,a,n 

P0,a,1 

P0,a,2 

P0,a,3 

P0,a,4 

… 

P0,a,n 

Table 6: Troika‟s Meta dataset for classa 

The volume of each meta dataset can be computed as follows: 

nkV datasetmeta *)1(    (3) 
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where k is the number of classes in the problem‟s domain and n is the number of 

instances in the original dataset. 

Comparing Troika‟s meta-datasets to a Stacking dataset is a rather tricky business, 

and depends on two major factors: the number of classes in the problem‟s domain 

and the number of base classifiers. The Stacking meta dataset is a function of the 

number of base classifiers. On the other hand, Troika‟s meta dataset is a function of 

the number of classes in the domain‟s problem. Our experience with the tested UCI 

datasets, shows that Troika‟s meta datasets tend to be much smaller than Stacking 

meta datasets. 

StackingC's dataset volume is a function of the number of base classifiers. Each 

base classifier contributes one attribute to a meta instance; therefore, when an 

ensemble contains a large number of base classifiers (more than a few thousand), 

even though a much smaller one than Stacking meta dataset, StackingC 's dataset can 

grow to such an enormous size that it can no longer be used for training the meta-

classifier. Troika, on the other hand, is much less sensitive to the number of base 

classifiers because each specialist is trained using the one-against-one binarization 

method. Conversely, Troika is more sensitive than StackingC to the number of 

classes in a domain‟s problem, in terms of training time. This is due to the amount of 

specialists that need to be trained: 
2

)1( kk
 (which yields time complexity of  O(k)

2
 

for first combining layer) versus k meta-classifiers in StackingC (which yields time 

complexity of O(k)).  

Given a meta-instance, each Troika meta-classifierj
13 outputs a prediction, 

Pj(inst), which reflects the belonging of the meta-instance, inst, to class Cj (therefore 

also the belonging of the original instance to that same class). It might be thought that 

each meta-classifier is responsible for the prediction for a single class; meta-

classifier0 is responsible for predicting the belonging of the input original instance to 

class0. Meta-classifier1 is responsible for predicting the belonging of the input 

original instance to class1 etc.  

                                                           
13 }...1{ kj   
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A vector of all meta-classifier predictions forms the super-instance: 

0 1SuperInstance { ( ), ( ),..., ( ), )}kp inst p inst p inst Class   (4) 

Each instance in the super-dataset has a corresponding instance in the original 

dataset. The class attribute of the super dataset is copied from the corresponding 

instance of the original dataset without any changes. Table 7 shows the super dataset 

structure. 

 

4. Classifying using Troika 

When a new instance, x, is input to Troika, firstly, it will be fed to all of the base-

classifiers. Each base classifier will then process the given instance and produce their 

predictions, from which a specialist instance will be generated. Spi,jinst={Pi,j(x) | all 

base classifiers that were trained on classes i and j}. Next, each specialist, Spi-j, will 

classify its unique instance, Spi,jinst, (which derives directly from the base classifiers 

predictions) and produces a prediction Pi,j(insti-j); From these predictions k meta-

instances, Meta-instj (j=0..k) will be created; one for each of the meta-classifiers.  

Each meta-classifieri, will then output its prediction, Pmetai(Meta-instj) and from 

these predictions will generate a super classifier instance, instsuper= {Pmeta0(instj) , 

Pmeta1(instj) ,…, Pmetak(instj)} This single instance will be fed to the super classifier, 

which in return will produce its prediction, Troika‟s final prediction
 

)}|(),...,|(),|({)( 21 xCPxCPxCPxionFinalDecis K   (5) 

Class Meta-classifierk  Meta-classifier1 Meta-classifier0 

Ca 

Cb 

Ca 

Cc 

… 

Cb 

Pk(1) 

Pk(2) 

Pk(3) 

Pk(4) 

… 

Pk(n) 

… 

… 

… 

… 

… 

… 

P1(1) 

P1(2) 

P1(3) 

P1(4) 

… 

P1(n) 

P0(1) 

P0(2) 

P0(3) 

P0(4) 

… 

P0(n) 

 

Table 7: Troika‟s Super dataset 
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5. Evaluation Description 

5.1. Experiment setup 

In this chapter we will specify the conditions in which Troika had been tested. Our 

goal was to create a ground on which Troika could be correctly compared to Stacking 

and StackingC. We start with short overview on the datasets we used, the algorithms 

we implemented (Troika, Stacking and StackingC), how we trained each of them and 

what metrics we had used to measure the performance of the ensemble schemes. 

Next, we will display and review the results of the experiments in details. 

5.1.1. Overview 

The goal of our experiment was to measure the success of each one of the three 

ensemble methods (Troika, Stacking and StackingC) when applied to various 

problems.   

The experiment had stretched into three dimensions. The first dimension was the 

number of inducers that were used to create the base classifiers upon which all the 

ensemble methods rely. The second was the different datasets, and the third 

dimension was the ensemble methods, of which we had three: Stacking, StackingC 

and Troika.  

For the experiment to be valid, we had to split the training phase into two stages: 

first stage composed of base-classifiers training; in the second stage we had trained 

the ensembles, which got the base-classifiers from first stage as input. This means 

that all ensemble methods have been given the same base classifiers as input, 

therefore a valid comparison could successfully be made. This experiment could be 

given the title – which ensemble will combine the base-classifiers better? 

5.1.2. Datasets 

In total, we have used 29 different datasets in all the experiments; all of which 

were manually selected from the UCI repository (Merz and Murphy, 1998) and are 

widely used by the pattern recognition community for evaluating learning algorithms. 

The datasets vary across such dimensions as the number of target classes, of 

instances, of input features and their type (nominal, numeric).  
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Dataset #Classes #Instances #Attributes 

Anneal 6 898 39 

Autos 5 202 26 

Balance-scale 3 625 5 

Diabetes 2 767 9 

Flag 6 193 30 

Glass14  5 205 10 

heart-statlog 2 270 14 

Hepatitis Domain 2 155 20 

Votes 2 435 17 

Ionosphere 2 351 35 

Iris 3 150 5 

KRKOPT 17 7,015 6 

KR-vs-KP 2 3196 37 

LED7 10 3,200 8 

Letter15 26 2,500 17 

Segment 7 2,310 20 

Sonar 2 208 61 

Soybean 19 683 36 

Splice 3 3190 62 

Vehicle 4 846 19 

Vowel 11 990 14 

Waveform 3 5,000 41 

Zoo 7 101 18 

Table 8: Datasets used for evaluation 

5.1.3. Ensemble Algorithms Examined 

The examined ensemble schemes - Troika, Stacking and StackingC were 

implemented in WEKA (Witten and Frank, 2005) in JAVA programming language. 

The implementation of the Troika algorithm can be downloaded from: 

http://www.ise.bgu.ac.il/faculty/liorr/troika/.  

5.1.4. Combining classifiers 

All classifiers in Troika, Stacking and StackingC which participate in 

combining the base-classifiers, i.e., the Specialist classifiers, Meta classifiers and the 

Super classifier (in Troika) and meta classifiers (in Stacking and StackingC) where 

                                                           
14 „Glass,‟ was adjusted to have fewer classes because some of their original classes 

had too few instances (less than 10), which yields a very poor result. 
15 The „Letter‟ dataset was too big to fit into memory, so we reduced its volume using 

a sample a smaller dataset which we could use to investigate all ensemble methods. 
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induced using Logistic algorithm. We have chosen this particular algorithm after 

trying various alternative inducers. 

5.1.5. Base classifiers training process 

First, we used multiple inducers of different branches of the machine-learning 

theory. Generally, we intended to use only six inducers, C4.5 (trees), SMO (function), 

IB1 (lazy), VFI (Misc.), BayesNet (Bayes), PART (Rules), but we tested also other 

configurations: three inducers (C4.5, IB1 and VFI) and one inducer (C4.5).   

