
The Hybrid Representation Model for Web Document Classification, by A. Markov, M. 
Last, and A. Kandel, to appear in Journal of Intelligent Systems, Copyright © 2008 Wiley 
Periodicals, Inc. 
 

1Department of Information Systems Engineering 
Ben-Gurion University of the Negev 

Beer-Sheva 84105, Israel 
{markov,mlast}@bgu.ac.il 

 
2Department of Computer Science and Engineering 

University of South Florida 
Tampa, FL  33620, USA 

kandel@cse.usf.edu 
 

Abstract.  Most web content categorization methods are based on the vector-space model 
of information retrieval. One of the most important advantages of this representation 
model is that it can be used by both instance-based and model-based classifiers. 
However, this popular method of document representation does not capture important 
structural information, such as the order and proximity of word occurrence or the location 
of a word within the document. It also makes no use of the mark-up information that can 
easily be extracted from the web document HTML tags. 

A recently developed graph-based web document representation model can preserve 
web document structural information. It was shown to outperform the traditional vector 
representation using the k-Nearest Neighbor (k-NN) classification algorithm. The 
problem, however, is that the eager (model-based) classifiers cannot work with this 
representation directly. In this paper, three new, hybrid approaches to web document 
classification are presented, built upon both graph and vector space representations, thus 
preserving the benefits and overcoming the limitations of each. The hybrid methods 
presented here are compared to vector-based models using the C4.5 decision-tree and the 
probabilistic Naïve Bayes classifiers on several benchmark web document collections. 

The results demonstrate that the hybrid methods presented in this paper outperform, in 
most cases, existing approaches in terms of classification accuracy, and in addition, 
achieve a significant reduction in the classification time. 
Keywords: Information retrieval, web content mining, document classification, graph 
theory. 

1 INTRODUCTION 
The huge amount of digital information stored on the web and on private intranets is 

growing at an amazing rate. Ever since the Internet and World Wide Web revolutionized 
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the information delivery technology, information overload1 [ 16] has become a crucial 
problem in people’s daily life. Under such circumstances, manual organization of 
documents is too costly and sometimes even impossible. Automated content-based 
document management methods, generally known as information retrieval techniques, 
are needed to deal with these amounts of data. Classification is one of the tasks involved. 

Document classification (a.k.a document categorization or topic spotting) is the 
labeling of documents with a set of predefined thematic categories. The first document 
classification approaches belonged to the so-called knowledge engineering domain. These 
categorization techniques were based on rules separately generated by knowledge experts 
for each one of the available categories. Such rule generation was very expensive, and its 
prediction capability was low. Nowadays machine learning and data mining approaches 
are most commonly used for classification purposes. These techniques use a training set 
of pre-classified documents to build a classification model. This model is then used to 
classify previously unseen documents. 

Web document classification became a very important sub-field of document 
categorization in the last decade due to the rapid growth of the Internet. Most web 
categorization methods originated in traditional text classification techniques that use 
only the HTML body text for document representation and classification model 
induction. Such an approach is not optimal for web documents, since it completely 
ignores the fact that web documents contain markup elements (HTML tags), which are an 
additional source of information. These tags can be used for identification of hyperlinks, 
the title, the underlined or bold text, etc. Furthermore, as demonstrated by Chakrabarti et 
al. in  8], a categorization algorithm can utilize the hyperlinks for exploring the “small 
neighborhoods” of web documents though this approach slows down the classification 
speed as it requires downloading the neighbor texts from the Internet. Major document 
representation techniques also give no weight to the order and position of words in the 
text. We believe that this kind of structural information may be critical for accurate web 
page classification. An enhanced document representation model is a solution for the 
problems explained above.  

The Graph-Theoretic Web Document Representation Technique was recently 
developed [ 33]. The strength of the graph approach is in its ability to capture important 
structural information hidden in the document and its HTML tags. Capability to calculate 
the similarity between two graphs [ 5,  6]  allows the classification of graphs using some 
distance-based lazy algorithms such as k-Nearest Neighbors (k-NN); the computational 
complexity of such algorithms is, however, very high. It is obvious, therefore, that lazy 
algorithms cannot be used for massive or online document classification. The major 
shortcoming of the graph representation is that most model-based classification 
algorithms, such as C4.5 [ 29], Naïve Bayes [ 15] and others cannot work with it. This fact 
prevents quick document categorization based on a pre-induced classification model. 

In this paper we present a new method of web document representation, based on 
frequent sub-graph extraction that can help us to overcome problems of traditional bag-
of-words [ 30] and graph techniques [4]. Our method has two main benefits: (1) we keep 
the important structural web page information by extracting relevant sub-graphs from a 
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graph that represents this page; (2) we can use most model-based classification 
algorithms for inducing a classification model because, eventually, a web document is 
represented by a simple vector with Boolean values. 

2 Related Work 
In information retrieval techniques, the vector space model [ 30] is typically used for 

document representation. A set of terms T(t1,...,t|T|) that occurred at least once in at least 
one document, serves as a feature set and each document dj is represented as vector⎯dj = 
(w1,...,w|T|), where each wi is a significance weight of a term ti in a document dj. The set T 
is usually called vocabulary or dictionary2. The differences between the various 
approaches are in:  
1. the method used to define a term 
2. the method used to calculate the weight of each term 

In traditional information retrieval techniques single words are used as terms. This 
method is called a 'set' or 'bag-of-words' and it is widely used in document categorization 
studies and applications. Some examples can be found in [ 25,  36,  21, and  7]. According 
to this approach, the vocabulary is constructed from either all or N most weighted words 
that appear in training set documents. Though this simple representation provides 
relatively good classification results in terms of accuracy, its limitations are obvious. This 
popular method of document representation does not capture important structural 
information, such as the order and proximity of term occurrence or the location of a term 
within a document. 

As to the term weight calculation, the TF × IDF (term frequency × inverse document 
frequency) measure [ 31,  32] is most frequently used. Such a measure assigns the highest 
weight to terms that occur frequently in a specific document but do not occur at all in 
most other documents.  The Boolean model of Information Retrieval is also very popular 
and it usually produces good accuracy results [ 1,  18]. Here a document is represented as a 
vector where dimension values are Boolean with 0 indicating the absence and 1 
indicating the presence of the corresponding dictionary term in the document. 

In a number of works more sophisticated text representation techniques were presented 
and evaluated. These representations did not yield better results compared to the bag-of-
words in [ 31].  In [ 11], for instance, syntactic phrases were used as a supplement to single 
words for the improvement of text retrieval effectiveness. Syntactic phrase indexing is 
the use of syntactic analysis to produce multiword indexing terms. The phrasal term is 
considered to be assigned to a document only when all its component words appear in the 
document and have the proper syntactic relationship. Experiments presented in [ 11] have 
shown only minor improvements in some cases. 

As shown by Hotho et al. in [ 17], the traditional bag-of-words text representation can 
be enhanced using background knowledge available in the form of ontology like 
Wordnet.  The paper presents and evaluates several optional strategies for adding or 
replacing terms by concepts.  The results of [ 17] are quite promising, especially when a 
domain-specific ontology is used.  However, detailed and comprehensive ontologies are 
not available yet in many domains of human knowledge, while non-English lexicons for 

                                                 
2 The difference between dictionary and bag/set of words is that in the first one, the term is not defined and 
can be any combination of characters and words, while in the second one, the term is a single word.  
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domain-specific ontologies are even scarcer. 
The major goal of Lewis's experiment [ 20] was to compare four different ways to 

define terms: words, phrases, word clusters, and phrase clusters. Reuter's data set was 
used for comparison.  Term clustering [ 20] is the use of cluster analysis in an attempt to 
group together semantically related indexing terms (classification features). Cluster 
analysis forms groups of objects which have similar values for some set of features. In 
term clustering, the objects to be clustered are indexing terms, which are themselves 
documents features. Lewis calls the features of indexing terms metafeatures3. Most 
research on term clustering has used metafeatures which correspond to documents. When 
clustering terms from a 200 document collection, each term would be represented by 200 
metafeatures, with each metafeature indicating the presence or absence of that term in 
one of the 200 documents. Each cluster, in this case, will lead to terms that frequently 
occur together in the same documents. After clustering, all words in a specific cluster 
became a single term, so that, if some document includes all the words in the cluster, the 
weight of this term in the vector representation of this document will not be zero. In this 
particular work, metafeatures are the documents under the same category. The major 
conclusions of the research were: 
1. Optimal effectiveness occurs when using only a small proportion of the indexing 

terms available; 
2. Effectiveness peaks at a higher feature set size and lower effectiveness level for a 

syntactic phrase indexing than for word-based indexing; 
3. Reported term clustering methods cannot provide an improvement in text 

representations compared to word term representation – bag of words.  
Relational logic document representation that includes word order information is 

proposed in [ 9].  Labeled examples of the target class C are represented as facts of the 
form +c(d) and –c(d) for positive and negative examples, respectively. Here d is a 
constant that identifies a specific document. Documents are also identified with a set of 
facts of type wi (d, p), indicating that word wi appears in the document d at position p. 
Positions are integers 1 ≤ p ≤ n, where n is the length of the longest document. A set of 
facts from type wi (d, p) is used as background relationships or knowledge and makes it 
possible to define predicates needed for representation and categorization. Predefined 
predicates that were used are: 

near1(p1, p2) is true when |p1 – p2| ≤ 1 
near2(p1, p2) is true when |p1 – p2| ≤ 2 
near3(p1, p2) is true when |p1 – p2| ≤ 3 
after(p1, p2) is true when p1 < p2 
succ(p1, p2) is true when p2 = p1 + 1 
Then c(d) facts are used as training examples, where each example is represented by a 

list of facts extracted from the predicates above. Classifiers that can learn data 
represented this way belong to the subfield of Machine Learning called Inductive Logic 
Programming or ILP. ILP and its learning principles are explained in greater detail in 
[ 12]. A popular Induction Rules Learning algorithm that can work with such a 
representation, and was used in [ 9], is FOIL [ 28]. An interesting implementation of the 
relational representation for web document classification is given in [ 10]. Its assumption 
is that taking into account relationships between pages in the representation stage can 
                                                 
3 Metafeatures in this case are basically the documents themselves.  
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improve the classification performance. Some relational predicates that were used in 
order to make it possible are: 
• has_word(page): this set of Boolean relationship predicates indicates which word 

exists in which page. If the value of predicate is true then page page contains word 
word. A set of these predicates covers conventional bag-of-words encoding; 

• link_to (pageA, pageB): these predicates describe relationships between pages. If true 
then pageA points to pageB by hyperlink. The problem with this predicate is that, if 
pageA belongs to a training set and pageB does not, then the predicate is useless. In 
such a case, a hyperlink pointed to pageB should be ignored or pageB must be 
manually classified and added to the training set. 

An Induction Rules Learning FOIL classifier was used by the authors for this specific 
research.  The classification results obtained in the experiments described above were 
compared to the bag-of-words-based representations, using the Naïve Bayes classifier, on 
the same data set.  The relational representation achieved a slightly higher level of 
accuracy. Since both the representation type and the classifier were replaced during the 
comparison, it is hard to say what caused this improvement: a better representation, a 
better classifier, or both. 
The n-gram language models have also been used for various text classification tasks 
including authorship attribution, language identification, and topic detection (e.g., see 
[ 26] and [ 35]). An n-gram is simply a consecutive sequence of characters or words of a 
fixed window size n.  The authors of [ 26] have enhanced the classical Naïve Bayes 
Classifier model by forming a Markov chain of consecutive attributes. They have 
experimented with various character and word level models where the order n was 
limited to the values of 8 and 4 respectively.  However, on the topic detection task in a 
large collection of English documents (Reuter's Dataset), the absolute accuracy 
improvement vs. the state-of the-art text classification methods was quite marginal: at 
most 0.5% using the word level and at most 1.5% using the character level.  The results 
of another study [ 35] have suggested that using bigrams in addition to unigrams can be 
helpful for more accurate identification of some document categories. 

The graph-based approach to web document representation was introduced in [ 33]. Its 
overview is provided in Section  3 below.  In [ 22], we have presented the “Naïve” method 
for term extraction from document graphs. The more sophisticated, “Smart” term 
extraction method was initially introduced by us in [ 23] and then enhanced in [ 24].  In 
this paper, we have significantly extended [ 24] by providing a comprehensive evaluation 
of the three proposed hybrid representations of web documents (Hybrid Naïve, Hybrid 
Smart, and Hybrid Smart with Fixed Threshold) using two model-based classifiers (C4.5 
and Naïve Bayes) and four benchmark document collections. 