Second, All base classifiers were trained using the one-against-one binarization 

method in which, typically,  
2

)1( kk
 base classifiers are trained; that is one classifier 

for each pair of classes. Secondly, instead of training a solely single base-classifier for 

each pair of classes, we actually trained two16, each with difference training instances. 

Train-set1 (the train-set of first base-classifier, which derives from the train-set) 

contained the first 125% of the instances in a cyclic manner (that is, the next instance 

past the last is the first again), whereas train-set2 contains the next 125% group of the 

instances in the same cyclic manner17. After creating the 125% instances training-set, 

the training process continued normally, i.e. using the k-fold cross-validation process. 

Using this process, we actually trained )1( kk  base-classifiers for each inducer.  

 

Inst#  Instance  Inst#  Instance  Inst#  Instance 

1 Instance1  1 Instance1  1 Instance26 

2 Instance2  2 Instance2  2 Instance27 

. .  . .  . . 

. .  . .  . . 

. .  . .  . Instance100 

. .  . .  . Instance1 

100 Instance100  100 Instance100  100 Instance2 

Train-set  101 Instance1  101 . 

   102 Instance2  102 . 

                                                           
16 We had trained two classifiers instead of a single one to increase the number of different classifiers that were 

combined. Diversity among base classifiers was found to be a contributing factor for the performance of 

classifiers combination [Zenobi et. el.].  
17 First train-set2 instance is the subsequent instance of the last instance of train-set1  
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   . .  . . 

   . .  . . 

   125 Instance25  125 Instance50 

         Train-set1  Train-set2 

Table 9: depict the composition of train-set1 and train-set2 where 

given an arbitrary train-set, which contains 100 instances. 

 Later on, we suspected that it could be that our choice of training the base-

classifiers using one-against-one binarization method might have been the prime 

reason why Troika preformed better than its rivals, so we repeated the experiment 

using one-against-all binarization and non-binarization methods. Later, in Tables 13, 

14 and 15 we show those experiments results. 

5.1.6. Metric measured 

In this experiment the following metrics were measured: 

 Accuracy: Accuracy is the rate of correct (incorrect) predictions made by a model 

over a data set. In order to estimate the generalized accuracy, a 10-fold cross-

validation procedure18 was repeated 5 times. For each 10-fold cross-validation, the 

training set was randomly partitioned into 10 disjoint instance subsets. Each 

subset was utilized once in a test set and nine times in a training set. The same 

cross-validation folds were implemented for all algorithms. Since the mean 

accuracy is a random variable, the confidence interval was estimated by using the 

normal approximation of the binomial distribution. Furthermore, the one-tailed 

paired t-test with a confidence level of 95% verified whether the differences in 

accuracy between the Troika algorithm and the other algorithms were statistically 

significant. In order to conclude which algorithm performs best over multiple 

datasets, we followed the procedure proposed in Demsar (2006). In the case of 

multiple classifiers we first used the adjusted Friedman test in order to reject the 

null hypothesis and then the Bonferroni–Dunn test to examine whether the new 

algorithm performs significantly better than existing algorithms. 

                                                           
18 The 10-folds cross validations refers to the process in which 10 different Troika models where trained. The k-

folds cross validation process mentioned before is the inner process of troika training. When the 10-folds cross 

validation process (for assessing the performance of Troika) is finished, Troika is trained once again, using all 

instances in the dataset. 
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 Area under ROC curve: The second measure we used to evaluate Troika is the 

Area under the ROC (Receiver Operating Characteristic) curve, a graphical plot 

of the sensitivity vs. (1 - specificity) for a binary classifier system as its 

discrimination threshold is varied. The ROC can also be represented equivalently 

by plotting the fraction of true positives (TPR = true positive rate) vs. the fraction 

of false positives (FPR = false positive rate). ROC analysis provides tools to 

select possibly optimal models and to discard suboptimal ones independently 

from (and prior to specifying) the cost context or the class distribution. ROC 

analysis is related in a direct and natural way to cost/benefit analysis of diagnostic 

decision making. Widely used in medicine, radiology, psychology and other areas 

for many decades, it has been introduced relatively recently in other areas such as 

machine learning and data mining. 

 Training time: This measure is an applicative one. It has two significances; first, 

and most logical, heavy time consumption is bad. We would prefer a fast learning 

ensemble that will yield the best accuracy or area under ROC. Second, the longer 

time the training of an ensemble takes, the more CPU time it requires, and thus, 

the more energy it consumes. This is very important on mobile platforms that may 

be using an ensemble for various reasons 

5.1.7. Ensemble Size 

Since the accuracy and the classifier complexity are affected by the ensemble 

size (number of classifiers), we examined three ensemble configurations: six, three, 

and one inducers. The size of the whole ensemble, enn , can be described in the next 

equation: 

)1(*  kknn inden     (7) 

where indn  is the number of inducers and k is the number of classes in dataset. For 

example, the size of Troika ensembles on „letter‟ dataset, which contains 26 classes is 

3900)126(26*6 enn  when six inducers are been used, 1950 and 975 inducer for 

three and one inducers respectively. 

5.2. Results 
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Tables 10, 11 and 12 present the results obtained using different number of inducers 

using the 10-fold cross-validation procedure which was repeated five times and one-

against-one binarization method. The superscript "+" indicates that the degree of 

accuracy of Troika was significantly higher than the corresponding algorithm at a 

confidence level of 95%. The "–" superscript indicates the accuracy was significantly 

lower. In Table 10 we used six inducers (C4.5, PART, VFI, IBk, Bayes-Net and 

SMO) for creating base classifiers, in Table 11 we used three inducers (C4.5, VFI, 

IBk) and finally in Table 12 we used only one inducer (C4.5). The reason why we 

repeat all the testing three times with different amount of inducers is to investigate the 

effect of inducer number on ensemble performance. In Tables 10-12 “Best B.C.” 

stands for best base classifier chosen by cross validation.



 

Table 10: Comparing ensemble algorithms using 6 inducers: C4.5 (Trees), PART (rules), VFI (misc.), IBk (Lazy), Bayes-Net (Bayes), SMO (functions). 

 

Dataset 

Accuracy   Area Under ROC Execution time 

Stacking StackingC Troika Best B.C. Stacking StackingC Troika Stacking StackingC Troika 

Heart-statlog 83.80 ± 6.22 83.93 ± 6.10 84 ± 6.25 83.89 0.90 ± 0.06 0.90 ± 0.06 0.90 ± 0.06 1.70 ± 0.42 1.65 ± 0.06 1.74 ± 0.08 

Diabetes 75.91 ± 3.91 75.91 ± 3.91 75.85 ± 3.97 77.1 0.82 ± 0.04 0.82 ± 0.04 0.82 ± 0.04 -3.22 ± 0.11 4.08 ± 0.09 4.19 ± 0.12 

Sonar 78.74 ± 11.01 78.74 ± 11.01 85.05 ± 10.85 86.17 0.85 ± 0.11 0.85 ± 0.11 0.85 ± 0.11 1.10 ± 0.95 1.42 ± 1.27 2.32 ± 2.17 

Hepatitis 69.22 ± 10.78 69.22 ± 10.78 69.6 ± 11.02 69.71 0.73 ± 0.13 0.73 ± 0.13 0.73 ± 0.13 1.70 ± 0.54 1.82 ± 0.50 2.14 ± 0.89 

Votes 96.06 ± 3.14 96.06 ± 3.14 96.13 ± 2.95  96.57 0.99 ± 0.02 0.97 ± 0.03 0.99 ± 0.02 -1.72 ± 0.08 2.25 ± 0.08 2.29 ± 0.10 