3 Graph Document Models: An Overview 
In this section, we describe a novel, graph-based methodology, designed especially for 
web document representation [ 33]. The main benefit of graph-based techniques is that 
they allow keeping the inherent structural information of the original document. Before 
describing the graph-based methodology, the definition of a graph, subgraph and graph 
isomorphism should be given.  

A graph G is a 4-tuple: G= (V, E,α,β), where V is a set of nodes (vertices), E ⊆ V×V is 
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a set of edges connecting the nodes, α : V → ∑v is a function labeling the nodes, and 
β : V×V → ∑e is a function labeling the edges (∑v and ∑e being the sets of labels that 
can appear on the nodes and edges, respectively). For brevity, we may refer to G as G= 
(V, E) by omitting the labeling functions. 

A graph G1=(V1,E1,α1,β1) is a subgraph of a graph G2=(V2,E2,α2,β2), denoted G1 ⊆ G2, 
if V1 ⊆ V2, E1 ⊆ E2 ∩ (V1 × V1), α1(x) = α2(x) ∀ x∈V1 and β1(x, y) = β2(x, y) ∀ (x, y) ∈ 
E1. Conversely, graph G2 is also called a supergraph of G1. 

All graph representations proposed in [  33] are based on the adjacency of terms in an 
HTML document. Under the standard method, each unique term (keyword) appearing in 
the document becomes a node in the graph representing that document. Distinct terms 
(stems, lemmas, etc.) can be identified by a stemming algorithm and other language-
specific normalization techniques. Each node is labeled with the term it represents. The 
node labels in a document graph are unique, since a single node is created for each term 
even if a term appears more than once in the text. Second, if a word a immediately 
precedes a word b somewhere in a "section" s of the document, then there is a directed 
edge from the node corresponding to term a to the node corresponding to term b with an 
edge label s. An edge is not created between two words if they are separated by certain 
punctuation marks (such as periods). Sections defined for the standard representation are: 
title, which contains the text related to the document's title and any provided keywords 
(meta-data); link, which is the anchor text that appears in hyper-links on the document; 
and text, which comprises any of the visible text in the document (this includes 
hyperlinked text, but not the text in the document's title and keywords).  Graph 
representations are language-independent: they can be applied to a normalized text in any 
language. An example of a standard graph representation of a short English web 
document is shown in Figure 1, where TL denotes the title section, L indicates a 
hyperlink, and TX stands for the visible text. 

 
[Figure 1: Standard Graph Document Representation] 

 
In principle, the graph-based document representations are equivalent to aggregations 

of word-level n-gram models, where the order n varies between 1 (unigrams) and the 
maximum size of a document graph.  However, the methodology of [ 33] does not require 
or use the computation of probabilities for word sequences (chains) in a document. 

After the representation stage, documents can be classified with the lazy k-NN 
classifier. Authors of [ 33] used several distance and similarity measures for classification. 
An example of such distance measure is given below. 
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1),(
21

21
21 GGMCS

GGmcs
GGdMMCSN −=  

where: 
• ),( 21 GGdMMCSN  - normalized distance between graphs G1 and G2 (MMCSN is for 

Maximum Minimum Common Subgraph/Supergraph Normalized) 
• mcs (G1, G2) – maximal common subgraph of G1 and G2 
• MCS (G1, G2) – minimal common supergraph of G1 and G2 
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The authors of [ 33] reported a significant improvement in classification accuracy 
achieved with graph vs. bag-of-words representation, using the k-NN classifier. In terms 
of time needed to classify one document, however, graphs were found to be much slower 
than vectors.  

Another problem of graph representation is that documents represented by graphs 
cannot be classified with most model-based classifiers. On the other hand, the 
computational complexity of instance-based algorithms is typically very high and they 
cannot be used for massive online web document classification like the model-based data 
mining algorithms, which use the conventional vector-space representation and are 
generally much faster than the lazy ones. 

 

4 Hybrid Document Models Using Graphs 

4.1 Term Definition 
In order to represent a web document, a term first has to be defined. The proposed 
methodology is based on graph document representation [  33]. In the representation 
methods presented here, terms (discriminative features) are defined as subgraphs selected 
to represent a document already converted into a graph form. It is obvious that all 
possible subgraphs in a document graph cannot be taken as attributes because of their 
quantity, so some subgraph selection criteria and techniques are needed.  In this work, 
three optional subgraph selection procedures are proposed, namely Hybrid Naïve,  
Hybrid Smart, and Hybrid Smart with Fixed Threshold. 

At this point, it is important to emphasize that our methods are not aimed at 
identifying syntactic phrases (e.g., noun phrases, adjective phrases, etc.) in a document 
though some of extracted subgraphs may happen to be such phrases.  Our goal is to select 
discriminative subgraphs in a given document without applying language-specific and 
computationally intensive operations like Part-of-Speech Tagging, Named Entity 
Recognition, and Sentence Parsing.  Relying on either a general-purpose or a domain-
specific ontology and a related lexicon (like in  17]) is also beyond the scope of this work. 

4.2 Categorization Model Induction Based on a Hybrid 
Document Representation 

The process for inducing a classification model from labeled web documents 
represented by graphs is shown in  
Figure 2. 

 
[Figure 2: Classification Model Induction] 

 
First we obtain a training set of labeled web documents D = (d1,…, d|D|) and a set of 

categories as C = (c1, …, c|C|), where each document di ∈ D; 1≤i≤|D| belongs to one and 
only one category cv ∈ C; 1≤v≤|C|. Then graph representation of documents is generated 
(see Section 3) and a set of labeled graphs G = (g1, …, g|D|) is obtained. Now we are able 
to extract predictive features (subgraphs in this case) by identifying the subgraphs, which 
are most relevant for classification in a set of training graphs. The Naïve or the Smart 
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methods can be used. A set of terms (subgraphs), or vocabulary T = (t1, …, t|T|) is the 
output of this stage. 

Using T we can now represent all document graphs as vectors of Boolean features for 
every subgraph term in the set T ("1" – a subgraph from the set, created in the previous 
stage, appears in the graph of a particular document; “0” - otherwise). Feature selection 
may be performed to identify best attributes (Boolean features) for classification. Then 
prediction model creation and extraction of classification rules can be performed by one 
of the "eager" classification algorithms. Naïve Bayes Classifier and the C4.5 algorithm 
were used for evaluation purposes in this particular research study. 
 

4.3 The Hybrid Naïve Approach 
The Naïve approach to term extraction was initially introduced by us in [ 22]. All graphs 
representing the web documents are divided into groups by class attribute value (for 
instance: business and sports). A frequent sub-graph extraction algorithm is then applied 
to each group with a user-specified threshold value tmin. Every subgraph more frequent 
than tmin is selected by the algorithm to be a term (discriminative feature), and stored in 
the vocabulary. All obtained groups of subgraphs (discriminative features) are combined 
into one set. 

In this work, so-called the Standard Graph Representation from [ 33] was used. 
Standard representations and others proposed in [ 33], convert a document into a graph, 
where each node is labeled by the word it represents. An important property of the graphs 
is that the vertex labels are unique in each graph, which makes the graph and the 
subgraph isomorphism identification much easier than the standard subgraph discovery 
case [ 19,  37], where such a restriction does not exist. We used the FSG algorithm [ 19] for 
frequent subgraphs extraction with all selection methods. 

The Naïve method is based on a simple postulation that a feature explains the category 
best if it appears frequently in that category; in real-world cases, however, this is not 
necessarily true. For example if a sub-graph g is frequent in more than one category, it 
can be chosen as a feature by the Naïve method though it is not helpful for making a 
distinction between documents belonging to those categories. The Smart extraction 
method presented in the next sub-section has been developed to overcome this problem. 
 

4.4 The Hybrid Smart Approach 
The first publication related to the Smart term extraction appears in [ 23]. As in the 

Naïve representation, all graphs representing the web documents are divided into groups 
by class attribute value. In order to extract subgraphs, which are relevant for 
classification, some measures are defined, as follows: 
SCF – Sub-graph Class Frequency: 

( )( ) ( )
( )i

ik
ik

cN
cfgcgSCF

′
=′  

Where  
( )( )ik cgSCF ′  - Frequency of sub-graph kg ′  in category ic . 
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( )ik cfg′  - Number of graphs containing a sub-graph g’k in category ci. 
( )icN  - Number of graphs in category ic . 

 
ISF - Inverse Sub-graph Frequency: 
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( )( )ik cgISF ′  - Measure for inverse frequency of sub-graph kg ′  in category ic . 
)( jcN  - Number of graphs in category cj. 

)( jk cfg ′ - Number of graphs containing g’k in category cj. 
 
And finally we calculate the CR – Classification Rate: 

( )( ) ( )( ) ( )( )ikikik cgISFcgSCFcgCR ′×′=′  
( )( )ik cgCR ′  - Classification Rate of sub-graph kg ′  in category ic . The interpretation of 

this measure is how well  kg ′  explains category ic . ( )( )ik cgCR ′  reaches its maximum 
value when every graph in category  ic  contains kg ′  and graphs in other categories do 
not contain it at all. 

 According to the Smart method, CRmin (minimum classification rate) is defined by 
the user and only sub-graphs with CR value higher than CRmin are selected as terms and 
entered into the vocabulary. The calculation of the Classification Rate for each candidate 
subgraph is a slightly more complicated and time-consuming procedure in the Smart 
approach than finding only the subgraph frequency because of the ISF (Inverse Sub-
graph Frequency) calculation where graphs from other categories are taken into account. 
Notwithstanding, as can be seen below, in some cases using Smart representation 
produces better results in terms of accuracy. 

4.5 The Hybrid Smart Approach with Fixed Threshold 
In this type of extraction we define a minimal classification rate CRmin together 

with the minimal frequency threshold tmin. In order to select a subgraph g’k as relevant for 
classification, two conditions should be met: 

• SCF (g’k(ci)) > tmin 
• CR (g’k(ci))  > CRmin 

The first condition was added because, in some cases, when a subgraph is infrequent in 
some category but even less frequent or non-existent in other categories it can still pass 
the CRmin threshold. This hypothesis is theoretically logical, but in practice it did not 
provide a significant improvement in classification accuracy. However, introduction of a 
fixed threshold for additional elimination of non relevant subgraphs should reduce the 
computation time. The extraction process is similar to the Smart extraction with one 
small difference – when Sub-graph Class Frequency (SCF) is calculated for a specific 
term, it is compared to tmin.  If SCF ≤  tmin – the subgraph is dropped, otherwise we 
proceed with calculating the classification rate CR.  
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4.6 Frequent Sub-Graph Extraction  
The input of the sub-graph discovery problem is, in our case, a set of labeled, directed 
graphs and threshold parameters tmin and/or CRmin. The goal of the frequent sub-graph 
discovery is to find all connected sub-graphs that satisfy the classification relevancy 
constraints defined above. Additional property of our graphs is that a labeled vertex is 
unique in each graph. This fact makes our problem much easier than the standard sub-
graph discovery case [ 19] where such restriction does not exist. The most complex task in 
frequent sub-graph discovery problem is the sub-graph isomorphism identification4. It is 
known as NP-complete problem when nodes in the graph are not uniquely labeled but in 
our case it has a polynomial O(n2) complexity. We use breadth first search (BFS) 
approach and simplify the FSG algorithm given in [ 19] for sub-graph detection.  
Our Naïve algorithm for frequent subgraph extraction and its notations are presented in 
Algorithm 1 and Table 1 respectively. First, all frequent nodes in the input set of graphs 
are detected and inserted into the frequent subgraph set. At each iteration of the While 
loop (Row 3), we try to extend each frequent subgraph of size k by finding subgraph 
isomorphism between it and the graphs from the input set and adding outgoing edge to 
the subgraph (Row 7). Then we construct a set Ck of all possible candidate subgraphs 
(Rows 8 to 13). We store frequent candidates in the frequent set Fk (Row 14) and return 
the union of all frequent subgraph sets obtained after each iteration (Row 16).  The 
outline of the Smart approach to frequent subgraph extraction is given in Algorithm 2. 
 