Ionosphere  93.25 ± 4.12 93.25 ± 4.12 93.14 ± 4.09  94.5 0.97 ± 0.03 -1.00 ± 0.00 0.97 ± 0.03 -2.20 ± 0.13 -2.84 ± 0.12 3.24 ± 0.25 

Kr-vs-kp 99.51 ± 0.42 99.53 ± 0.37 99.48 ± 0.39 99.44 -1.00 ± 0.00 +0.82 ± 0.04 0.99 ± 0.00 -62.54 ± 4.18 +112.03 ± 1.64 90.99 ± 2.39 

balance-scale 93.76 ± 2.84  90.63 ± 2.37 93.87 ± 2.84 90.53 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 6.90 ± 0.18 7.42 ± 0.19 7.74 ± 19.14 

Iris 94.13 ± 6.01 87.33 ± 9.06 95.2 ± 5.53 96.27 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 -1.29 ± 0.11 1.64 ± 0.16 1.74 ± 0.28 

splice +90.87 ± 2.04 +84.95 ± 3.02 96.1 ± 1.04  95.54 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 -187.6 ± 39.1 +714.14 ± 10.69 582.31 ± 11.11 

Waveform 84.64 ± 1.86 82.88 ± 1.26 85.56 ± 2.2  80.01 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 -503.0 ± 130.7 +1640.30 ± 4.09 684.38 ± 2.79 

Vehicle 73.00 ± 4.72 69.56 ± 6.59 75.59 ± 5.77  74.08 0.79 ± 0.09 0.78 ± 0.11 0.85 ± 0.05 +425.9 ± 997.1 +42.52 ± 12.04 24.70 ± 7.48 

Glass(5 classes) +49.40 ± 12.64 +60.00 ± 10.56 71.15 ± 9.37 70.27 +0.75 ± 0.10 0.80 ± 0.10 0.91 ± 0.06 +30.8 ± 5.84 5.52 ± 0.66 6.15 ± 0.23 

Autos 57.12 ± 11.32 60.98 ± 11.42 78.83 ± 10.82 81.77 0.89 ± 0.13 0.94 ± 0.06 0.96 ± 0.08 +43.2 ± 8.2 +17.96 ± 1.55 10.04 ± 0.28 

Flag +38.60 ± 10.82 46.84 ± 12.16 62.46 ± 7.41 60.72 0.64 ± 0.14 0.72 ± 0.11 0.79 ± 0.12 +207.7 ± 32.7 +48.49 ± 11.55 17.02 ± 1.01 

Anneal 97.25 ± 1.57 +89.82 ± 4.97 97.33 ± 1.84 95.49 0.79 ± 0.30 0.92 ± 0.19 0.82 ± 0.26 -23.1 ± 0.2 +97.02 ± 1.47 68.21 ± 1.75 

Zoo 99.30 ± 2.68 98.56 ± 3.75 98.93 ± 3.28 98.9 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.01 +21.2 ± 5.9 5.63 ± 0.12 4.45 ± 0.21 

Segment 96.89 ± 0.90 +87.67 ± 4.67 97.71 ± 0.83 96.79 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 +211.7 ± 12.3 +1327.59 ± 63.83 163.26 ± 10.59 

LED7 71.53 ± 3.04 +57.99 ± 5.90 71.17 ± 3.58  73.59 0.91 ± 0.05 0.89 ± 0.07 0.93 ± 0.06 +353.1 ± 14.4 +602.48 ± 22.99 299.25 ± 1.51 

vowel +76.69 ± 4.84 +66.85 ± 5.88 94.43 ± 2.23  99.05 1.00 ± 0.01 1.00 ± 0.00 0.99 ± 0.03 61.2 ± 3.8 91.81 ± 3.56 464.64 ± 286.28 

KRKOPT (25%) +50.74 ± 2.03 +34.53 ± 1.84 56.99 ± 1.91 59.11 0.74 ± 0.04 0.77 ± 0.07 0.82 ± 0.04 +10196 ± 63.9 1356.86 ± 42.26 7391.03 ± 34.06 

Soybean 90.87 ± 3.80 +74.62 ± 5.22 89.51 ± 4.18  93.1 +1.00 ± 0.00 +1.00 ± 0.00 1.00 ± 0.00 1244.2 ± 269.4 2033.01 ± 920.61 1003.86 ± 188.51 

Letter (12.5%) 66.94 ± 2.86 +40.22 ± 2.75 71.24 ± 3.14  85.2 0.94 ± 0.04 0.93 ± 0.09 0.94 ± 0.09 -450.0 ± 17.7 +3768.95 ± 122.76 1517.95 ± 44.92 

Average UCI 79.49 ± 4.96 75.22 ± 5.69 84.02 ± 4.59 82.360 0.90 ± 0.06 0.91 ± 0.05 0.92 ± 0.05 610.4 ± 69.9 516.85 ± 53.14 537.11 ± 26.79 



 

Table 11: Comparing ensemble algorithms using 3 inducers: C4.5 (Trees), VFI (misc.), IBk (Lazy)  

Dataset 
Accuracy   Area Under ROC Execution time 

Stacking StackingC Troika Best B.C. Stacking StackingC Troika Stacking StackingC Troika 
heart-statlog 82.59 ± 6.44 82.59 ± 6.44 82.52 ± 6.58 79.89 0.90 ± 0.06 0.90 ± 0.06 0.90 ± 0.06 -0.84 ± 0.07 0.97 ± 0.05 0.99 ± 0.05 

Diabetes 75.95 ± 4.21 75.95 ± 4.21 75.98 ± 4.06 74.92 0.82 ± 0.05 0.82 ± 0.05 0.82 ± 0.05 -2.08 ± 0.07 +2.70 ± 0.07 2.56 ± 0.07 

Sonar 85.73 ± 8.67 85.73 ± 8.67 85.68 ± 8.76 86.17 0.92 ± 0.07 0.92 ± 0.07 0.92 ± 0.07 -1.55 ± 0.07 +1.94 ± 0.07 1.80 ± 0.06 

Hepatitis 69.09 ± 12.38 69.09 ± 12.38 69.16 ± 12.66 67.98 0.75 ± 0.14 0.75 ± 0.14 0.75 ± 0.14 0.72 ± 0.05 0.72 ± 0.05 0.76 ± 0.04 

Votes 95.58 ± 2.94 95.58 ± 2.94 95.58 ± 2.96 96.57 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 -1.23 ± 0.06 1.60 ± 0.06 1.54 ± 0.05 

Ionosphere 91.17 ± 4.45 91.17 ± 4.45 91.22 ± 4.46 94.5 0.95 ± 0.04 0.95 ± 0.04 0.95 ± 0.04 -1.66 ± 0.07 +2.17 ± 0.06 2.02 ± 0.07 

Kr-vs-kp 99.45 ± 0.46 99.52 ± 0.33 99.45 ± 0.44 99.44 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 -66.47 ± 4.70 +124.56 ± 5.35 89.64 ± 4.28 

balance-scale 92.45 ± 2.87 89.14 ± 2.16 91.04 ± 3.00 86.72 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 +4.75 ± 0.39 +5.34 ± 0.52 3.07 ± 0.13 

Iris 93.60 ± 5.68 88.00 ± 9.48 95.47 ± 4.63 96.07 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 +1.65 ± 0.27 +0.97 ± 0.06 0.79 ± 0.05 

Splice 93.98 ± 1.64 +85.96 ± 2.45 95.99 ± 0.92 94.03 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 -98.11 ± 6.20 +620.25 ± 5.70 489.20 ± 2.43 

Waveform 83.77 ± 1.61 +79.90 ± +1.78 84.45 ± 1.70 77.67 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 -97.54 ± 0.83 +168.74 ± 0.96 116.21 ± 1.50 