Table 1 Notations Used 

Notation Description 

G Set of document graphs 
tmin Subgraph frequency threshold 
K Number of edges in the graph 
G Single graph 
sg Single subgraph 
sgk Subgraph with k edges 
Fk Set of frequent subgraphs with k edges 
Ek Set of extension subgraphs with k edges 
Ck 
CRmin 

Set of candidate subgraphs with k edges 
Minimum classification rate 

 

                                                 
4 Means that a graph is isomorphic to a part of another graph. 
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Algorithm 1: The Naïve Approach to Frequent Subgraph Extraction 

Naïve-Extraction (G, tmin) 
 1: F0 ← Detect all frequent 1 node subgraphs (vertexes) in G 
 2: k ← 1  
 3: While Fk-1 ≠ Ø Do 
 4: For Each subgraph sgk-1 ∈ Fk-1 Do 

 5:  For Each graph g ∈ G Do 
 6:   If sgk-1 ⊆ g Then 
 7:    Ek ← Detect all possible k edge extensions of sgk-1 in g 
 8: For Each subgraph sgk ∈ Ek Do 
 9:  If sgk already a member of Ck Then 
10:   {sgk ∈ Ck}.Count++ 
11:  Else 
12:   sgk.Count ← 1 
13:   Ck ← sgk 
14: Fk ← {sgk in Ck | sgk.Count > tmin * |G|} 
15: k++ 
16: Return F1, F2, …Fk-2       
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Algorithm 2: The Smart Approach to Frequent Subgraph Extraction 

4.7 Computational Complexity 
The computational complexity of our algorithm is similar to the complexity of apriori 
based FSG [ 19] with little differences resulting from the way we are looking for subgraph 
extensions, that can probably be further optimized. Additional and much more important 
difference is in subgraph and graph isomorphism identification complexity, which are 
most time expensive tasks in the process of frequent subgraphs extraction. While graph 
isomorphism identification is not known to be either P or NP complete [ 13], subgraph 
isomorphism problem has been shown to be NP complete [ 14]. This, of course, relates to 
general graph's case when vertices are not uniquely labeled. In our case, graphs are 
directed and have unique vertices so subgraph isomorphism between graphs G1 and G2 
(G1 ⊆ G2) can be determined by the following procedure: 

1. Check that G2 contains all vertices of G1 (α1(x) = α2(x) ∀ x∈V1) 

Smart-Extraction (G,⎯G, CRmin) 
 1: F0 ← Detect all 1 node subgraphs sg0 (vertexes) in G for which CR (sg0) > 
CRmin 
 2: k ← 1  
 3: While Fk-1 ≠ Ø Do 
 4: For Each subgraph sgk-1 ∈ Fk-1 Do 

 5:  For Each graph g ∈ G Do 
 6:   If sgk-1 ⊆ g Then 
 7:    Ek ← Detect all possible k edge extensions of sgk-1 in 
g 
 8: For Each subgraph sgk ∈ Ek Do 
 9:   If sgk already a member of Ck Then 
10:   {sgk ∈ Ck}.SCF+= 1/|G| 
11:  Else 
12:   sgk. SCF ← 1/|G| 
13:    Ck ← sgk 
14: For Each sgk ∈ Ck Do 
15:  sgk.ISF ← ISF (sgk,⎯G) 
16:  sgk.CR ← sgk. SCF × sgk.ISF 
17: Fk ← {sgk ∈ Ck | sgk.CR > CRmin} 
18: k++ 
19: Return F1, F2, …Fk-2 
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2. For each pair of common vertices check that they are connected with the identical 
labeled edges (β1(x, y) = β2 (x, y) ∀ (x, y) ∈ V1 × V1)) 

 Complexity of the first step is O (|V1| × |V2|)  since we need only to compare each node 
label of one graph to each node label of another one and determine matching. Complexity 
of the second step is 

2
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⎛
2

|| 1V
 - possible number of pairs 

|s| - constant number of sections (three in our standard graph representation) so 
2

1 |||| Vs × is maximal number of edges connecting nodes in |V1| 
Total complexity of subgraph isomorphism identification is 
O(|V1|×|V2| + |V1|2) ≤ O(|V2|2)= O(|V|2)  where |V| = max(|V1|, |V2|). 
Complexity of graph isomorphism identification is calculated exactly the same way while 
number of nodes in both graphs is equal (|V1|=|V2|) so |V| = |V1| = |V2|. 

5 Comparative Evaluation  

5.1 Description of Benchmark Data Sets 
In order to evaluate the performance of the methods studied in this work, several 
experiments were performed using four different collections of web documents, called 
the F-series [ 2], the J-series [ 3], the K-series [ 4] and the U-series [ 10].  These four 
document collections were selected for two major reasons. First, all of the original 
HTML documents are available for these data sets, which is necessary if the web 
documents are to be represented using the proposed hybrid methodology. Many other text 
categorization collections provide only a pre-processed vector representation or the plain 
text, which are both unsuitable for use with our methods. Second, the ground truth class 
assignments are provided for each data set, with the classes representing easily 
understandable groupings that relate to the content of the documents. Most web 
document collections are not labeled or prepared with some other task in mind than 
content-related classification (e.g., building a predictive model based on user 
preferences).  In this paper, we compare the bag-of-words representation of these four 
collections with our hybrid techniques using two model based classifiers: Naïve Bayes 
and C4.5. 

The F-series originally contained 98 documents belonging to one or more of 17 
subcategories of four major category areas: manufacturing, labor, business & finance and 
electronic communication & networking. Since there are multiple subcategory 
classifications from the same category area for many of these documents, the number of 
categories was reduced to just the four major categories mentioned above in order to 
simplify the problem. There were five documents that had conflicting classifications (i.e., 
they were classified to belong to two or more of the four major categories) which were 
removed, leaving a total of 93 documents.  
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The J-series contains 185 documents and ten classes: affirmative action, business 
capital, information systems, electronic commerce, intellectual property, employee rights, 
materials processing, personnel management, manufacturing systems, and industrial 
partnership. This data set has not been modified for this study. 

The K-series consists of 2,340 documents and 20 categories: business, health, 
politics, sports, technology, entertainment, art, cable, culture, film, industry, media, 
multimedia, music, online, people, review, stage, television, and variety. The last 14 
categories are subcategories related to entertainment, while the entertainment category 
refers to entertainment in general. Experiments on this data set are presented in [ 34]. 
These were originally news pages hosted at Yahoo (www.yahoo.com). The F, J and K 
series data sets can be downloaded from the following FTP directory: 
ftp://ftp.cs.umn.edu/dept/users/boley/PDDPdata. 