Vehicle 72.05 ± 4.77 71.26 ± 5.23 75.12 ± 3.57 72.28 0.85 ± 0.05 0.84 ± 0.04 0.86 ± 0.03 +46.42 ± 17.21 +23.74 ± 5.85 10.86 ± 0.15 

Glass(5 classes) +53.88 ± 14.59 68.29 ± 10.76 74.22 ± 9.50 70.27 0.84 ± 0.11 0.90 ± 0.07 0.92 ± 0.07 +419.9 ± 708.8 4.57 ± 1.42 3.11 ± 0.31 

Autos +59.80 ± 12.31 +62.74 ± 10.21 79.39 ± 8.92 81.77 0.90 ± 0.12 0.93 ± 0.10 0.94 ± 0.09 +27.83 ± 55.89 +9.40 ± 0.51 6.26 ± 0.52 

Flag +40.68 ± 12.33 50.58 ± 12.24 61.00 ± 9.44 57.32 0.63 ± 0.14 0.75 ± 0.11 0.78 ± 0.10 +94.78 ± 26.44 +17.61 ± 1.19 8.37 ± 0.12 

Anneal 97.81 ± 2.00 +92.50 ± 3.02 97.96 ± 1.47 95.49 0.85 ± 0.29 0.88 ± 0.25 0.95 ± 0.13 -12.62 ± 0.82 +60.54 ± 0.31 39.68 ± 0.45 

Zoo 97.94 ± 4.72 98.57 ± 3.73 96.28 ± 7.01 98.9 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.04 +14.32 ± 1.88 +3.35 ± 0.07 2.53 ± 0.07 

Segment 96.93 ± 1.18 +83.10 ± 4.07 97.61 ± 0.91 96.79 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 +187.66 ± 11 +1184.7 ± 198.1 136.76 ± 2.63 

LED7 71.63 ± 2.43 +56.72 ± 6.01 71.51 ± 2.72 73.48 0.91 ± 0.05 0.88 ± 0.05 0.93 ± 0.04 +265.29 ± 3.07 +458.19 ± 3.03 224.50 ± 2.39 

Vowel +63.98 ± 4.99 +41.43 ± 4.90 74.46 ± 5.05 99.05 0.93 ± 0.07 0.94 ± 0.08 0.97 ± 0.04 +393.23 ± 1.72 +726.97 ± 3.12 300.10 ± 1.47 

KRKOPT (25%) +48.49 ± 7.03 +32.51 ± 3.29 65.33 ± 8.32 59.11 -0.69 ± 0.04 0.79 ± 0.09 0.82 ± 0.06 -596.32 ± 6.19 +3432.22 ± 6.08 1667.22 ± 3.19 

Soybean 90.68 ± 3.10 +67.84 ± 4.67 87.99 ± 3.60 93.06 0.99 ± 0.05 1.00 ± 0.00 0.98 ± 0.06 +1723.3 ± 69.8 +3075.1 ± 203.2 1111.73 ± 35.3 

Letter (12.5%) +63.29 ± 3.49 +34.17 ± 3.57 77.65 ± 3.04 85.2 0.94 ± 0.06 0.94 ± 0.08 0.94 ± 0.05 -434.49 ± 18.47 +3569.6 ± 233.3 1243.56 ± 39.66 

Average UCI 80.32 ± 5.19 74.91 ± 5.41 84.19 ± 4.86 82.360 0.91 ± 0.06 0.92 ± 0.06 0.93 ± 0.05 187.25 ± 38.91 586.71 ± 29.09 223.51 ± 14.94 
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Table 12: Comparing ensemble algorithms using one inducer, C4.5, summary of experimental results for UCI repository datasets.  

Dataset 
Accuracy   Area Under ROC Execution time 

Stacking StackingC Troika Best B.C. Stacking StackingC Troika Stacking StackingC__ Troika 
Heart-statlog 76.33 ± 7.41 76.33 ± 7.41 76.33 ± 7.41 78.15 0.81 ± 0.09 0.81 ± 0.09 0.81 ± 0.09 -0.36 ± 0.06 -0.39 ± 0.06 0.52 ± 0.07 

Diabetes 71.44 ± 3.89 71.44 ± 3.89 71.52 ± 3.94 74.92 0.74 ± 0.06 0.74 ± 0.06 0.74 ± 0.06 -0.73 ± 0.07 0.86 ± 0.14 1.01 ± 0.10 

Sonar 72.08 ± 9.03 72.08 ± 9.03 72.08 ± 9.03 73.61 0.77 ± 0.10 0.77 ± 0.10 0.77 ± 0.10 -0.34 ± 0.05 0.37 ± 0.06 0.51 ± 0.10 

Hepatitis 61.86 ± 12.23 61.86 ± 12.23 61.86 ± 12.23 63.18 0.63 ± 0.15 0.63 ± 0.15 0.63 ± 0.15 0.32 ± 0.05 0.34 ± 0.06 0.44 ± 0.08 

Votes 95.63 ± 2.82 95.63 ± 2.82 95.63 ± 2.82 96.57 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 -0.34 ± 0.06 -0.40 ± 0.06 0.57 ± 0.09 

Ionosphere 89.20 ± 4.46 89.20 ± 4.46 89.20 ± 4.46 89.74 0.91 ± 0.05 0.91 ± 0.05 0.91 ± 0.05 -0.35 ± 0.05 -0.39 ± 0.07 0.53 ± 0.07 

Kr-vs-kp 99.55 ± 0.34 99.56 ± 0.31 99.61 ± 0.32 99.44 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 -5.66 ± 0.26 -10.01 ± 0.31 11.79 ± 0.62 

Balance-scale 81.08 ± 3.45 79.40 ± 3.37 81.08 ± 3.45 77.82 0.94 ± 0.04 0.86 ± 0.05 0.93 ± 0.04 1.28 ± 0.15 1.18 ± 0.16 1.40 ± 0.11 

Iris 93.60 ± 5.52 +66.00 ± 2.01 93.60 ± 5.52 94.73 0.99 ± 0.02 0.99 ± 0.03 0.99 ± 0.02 -0.35 ± 0.08 -0.33 ± 0.07 0.58 ± 0.12 

Splice 94.08 ± 1.53 93.59 ± 1.84 94.26 ± 1.70 94.03 0.96 ± 0.02 0.97 ± 0.01 0.97 ± 0.01 +195.33 ± 1.67 -9.14 ± 1.59 13.46 ± 1.60 

Waveform 75.62 ± 2.34 +68.30 ± 2.16 75.56 ± 2.34 75.08 +0.99 ± 0.02 +0.98 ± 0.03 0.86 ± 0.02 -42.25 ± 0.52 +81.18 ± 0.76 53.73 ± 0.57 

Vehicle 74.68 ± 4.56 70.63 ± 4.63 74.68 ± 4.56 72.28 0.86 ± 0.04 0.84 ± 0.05 0.84 ± 0.04 +3.20 ± 0.10 -2.11 ± 0.12 2.58 ± 0.14 

Glass(5 classes) 66.42 ± 11.07 64.64 ± 9.79 70.19 ± 9.43 67.63 0.86 ± 0.08 0.87 ± 0.07 0.87 ± 0.08 3.91 ± 13.40 0.58 ± 0.28 0.84 ± 0.19 

Autos 72.15 ± 9.67 55.81 ± 9.16 72.15 ± 9.67 81.77 0.95 ± 0.07 0.96 ± 0.06 0.95 ± 0.07 +2.27 ± 0.18 1.18 ± 0.13 1.28 ± 0.14 

Flag 60.74 ± 10.08 58.21 ± 7.80 60.74 ± 10.08 56.71 0.80 ± 0.10 0.83 ± 0.09 0.81 ± 0.10 +5.26 ± 1.62 1.67 ± 0.15 1.81 ± 0.16 