The U-series is the largest dataset used in this study. It contains 4,167 documents taken 
from the computer science department of four different universities: Cornell, Texas, 
Washington, and Wisconsin. Previously documents were divided into seven different 
categories: course, faculty, students, project, staff, department and other that catch all 
other documents. For the classification experiments only four of these classes were used: 
course, faculty, students, and project, and the remaining examples were pooled into a 
single other class. This collection can be found and downloaded at 
http://www.cs.cmu.edu/~webkb. 

5.2 Preprocessing and Representation 
The following preprocessing steps were applied before using the bag-of-words and 
hybrid representation techniques: 
• All meaningless words (“stopwords”) were removed from each document using the 

list of stopwords given in Appendix B of  33]. 
• Stemming was done using the Porter stemmer [ 27]. 

To construct a dictionary for the bag-of-words representation, N most frequent words 
were selected from each document. Unique words were inserted in the dictionary. The TF 
(term frequency) approach to word selection is more efficient than the TF-IDF (term 
frequency – inverted document frequency) scheme, which is popular in the information 
retrieval [ 31], since it does not require recalculation of all term weights with an addition 
of every new document to the training corpus. The different values of N which were used 
in these experiments together with the dictionary sizes obtained for the bag-of-words 
representation can be found in Table 2. Each document was then represented as a vector 
of Boolean values, 1 for presence and 0 for absence of a dictionary word in the document.  
The simplest, Boolean representation was chosen to save the preprocessing computations 
and produce more compact classification models that should maximize the classification 
speed of unlabeled documents.  As can be understood from Table 2, the longest vector 
(21,463 words) was obtained using the U-series data set and N = 100. After the 
representation stage, a classification model was induced from the training documents and 
applied to the documents in a validation set. Since in some cases the accuracy gap 
between two different cross validation runs with the same dictionary can reach 1.5 – 2%, 
the average of ten runs of a ten-fold cross validation was used as the final accuracy result 
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for each collection and dictionary size.  
 

Table 2: Dictionary sizes per data set and N 
N

 
 
Series 

20 30 40 50 100 

F 846 1135 1422 1695 2774 

J 1301 1773 2173 2518 3956 

K 6553 7988 9258 10663 16874 

U 
 

9313 11814 13911 15594 21463 

 
As for Hybrid techniques, the same N most frequent words in each document were 

taken for graph construction, that is exactly the same words in the document were used 
for both the graph creation and the bag-of-words representation. Subgraphs relevant for 
classification were then extracted using the Naïve, the Smart, and the Smart with Fixed 
Threshold approaches. A dictionary containing subgraphs instead of simple words was 
constructed. Each document was then represented as a vector of Boolean values, 1 for 
presence and 0 for absence of a dictionary term (subgraph) in the document. Hundreds of 
experiments were performed, with N being varied together with tmin and CRmin for the 
Naïve and the Smart approaches, respectively.  

The Smart with Fixed Threshold approach was applied by defining the fixed threshold 
tmin = 0.1 together with CRmin, and performing smart extraction. The value of tmin was not 
chosen arbitrarily. The assumption was that subgraphs that appear in less than 10% of the 
graphs cannot be attributes.  

5.3 Comparison of Hybrid and Bag-of-words 
Representations Using the C4.5 Classifier 

Only the best results for each technique are presented here. Classification results for F, J, 
K and U-series are given in Figures 3, 4, 5, and 6, respectively.  

As can be seen from the figures, in all cases the Hybrid approaches achieved better 
classification results than the regular Vector Space Model (bag-of-words) representation, 
especially in F, J and U-series data sets where all Hybrid representations showed much 
better results for all values of N. In the K-series data set case (Figure 5), the bag-of-words 
representation outperformed the Hybrid Smart and the combined approach for some 
values of N. However, the best classification accuracy was still found to belong to the 
Hybrid Naïve method. The values of input parameters together with the subgraph 
dictionary sizes for the best accuracy results are shown in Table 3. The best accuracy 
results for each data set across all methods are emphasized in bold and it can be easily 
seen that they were all produced by the hybrid techniques with mostly minor differences 
between various hybrid representations.  Using the Normal approximation to the 
Binomial distribution, all best accuracy results of the hybrid methods were found 
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significantly higher than the best results of the bag-of-words representation (at the 
significance level lower than 0.001). 

 
[Figure 3: Comparative results for F-series with C4.5 classifier] 

 
[Figure 4: Comparative results for J-series with C4.5 classifier] 

 
[Figure 5: Comparative results for K-series with C4.5 classifier] 

 
[Figure 6: Comparative results for U-series with C4.5 classifier] 
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Table 3: Input parameters and obtained dictionary sizes for the best accuracy results (C4.5) 

Data Set Method 

Number of 
Frequent 

Words 
Used for 

Dictionary 
or Graph 
Creation 

N 

Minimal 
Subgraph 
Frequency 
Threshold 

tmin 

Minimal 
Classification 

Rate 
CRmin 

Dictionary 
Size Accuracy 

Hybrid 
Smart 50 n/a 0.8 411 86.56% 

Hybrid 
Naïve 50 0.2 n/a 152 86.02% 

Hybrid 
with Fixed 
Threshold 

50 0.1 0.8 300 88.6% 
F-series 

Bag-of-
words 20 n/a n/a 846 78.06% 

Hybrid 
Smart 30 n/a 1.2 2503 85.24% 

Hybrid 
Naïve 20 0.15 n/a 1668 84.65% 

Hybrid with 
Fixed 

Threshold 
20 0.1 0.7 1635 83.41% 

J-series 

Bag-of-
words 50 n/a n/a 2518 58.32% 

Hybrid 
Smart 20 n/a 1.1 2102 74.68% 

Hybrid 
Naïve 100 0.25 n/a 24.35 78.18% 

Hybrid with 
Fixed 

Threshold 
100 0.1 1.4 3644 73.86% 

K-series 

Bag-of-
words 50 n/a n/a 10663 73.01% 

Hybrid 
Smart 100 n/a 1.1 64 82.44% 

Hybrid 
Naïve 100 0.1 n/a 360 81.75% 

Hybrid with 
Fixed 

Threshold 
100 0.1 1 80 82% 

U-series 

Bag-of-
words 20 n/a n/a 9313 78.11% 

 
The times needed to build a classification model and categorize one document in the U-