Anneal 90.25 ± 9.90 83.07 ± 5.07 93.81 ± 6.10 92.35 0.92 ± 0.18 0.92 ± 0.20 0.93 ± 0.19 +17.31 ± 11.30 -0.77 ± 0.04 1.92 ± 0.26 

Zoo 93.93 ± 7.21 +78.69 ± 6.69 93.93 ± 7.21 92.61 0.86 ± 0.02 0.86 ± 0.02 0.97 ± 0.10 +1.10 ± 0.22 -0.54 ± 0.06 0.73 ± 0.11 

Segment 94.49 ± 2.79 +42.72 ± 5.14 95.84 ± 2.58 96.93 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.01 -35.89 ± 0.20 -2.25 ± 0.13 67.79 ± 4.59 

LED7 70.56 ± 2.84 +24.84 ± 5.13 70.98 ± 2.94 73.34 0.90 ± 0.04 0.91 ± 0.05 0.93 ± 0.03 +153.77 ± 0.86 -8.90 ± 0.17 38.72 ± 5.21 

vowel 74.72 ± 4.61 +35.13 ± 3.49 79.82 ± 4.18 80.2 0.97 ± 0.03 0.97 ± 0.03 0.99 ± 0.01 -48.21 ± 2.96 -3.24 ± 0.77 287.01 ± 206.10 

KRKOPT (25%) 49.15 ± 2.11 +17.50 ± 1.26 52.45 ± 2.61 54.69 0.73 ± 0.05 0.83 ± 0.07 0.83 ± 0.05 +1671.34 ± 7.81 +3283.85 ± 14.10 1374.35 ± 10.69 

Soybean 90.66 ± 4.02 +22.73 ± 0.88 90.80 ± 6.93 91.78 0.99 ± 0.05 1.00 ± 0.01 1.00 ± 0.00 19.36 ± 1.18 20.51 ± 1.10 20.33 ± 2.18 

Letter (12.5%) 58.56 ± 2.68 +7.37 ± 0.53 62.32 ± 5.67 73.19 0.88 ± 0.10 0.93 ± 0.07 0.91 ± 0.08 -193.57 ± 6.16 +342.59 ± 6.03 218.66 ± 2.13 

Average UCI 79.79 ± 5.20 64.90 ± 4.58 80.29 ± 5.50 79.254 0.89 ± 0.06 0.90 ± 0.06 0.90 ± 0.06 96.72 ± 1.97 150.96 ± 1.06 84.12 ± 9.43 



 

 

5.2.1. Results analysis - using six inducers 

There are few datasets in which the Troika obtained a degree of accuracy lower to 

that of Stacking and StackingC, but none are significant. There are cases in which 

Troika achieved much higher accurate results compare to the other two ensemble 

methods (Sonar, Splice, Glass, Flag, Vowel, and KRKOPT). 

A statistical analysis of the accuracy results on the entire dataset collection 

indicates that (1) in five datasets Stacking achieved significantly lower accuracy 

compare to Troika‟s; (2) in none of the datasets Stacking excels Troika; (3) in nine 

datasets StackingC achieved significantly lower accuracy compare to Troika‟s; (4) in 

none of the datasets StackingC excels Troika. 

A statistical analysis of the Area under ROC curve results of the entire dataset 

collection indicates that (1) Stacking and StackingC achieved significantly lower 

results compare to Troika in two datasets; (2) Stacking and StackingC were better 

than Troika in one dataset.  

Although mean execution time of Troika is longer than stackingC and shorter than 

of Stacking, adjusted non-parametric Friedman test with a confidence level of 95% 

shows that those differences are not significant.  

The null-hypothesis that all ensemble methods and the best classifier perform the 

same using six inducers was rejected using the adjusted non-parametric Friedman test 

with a confidence level of 95%. Using the Bonferroni-Dunn test we could reject the 

null-hypothesis that Troika and Stacking perform the same at confidence levels of 

93.4%. Using same test we could also reject the hypothesis that Troika and StackingC 

performs the same at confidence levels above 99%. Finally, the Bonferroni-Dunn test 

had shown that there was no significant difference between Troika and the best 

classifier. 

5.2.2. Results analysis - using three inducers 
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Using Troika in conjunction with three inducers yielded results that resemble 

those shown in Table 10 where we used six inducers.  

A statistical analysis of the accuracy results on the entire dataset collection 

indicates that (1) in six datasets Stacking achieved significantly lower accuracy 

compare to Troika‟s; (2) in none of the datasets Stacking excels Troika; (3) in ten 

datasets StackingC achieved significantly lower accuracy compare to Troika‟s; (4) in 

none of the datasets StackingC excels Troika.  

Statistical analysis of the ROC results of the entire dataset collection indicates no 

significant difference between all the ensemble schemes, although Troika has a trifle 

advantage on average. 

Statistical analysis of the execution time reveals that there is a difference between 

ensemble methods. Using the Bonferroni-Dunn test with a confidence level of 95% 

shows Troika execute time is shorter compares to StackingC. 

The null-hypothesis that all ensemble methods perform the same using three 

inducers was rejected using the adjusted non-parametric Friedman test with a 

confidence level of 95%. Using the Bonferroni-Dunn test we could reject the null-

hypothesis that Troika and Stacking perform the same at confidence levels of 92%. 

Using same test we could also reject the hypothesis that Troika and StackingC 

performs the same at confidence levels above 99%. The Bonferroni-Dunn test had 

shown that there was no significant difference between Troika and the best classifier. 

 

5.2.3. Results analysis - using one inducer 

Using one inducer yielded very different results compare to using three or six 

inducers.  

Statistical analysis of the ROC results of the entire dataset collection indicates no 

significant difference between all the ensemble schemes and the best classifier. 
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Statistical analysis of the execution time reveals that there is a difference between the 

ensemble methods. Using the Bonferroni-Dunn test with a confidence level of 95% 

shows Troika has a longer execute time compares to Stacking and StackingC. 

Figures 3, 4, 5 and 6 present the four Troika„s ROC graphs, computed from the 

results on Vehicle dataset using 6 inducers. Each graph belongs to one of Vehicle‟s 

class. 

 

Figure 3: ROC graph for “Opel” class. It can be seen that Troika, in the strong line, 

excels its opponents in almost every segments of the graph. 
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Figure 4: ROC graph for “Bus” class.  
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Figure 5: ROC graph for “Saab” class 

 

 

Figure 6: ROC graph for “Van” class 

We can observe from the graphs above that there is a consistent advantage to 

Troika in all classes of Vehicle dataset. Although, in general, we found no significant 

difference between all three tested ensemble schemes concerning area under ROC 

graph, there is an advantage to Troika in multiclass datasets where there is sufficient 

number of instances in dataset. 

5.3. How base-classifiers class binarization affect ensemble accuracy? 

As indicated in Section 2.6, there are several methods for converting multiclass 

classification tasks into binary classification tasks. There are two reasons why we had 

made the effort to experiment different kinds of class binarization methods. First, 

recall that our primary requirement from the base classifier was that they will be 

given as an input to all ensemble schemas uniformly, so that an acceptable 

comparison between all ensemble schemes could be made. This, we had successfully 

implemented by training the base classifiers separately from the ensembles. So after 
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supplying each ensemble with the same base classifier, there could be no argue that 

some difference in the training methods of Troika and the other ensembles bias the 

results in favor of Troika; still one question remains. Is it possible that the selected 

binarization method (i.e. 1-1) in itself „helps‟ Troika more than it „helps‟ the other 

ensembles? To answer this question we needed to remake the experiments (at least 

some of them) using another kinds of binarization methods and find out if our 

primeval choice of binarization method is to blame with Troika‟s good performance. 

The second reason was the disappointing results obtained by StackingC. 

StackingC is designed as an improvement of Stacking, and, as shown in our 

experiments, it had performed even worse than Stacking, especially in multiclass 

datasets which it should performed better. We suspected that StackingC is inefficient 

when its base-classifiers are trained using 1-1 binarization method; as there is greater 

number of base classifiers, the chance that each StackingC‟s meta classifier will 

predict correctly decreases and therefore StackingC‟s ability to correctly predict also 

decrease. Our experiments results emphasize this drawback; we see it baldly in 

Segment, LED7, Vowel, KRKOPT and Letter datasets. Each one of those datasets has 

at least 7 classes. There is a considerable drop of accuracy on those datasets compare 

to Stacking or Troika. Thus our hypothesis is that the performance of StackingC will 

increase dramatically, especially when using a multiclass datasets, when base 

classifiers binarization method will be changed.  

5.3.1. Second experiment setup 

The configuration of Troika, Stacking and StackingC were left untouched from 

previous experiment. We had, again, tested all ensembles using one, three and six 

induces. The difference, then, from first experiment, part from fewer tested datasets, 

is solely the method of binarization we used in the training of the base-classifiers.  

5.3.2. Base-Classifiers Arrangements  

We had tested three arrangements for base-classifiers trainings. Two are 

binarization methods; the 1-1 (one-against-one) and the 1-All (One-against-All) 

methods, and the last is a non binarization method AAA (All-against-All), in which 
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base classifiers train on the entire train-set, without any class-binarization (the default 

training method). 

One-against-all (1AA) is the simplest arrangement method. When given a 

problem with k classes, k binary classifiers will be produced by using this method. 

Each classifier is exercised to distinguish a class Ci from the remaining classes. The 

final prediction is usually given by the classifier with the highest output value, as 

done in StackingC, or by combining them in some manner. 

On the other hand we term the methodology used in the first experiment as one-

against-one (1A1). Recall that this methodology consists 
2

)1( kk
 predictors, each 

differentiating a pair of classes Ci and Cj, where i ≠ j. To combine the outputs 

produced by these classifiers, a majority voting scheme is applied. Each 1A1 

classifier gives one vote to its preferred class. The final result is the class with most of 

the votes. 

5.3.3. Second experiment results 

Table 13 summarizes the average AUC results of all the ensemble methods; it 

shows that Troika performs better than its rivals regardless of binarization method. In 

total, it wins 7 out of the 9 (78%) experiments, 6 of 6 (100%) when using three or six 

inducers. The class binarization method has effect on the AUC; in average 1A1 

yielded better AUC than the rest and 1AA yielded the worst. StackingC had won 

Stacking in 5 out of 6 experiments where base-classifiers training methods were 1-All 

and AAA. The evidence shows that troika is superior to Stacking and StackingC 

when using more than one inducer for base-classifiers. 
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.  

Binarization 

method 
#Inducers Stacking StackingC Troika 

Arrangement 

average 

1A1 

1 0.87 0.87 0.87 

0.88 3 0.88 0.9 0.91 

6 0.86 0.86 0.88 

1AA 

1 0.84 0.86 0.87 

0.86 3 0.86 0.85 0.89 

6 0.85 0.88 0.89 

AAA 

1 0.86 0.87 0.86 

0.87 3 0.85 0.88 0.89 

6 0.85 0.88 0.89 

Average - 0.86 0.87 0.88   

Table 13: Mean AUC (area under ROC) for all assembly methods 

We can see from Table 12 that Troika performs better than its opponents, again, 

regardless of binarization method. In total, it wins 8 out of the 9 (89%) experiments, 

and 6 of 6 (100%) when given three or six inducers. AAA training method this time 

won second place. We got best performance using 1A1 coupled with three inducers. 

In a matter of fact, all ensemble methods had had their peak ROC results when using 

this exact configuration. The poorest results always came along with the used of 

single inducer regardless of base-classifiers training method, but, on the other hand, 

there wasn‟t hard evidence that using six inducers, rather than three, yields better 

results. 

Binarization 

method 
#Inducers Stacking StackingC Troika 

Arrangement 

average 

1A1 

1 3.27 1.42 1.66 

44.73 3 125.29 64.91 25.13 

6 99.02 53.33 28.56 

1AA 

1 4.59 1.41 2.3 

6.03 3 5.62 4.24 7.68 

6 8.01 7.88 12.52 

AAA 

1 4.69 0.34 0.68 

14.14 3 11.42 7.98 29.5 

6 18.88 11.96 41.85 

Average - 31.2 17.05 16.65   

Table 14: Mean execution time for all assembly methods. 
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We can see from Table 14 that Troika execution time is significantly better than 

its opponents when using 1-1 binarization method. One of the explanations for this 

particular result is that when using 1-1, base-classifiers count is much higher than 

when using 1AA, which is even higher than when using AAA.  This proves our claim 

that when number of base-classifiers becomes greater Troika execution time, 

relatively to Stacking and StackingC, become longer in slower rate. We can see that 

Stacking took longer to execute when it used three inducers rather than using six. It is 

a very strange finding indeed, not quite comprehensible. Well, this phenomenal is a 

result of our distributed experiment. We had used different computers to perform 

experiments in which we used 1, 3 and 6 inducers. The one which run the 

experiments that used three inducers, happen to be a much slower computer, slow 

enough to make these ridiculous results. As a matter of fact, this does not affect our 

conclusions, because when we compare execution time of the three ensembles, we 

actually compare how each function, given the number of inducers and method of 

base-classifiers training, thus eliminating the between treatment effect.  

Finally, we can see that Troika execution time was the longer then other 

ensembles when using AAA base-classifiers training method. In this particular 

method, where minimal base classifiers where induced, the large number of 

combining classifiers in Troika was the giving factor, therefore Troika execution time 

was the worst. 

5.3.4. Summation of statistical results 

So far the results have shown that troika excels Stacking and StackingC in 

terms of accuracy, regardless of base-classifiers binarization method. We also had 

shown Troika is preferable, in terms of execution time, especially when having many 

inducers to combine. In addition Troika‟s AUC mean is greater than of Stacking and 

of StackingC. However the statistical significance has been separately examined for 

each dataset.  In this section we use the statistical procedure proposed in Demsar 

(2006) to conclude which algorithm performs best over multiple datasets. First we 

used adjusted non-parametric Friedman test with a confidence level of 95% to 

determine whether the difference between the ensemble methods is significance in 
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general. Later, if we found a significance difference, we used the Bonferroni-Dunn 

test with a confidence level of 95% (when not specified otherwise) to find which 

ensemble differs from Troika.  The summary of the results are provided in Table 16. 

The  "+" sign indicates that the degree of accuracy of Troika was significantly higher 

than the corresponding algorithm at a confidence level of 95%. The "=" sign indicates 

the accuracy was not significantly different. The “+ (xx%)” superscript indicates that 

the degree of accuracy of Troika was significantly higher than the corresponding 

algorithm at a confidence level of xx%. The summary table indicates that in most 

configurations, Troika has significantly prevailed Stacking and StackingC accuracy. 

Table 15: Shows a summary of statistical significance of the difference between 

accuracy performances of the three ensemble methods.  

Vs StackingC Vs. Stacking General Significance Number of inducers Binarization method 

+ = + 1 

1A1 + + + 3 

+ + + 6 

+ (91%) + + 1 

1AA n/a n/a None 3 

+ + + 6 

n/a n/a None 1 

AAA = + + 3 

= + + 6 

A close examination of the results shown in Tables 10, 11 and 12 indicate that 

there are some datasets which disagree with our intermediate conclusions. Troika 

performs worse than Stacking in both Zoo and Soybea datasets. These poor 

performance of Troika in both datasets emphasize Troika‟s weaknesses. Zoo dataset 

has seven classes, 101 instances and when trained using 1-1 binarization method, 252 

base-classifiers are trained. Soybean dataset contains 19 classes and 683 instances. 