series data set, which was the most time-consuming task in our experiments, were also 
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measured and compared. The time required for each procedure was measured on the 
same system under the same operation conditions: a 2GHz Pentium 4 processor with one 
Gigabyte of RAM. Execution time was measured for the most accurate cases  
(see Table 3) of each approach.  The total time span needed to create a classification 
model with each method is given in Table 4. It is called the offline classification time 
because the classification model is usually constructed before the massive categorization 
stage and does not change in the process5. The model generation stage consists of the 
following steps applied to the training collection of documents: 
1. Time to Build Graphs – time needed to build graphs from each document in the 

collection (not relevant for the bag-of-words representation) 
2. Time to Build Dictionary – for the Hybrid technique this is the time needed to extract 

relevant subgraphs, while for the bag-of-words it is the time needed to find and 
combine the most frequent words from every document. 

3. Time to Construct Vectors – time required for documents representation in the vector 
format. 

4. Time to Induce Classification Model – inducing a classification model from the 
feature vectors with a classification algorithm (e.g., C4.5 or Naïve Bayes Classifier). 

It is interesting to note that the extraction process using the Smart method took much 
more time than the Naive Hybrid technique. Such a difference occurred because an 
infrequent subgraph cannot be dropped without calculating its CR. Another fact which 
catches one's attention is that creating a dictionary using the hybrid approach with fixed 
threshold (subgraphs extraction) is faster than creating a dictionary for bag-of-words, 
even for relatively small N (20 in this case). All Hybrid techniques also demonstrated 
faster document representation and model creation times than the bag-of-words 
representation. This fact can be easily explained by the size of the dictionary obtained 
using the hybrid approaches, which is much smaller than the dictionary used with the 
bag-of-words representation (see Table 3). Finally, the shortest total time is reached with 
the Hybrid Smart approach using a fixed threshold, where nearly the highest accuracy is 
also reached. 

The average time needed to classify one document, or online classification time, for 
current cases is presented in Table 5. This parameter is much more important than the 
model generation time when real-time categorization of massive web document streams 
is required. As can be seen, documents represented by the hybrid techniques are 
classified much faster than documents represented as “bags of words”. This is due to the 
relatively small dictionary size and the resultant smaller decision-tree model.  

                                                 
5 Incremental induction of classification models is beyond the scope of this research 
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Table 4: Total time needed to induce a classification model (C4.5) 

Data 
Set Method 

Time 
 to Build 
Graphs 
(sec) 

Time to Build 
Dictionary 

(sec) 

Time to 
Construct 
Vectors 

(sec) 

Time to 
Build 

Classification 
Model 
(sec) 

Total Time 
Offline 
(sec) 

Hybrid 
Smart 223.2 2628.56 5.59 4.36 2861.71 

Hybrid 
Naïve 223.2 43.4 31.16 76.59 374.35 

Hybrid 
with 

Fixed 
Threshold 

223.2 66.35 7.47 6.09 303.11 

U-
series 

Bag-of-
words n/a 300.9 133.2 330.32 764.42 

 
Table 5: Average time to classify one document (C4.5) – U Series 

 

Method Average Time to Classify One 
Document(sec) 

Hybrid Smart 2.88 × 10-4 
Hybrid Naïve 4.56 × 10-4 
Hybrid with Fixed Threshold 3.12 × 10-4 
Bag-of-words 1.68 × 10-3 

 
In this study, we were also interested to explore in more details the added value of 

multi-node subgraphs, since single-node subgraphs are equivalent to the bag-of-words 
model. We define a multi-node graph as the one that contains two or more nodes. 
Obviously, the presence of such graphs into a term set T makes the difference between 
the hybrid and bag-of-words representations. In Figures 7-10 we show the percentage of 
multi-node subgraphs in term sets T for the best classification accuracy results in each 
document collection.  As can be seen in Figure 7, for instance, with the Hybrid Naïve 
representation and 20 node document graph size we have more than 50% multi-node 
subgraphs in the term set T. It is noteworthy that a relatively high percentage of multi-
node subgraphs was found in J and K series collections so the impact of multi-node 
subgraphs in those collections was high too. As a rule we can say that the amount and the 
resulting impact of multi-node subgraphs were found significant in most cases. 

 
[Figure 7: Percentage of Multi-Node Sub-Graphs in T for F-Series (Best C4.5 results) 

 
[Figure 8: Percentage of Multi-Node Graphs in T for C4.5, J-Series (Best C4.5 results)] 

 
[Figure 9: Percentage of Multi-Node Graphs in T for C4.5, K-Series (Best C4.5 results)] 

 
[Figure 10: Percentage of Multi-Node Graphs in T for C4.5, U-Series (Best C4.5 results)] 
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5.4 Comparison of Hybrid and Bag-of-words 
Representations Using Probabilistic Naïve Bayes Classifier 

In the experiments using the Naïve Bayes Classifier (NBC) the same preprocessing stages 
as in the previous section were performed. Exactly the same input parameter values and 
document representations were used in the empirical evaluation. Since the document 
representation stage remained unchanged, the dictionaries used for the C4.5 runs stayed 
exactly the same. Accuracy results for the F, J, K and U-series collections are presented 
in Figures 11-14, respectively.  An overview of the best accuracy results along with the 
corresponding input parameters and dictionary sizes are given in Table 6. The best 
accuracy results for each data set across all methods are again emphasized in bold.  In 
case of the Naïve Bayes (NBC), the hybrid techniques are better than the bag-of-words 
representation for three document collections out of four (F, J, and U-series).  All 
differences are statistically significant at the level lower than 0.001.  However, for the K-
series collection (see Figure 13), the bag-of-words representation achieved slightly better 
accuracy results for most values of N. This may be explained by the NBC's ability to 
perform well with a large number of uncorrelated or weakly correlated features. 
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Table 6: Input parameters and obtained dictionary sizes for the best accuracy results (NBC) 