We explain these poor results of Troika with the small number of instances in respect 

with number of classes. While Stacking and StackingC has one layer of combining 

layers, Troika has three. This attribute of Troika, forces Troika to spread the training 

meta instances with the three combining layers, therefore each layer gets fewer 

instances than Stacking or StackingC meta combiner gets. When there are enough 

instances in the datasets, this is not a major drawback. But when the original number 

of instances in the dataset is very small in respect to the number of classes, this may 

lead to an inferior ensemble. Specifically, we found the following index useful for 
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deciding which ensemble method to use. The index is defined as the number of 

instances divided by the square of the number of classes. For example in 1A1 

binarization method Troika should be chosen if the dataset index is higher than 3. 

Another important finding from our experimental study indicates that using 

StackingC along with base-classifiers which were trained using 1-1 binarization 

method yields very poor ensemble. This emphasizes another good attribute of Troika; 

assuming that some or all of the base-classifiers may not, or could not be trained on 

more than two classes of a multiclass datasets, then Troika will have a large 

advantage over StackingC and Stacking; over the first, for it yields poor ensemble 

when coupled with base-classifiers trained using 1-1 binarization method as already 

shown, and over the later, because it is simply not that good with multiclass datasets.  

5.4. Comparing Troika to non Stacking ensembles methods 

In the previous experiments we had tested Troika and compared it to other stacking 

generalization ensemble method such as Stacking and StackingC. It makes sense to 

first check whether Troika is capable of improving its closest relative ensembles. 

Now, however, we will compare Troika to other combing methods - Performance 

Weighting [Opitz and Shavlik, 1996], Distribution Summation [Clark and Boswell, 

1991], Bayesian Combination [Buntine, 1990] and Naïve Bayes idea for combining 

various classifiers [John and Langley, 1995]. 

We used the same UCI dataset. We did not use binarization process on the base 

classifiers. We had used three induces – J48, VFI and IB1. From each inducer we had 

created two models using the 125% instances process that was explained earlier. 
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Ensemble 
Method 

Bayesian 
Combination 

Distribution 
Summation 

Naïve Bayes 
Combination 

Performance 
Weighting 

Troika 

Dataset Accuracy Rank   Accuracy Rank   Accuracy Rank   Accuracy Rank   Accuracy Rank 
  

Autos 79.64±8.09 2 

 

80.17±6.74 1 

 

79.10±9.76 3 

 

75.71±5.60 5 
 

76.64±9.56 4   

Balance-scale 81.44±3.93 2.5 

 

81.44±3.93 2.5 

 

75.37±4.95 5 

 

81.12±3.96 4 
 

88.00±2.05 1   

Breast-cancer 74.56±11.27 3 

 

74.91±11.47 1.5 

 

65.07±8.84 5 

 

74.91±11.47 1 
 

71.34±6.17 4   

C-heart-disease 77.53±5.22 2.5 

 

77.53±5.22 2.5 

 

74.26±8.50 5 

 

77.19±5.61 4 
 

78.81±7.04 1   

Credit-rating 84.06±3.74 2 

 

83.19±4.59 3 

 

78.26±3.35 5 

 

81.30±4.90 4 
 

86.96±3.55 1   

Diabetes 71.45±5.56 2 

 

70.93±5.20 4 

 

67.81±4.32 5 

 

71.19±5.22 3 
 

73.41±4.65 1   

Flag 58.95±11.32 4 

 

59.47±11.65 2 

 

55.79±12.21 5 

 

58.95±10.76 3 
 

59.47±12.90 1   

German credit 72.20±3.01 3 

 

72.00±2.94 4 

 

68.90±3.57 5 

 

72.30±2.87 2 
 

74.90±3.84 1   

Glass 71.81±8.41 1 

 

70.86±10.09 3 

 

68.33±7.95 5 

 

71.36±10.95 2 
 

69.83±8.63 4   

Heart-statlog 75.56±8.59 2 

 

75.56±8.94 3 

 

74.81±8.34 5 

 

75.19±8.56 4 
 

75.93±8.95 1   

Hepatitis_Domain 66.58±12.48 3 

 

67.21±12.06 2 

 

65.92±11.58 4 

 

67.87±11.80 1 
 

65.83±10.13 5   

Horse-colic 82.09±6.83 2 

 

81.82±7.16 3 

 

79.90±7.65 5 

 

81.54±6.30 4 
 

85.57±5.06 1   

House-votes-84 95.19±4.07 3 

 

94.96±3.83 4 

 

95.42±3.39 2 

 

94.05±4.04 5 
 

96.56±2.68 1   

H-heart-disease 78.55±10.28 3.5 

 

78.55±10.28 3.5 

 

75.84±9.77 5 

 

79.93±8.30 2 
 

82.02±6.28 1   

Ionosphere 91.75±3.06 2.5 

 

91.75±3.06 2.5 

 

87.48±6.45 4 

 

87.19±4.67 5 
 

92.89±3.32 1   

Iris 96.67±4.71 2 

 

96.67±4.71 2 

 

94.67±6.13 4.5 

 

96.67±4.71 2 
 

94.67±5.26 4.5   

Kr-vs-kp 99.31±0.41 3 

 

99.25±0.37 4 

 

99.44±0.48 1 

 

98.28±1.00 5 
 

99.37±0.47 2   

Labor 89.67±11.91 1.5 

 

89.67±11.91 1.5 

 

82.67±11.20 5 

 

88.33±15.81 3 
 

84.33±12.48 4   

Segment 97.32±0.84 4 

 

97.36±0.80 2 

 

96.62±0.61 5 

 

97.36±0.88 1 
 

97.32±0.76 3   

Sonar 87.52±7.94 1 

 

82.67±7.61 3 

 

68.71±8.34 5 

 

78.36±5.64 4 
 

86.07±6.88 2   

Soybean 92.38±2.49 3 

 

91.94±2.81 4 

 

92.39±2.16 2 

 

92.82±2.02 1 
 

91.06±3.07 5   

Splice 94.45±2.0 2 

 

90.38±1.75 4 

 

91.1±2.04 3 

 

80.16±1.8 5 
 

95.99±1.6 1   

Vehicle 73.88±4.57 2 

 

72.58±4.56 4 

 

71.17±5.52 3 

 

71.52±4.37 5 
 

73.76±4.17 1   

W-beast-cancer 95.99±2.85 3.5 

 

95.99±2.85 3.5 

 

95.42±3.08 5 

 

96.85±2.69 1 
 

96.13±2.35 2   

Zoo 98.89±3.51 2.5 

 

98.89±3.51 2.5 

 

99.00±3.16 1 

 

97.89±4.46 4   96.78±7.38 5   

Average  Rank 2.46 2.84 4.18 3.18 2.34 

Table16: Comparing the prediction accuracy of several combining ensemble 

methods to Troika on 24 UCI datasets. In this experiment we had used three inducers: 

J48, VFI and IBk. We used each induces to produces two models so each combining 

method had combined six classification models. Please notice that each result contain 

three data items; the predictive accuracy, standard deviation and rank. For example the value 

“79.64±8.09, 2” indicate of accuracy of 79.64%, standard deviation of 8.09 and rank of 2. 

Smaller rank is better.     

Table 16 shows that among all five tested combining methods Troika had 

achieved the smallest average rank. The second best is Bayesian combination, then 
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Distribution summation followed by performance weighting. The worst combining 

method was found to be the Naïve Bayes combination method. The non-parametric 

Freidman test result had shown that at least one combining method performance is 

statistically significantly different. Despite of the nice rank figures, we found out 

using the Bonferroni-Dunn test that Troika is only statistically better than Naïve 

Bayes combination method. The difference between the other combining methods 

was statistically insignificant (using α=0.05).  

One of the several noticeable disadvantages of using Meta learner as combining 

method, such as Stacking, StackingC and mostly Troika, is that it takes extra time to 

train the Meta learner. This fact was very evident in this experiment. No statistical 

test was needed to be done; the time it had taken to train Troika was more than ten 

time slower that the other combining methods. However, when training time is not 

very important than the better accuracy of Troika makes it the preferable combining 

method.   

5.5. How Troika affected from dataset’s class count? 

In this section we investigate another interesting parameter; the effect of classes 

number on Troika performance. In order to answer the question in the title we took 

the KRKOPT dataset (instances distribution shown in table 17), which initially has 17 

classes and manipulated it several times. This dataset has been examined with 

increasing number of classes in order to examine the relation between the number of 

classes and the predictive performance. The manipulation was very simple; for the 

creation of the first derived dataset, “KRKOPT-2-clss” we started with the original 

KRKOPT dataset and filter only instances of the two most prominent classes (the 

classes which has the most instances), then to create the “KRKOPT-3-clss” we did 

exactly the same procedure as with “KRKOPT-2-clss”, but filtered only the instances 

of the three most prominent classes and so on with “KRKOPT-4-clss”, “KRKOPT-5-

clss”, “KRKOPT-6-clss” and “KRKOPT-7-clss”. At the end of this process we had six 

datasets; each has different class count and different number of instances. Table 18 specifies 

the list of datasets which were used in this experiment. 
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Class label Instances 

fourteen 4553 

thirteen 4194 

twelve 3597 

eleven 2854 

Draw 2796 

fifteen 2166 

ten 1985 

nine 1712 

eight 1433 

seven 683 

six 592 

five 471 

sixteen 390 

Two 246 

four 198 

Three 81 

One 78 

Zero 27 

Table 17: The original KRKOPT dataset‟s instances distribution ordered by instances 

quantity. 

 

Dataset name Contained classes 

KRKOPT-2clss    Eleven, Draw 

KRKOPT-3clss    Eleven, Draw, Fifteen 

KRKOPT-4clss    Eleven, Draw, Fifteen, Ten 

KRKOPT-5clss    Eleven, Draw, Fifteen, Ten, Nine 

KRKOPT-6clss    Eleven, Draw, Fifteen, Ten, Nine, Eight 

KRKOPT-7clss    Eleven, Draw, Fifteen, Ten, Nine, Eight, Seven 

Table 18: Six KRKOPT derived datasets 

5.5.1. Experiment results: 

In this experiment we use the same ensembles configuration as we did in the 

previous two experiments. Our metrics had not been changed; accuracy, AUC and 

execution time. All base-classifiers where trained using 1-1 binarization method. 

Figures 7, 8 and 9 present the accuracy results of Troika, Stacking and StackingC 

when using 1, 3 and 6 inducers respectively. We show here only the Accuracy   
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Figure 7: showing the correct prediction rate as function of classes count in datasets 

using one inducer (J48).  

From the Figure 7, it is evident that Troika and Stacking are pretty much close 

with small advantage to stacking. This came with no surprise to us since we were 

using only one inducer. On the other hand, StackingC accuracy performance is free 

falling while number of classes in datasets increases. This is the effect we had already 

seen in previous experiments. Again the blame is the 1-1 binarization method we used 

to train the base-classifier. Stacking and Troika accuracy is better than the best base-

classifier selected by cross-validation. 
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Figure 8: showing the correct prediction rate as function of classes count in datasets 

using three inducers (J48, IBK, and VFI) 

From Figure 8, we can learn that Stacking and Troika have same accuracy rate 

when having 2-classes dataset. Then, when number of classes is three a gap between 

the accuracy of those two is formed, in favor of Troika. As the number of classes 

count in data-set increases, this gap enlarges. StackingC accuracy performance 

continues to free falling while number of classes in datasets increases. This time, 

Troika alone has better accuracy than the best base-classifier selected by cross-

validation. It seems that adding inducers to ensemble had damaged Stacking 

accuracy.  
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Figure 9: the correct prediction ratio as function of classes count in datasets using six 

inducers (J48, IBK, VFI, Part, BayesNet and SMO) 

From Figure 9, we can learn that Stacking and Troika have approximately the 

same accuracy rate when having 2-classes dataset. Then, when number of classes is 

three a gap between the accuracy of those two is formed, in favor of Troika. As the 

number of classes count in data-set increases, this gap enlarges exactly as it was when 

used three inducers. This time, the addition of three more inducers helped both Troika 

and Stacking. As much as this addition aided Stacking, Troika was still the solely 

ensemble which had better accuracy than the best base-classifier selected by cross-

validation. It seems that adding inducers to ensemble did not help to StackingC 

accuracy at all, as was expected.  

To conclude the above results, Troika produce better predictions, especially 

when dealing with multiclass datasets; the greater number of classes, the larger the 

gap becomes between Troika and the other ensemble methods.   
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6. Conclusions and Future Work 

In this paper we have presented a new ensemble method, Troika. It is an 

improvement of Stacking ensemble scheme. While Stacking uses one meta classifier 

in a rather simplistic manner, Troika, has three layers of combining classifiers.  

The goal of Troika was to address Stacking weaknesses, namely, it weak 

performance with multiclass datasets, and it had done it nicely.  It had done that while 

preserving execution time as or better than of Stacking‟s when many base-classifiers 

participated in the ensemble. 

The even greater challenge we face in this work was to make Troika better than 

StackingC, which was targeting the same objectives and had the advantage of already 

having proofs of being better than Stacking. We were somewhat amused to see 

StackingC performed worse than Stacking and Troika in most of our first experiment. 

Later, in the second experiment it regained his title, as a superior to Stacking, but 

remained inferior to Troika in terms of its prediction accuracy.  

We had performed three major experiments in this work. First one was aimed to 

evaluate Troika performance over a large group of dataset. We depended solely on 1-

1 binarization method for base-classifiers training, and made use of one, three and six 

induces in order to find whether the number of inducers affect Troika performance. 

Second major experiment goal was to show if Troika good results, obtained in the 

first experiment, are merely base-classifiers training method depended. Our third and 

last major experiment was dealing with the question of the ability of Troika to 

preserve its being best ensemble method while number of classes in dataset increases. 

For this experiment we have devised six unique datasets, which helped us answer this 

hanging question. 

From all the experiment we had learned that troika produces better results than 

Stacking and StackingC in terms of accuracy, no matter which base-classifiers 

binarization method we had chosen, furthermore, we have found that when execution 

time is not critical, Troika is one of the best choices among non stacking combining 
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methods as well. Regarding the execution time, our experiments had indicated that 

Troika is preferable only when the base classifiers are trained using the 1A1 

binarization method. Troika showed better AUC mean than of Stacking and of 

StackingC, even though we couldn‟t get the needed statistical support with high 

confidence level due to high variance among the results. We also showed one 

Troika‟s drawbacks which are not negligible. 

Additional issues to be further studied include: 

 Optimize Troika‟s combining classifiers – in this work we used only one kind of 

inducer for all combining classifiers. Our intuition tells us that a progress may be 

done in this direction. Find out which inducer fits which combiner layer. 

 Optimize Troika training process – in Troika we assumed inner cross-validation 

process in training phase of 5x5, meaning five cross validation for specialist and 

five for Meta classifiers (Super classifier wasn‟t trained using cross validation 

process).  Whether this decision was optimal, we do not know. 

 Train Meta Classifier specifically to be pattern sensitive. We have shown that 

Troika Meta classifiers job comes down to recognition of one of three possible 

patterns. We would like to have the Meta classifiers address this problem more 

efficiently. 
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