Data Set Method 

Number of 
Frequent 

Words 
Used for 

Dictionary 
or Graph 
Creation 

N 

Minimal 
Subgraph 
Frequency 
Threshold 

tmin 

Minimal 
Classification 

Rate 
CRmin 

Dictionary 
Size Accuracy 

Hybrid 
Smart 50 1.2 n/a 108 94.84% 

Hybrid 
Naïve 50 0.2 n/a 152 94.84% 

Hybrid 
with Fixed 
Threshold 

50 0.1 1.3 93 95.27% 
F-series 

Bag-of-
words 20 n/a n/a 846 91.16% 

Hybrid 
Smart 100 n/a 1.8 347 84.49% 

Hybrid 
Naïve 100 0.4 n/a 202 90.7% 

Hybrid with 
Fixed 

Threshold 
30 0.1 0.9 567 83.46% 

J-series 

Bag-of-
words 20 n/a n/a 1301 57.68% 

Hybrid 
Smart 100 n/a 1.8 891 75.18% 

Hybrid 
Naïve 20 0.15 n/a 497 73.55% 

Hybrid with 
Fixed 

Threshold 
100 0.1 0.9 1575 75.43% 

K-series 

Bag-of-
words 20 n/a n/a 6553 76.97% 

Hybrid 
Smart 100 n/a 1.2 48 78.97% 

Hybrid 
Naïve 20 0.2 n/a 24 76.53% 

Hybrid with 
Fixed 

Threshold 
100 0.1 1.2 48 78.97% 

U-series 

Bag-of-
words 100 n/a n/a 21463 72.59% 
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[Figure 11: Comparative results for F-series with Naïve Bayes Classifier] 
 

[Figure 12: Comparative results for J-series with Naïve Bayes Classifier] 
 

[Figure 13: Comparative results for K-series with Naïve Bayes Classifier] 
 

[Figure 14: Comparative results for U-series with Naïve Bayes Classifier] 
 

Comparative timing results for classification model creation and single document 
categorization are given in Tables 6 and 7, respectively. The classification model 
induction took more time with the Hybrid Smart extraction than with the bag-of-words, 
but other hybrid techniques succeeded in performing faster. Computational time 
reduction with other hybrid approaches is explained by the presence of a fixed frequency 
threshold that helps to remit the number of candidate subgraphs. A significant 
improvement is also seen in the average time required to classify one document using all 
hybrid approaches vs. the bag-of-words, which, of course, results from a smaller 
dictionary size, obtained by the hybrid methods.  The percentages of multi-node 
subgraphs in term sets T that provided the best NBC accuracy results in each document 
collection were similar to the best term sets used by the C4.5 algorithm and we do not 
show them here due to space limitations. 

 
Table 7: Total time needed to create classification model (NBC) 

Data 
Set Method 

Time to 
Build 
Graphs(sec) 

Time to Build 
Dictionary(sec)

Time to 
Construct 
Vectors(sec)

Time to 
Build 
Classification 
Model(sec) 

Total Time 
Offline(sec)

Hybrid 
Smart 223.2 2460.87 4.21 0.12 2688.4 

Hybrid 
Naïve 283.64 1.46 0.5 0.08 285.68 

Hybrid 
with 
Fixed 
Threshold 

223.2 62.3 4.19 0.12 289.81 

U-
series 

Bag-of-
words n/a 51.55 286.34 42.62 380.51 

 
 

Table 8: Average time to classify one document (NBC) – U Series 

Method Average Time to Classify One 
Document(sec) 

Hybrid Smart 1.2 × 10-3 
Hybrid Naïve 6.49 × 10-4 
Hybrid with Fixed 
Threshold 5.7 × 10-4 

Bag-of-words 0.125 
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6 Conclusions and Future Research 
The goal of this research study was to propose novel graph-based document 
representations for efficient categorization of web documents with model-based 
classifiers. An important objective was also to maintain or even improve the prediction 
performance of document categorization. The proposed hybrid representation models 
were shown to be considerably faster than the traditional vector-space model in terms of 
online classification speed, while also outperforming the predictive accuracy of the same 
model, in most cases. Thus, the techniques described here can now be used for real-time 
document categorization applications. 

As for future research, some issues are still open:  
1. Some heuristic should be developed for finding the optimal representation model and 

its input parameters (like N, CRmin and tmin) for a given classification task. The 
evaluation in this research study was purely empirical, and the experiments were run 
using a wide range of input values for three different hybrid representations to 
achieve better classification results. Despite the relatively small accuracy difference 
between the best and the worst classification results, there is still a need in some 
simple heuristic. 

2. In this research, the ability of the hybrid representations to perform a document 
classification task was examined. However, we hope that the techniques presented in 
this work can also be easily applied to other web content mining tasks such as web 
document clustering. This capability should be further explored and evaluated. 

3. The techniques presented here can be tested with other classifiers, beyond C4.5 and 
NBC that may provide even better results. They can also be used together with other 
representation techniques. A good example would be the relational representation [ 9, 
 10], where relevant subgraphs can be used as background knowledge instead of 
simple words. 
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Figures 
 

 
Figure 1: Standard Graph Document Representation 
 
 

 
 
Figure 2: Classification Model Induction 
 

Set of graphs 
creation 

Set of sub-
graphs 

creation 
Dictionary 

Text 
representation 

Feature selection 
 

Creation of 
prediction 

model 
Document 

classification 
rules 

Web 
documents 

CULTURE

FREE 

AMERICAN EUROPE 

MARKET MUSLIM PERSPECTIVE 

TL 

TL TL

TX L

TX
TX 



 28

Accuracy Comparison for C4.5, F-series
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Figure 3: Comparative results for F-series with C4.5 classifier 
 
 

Accuracy Comparison for C4.5, J-series
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Figure 4: Comparative results for J-series with C4.5 classifier 
 
 

Accuracy Comparison for C4.5, K-series
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Figure 5: Comparative results for K-series with C4.5 classifier 
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Accuracy Comparison for C4.5, U-series
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Figure 6: Comparative results for U-series with C4.5 classifier 
 
 

Relative Number of Multi Node Graphs for C4.5, F-series
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Figure 7: Percentage of Multi-Node Sub-Graphs in T for F-Series (Best C4.5 results) 
 
 

Relative Number of Multi Node Graphs for C4.5, J-series
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Figure 8: Percentage of Multi-Node Graphs in T for C4.5, J-Series (Best C4.5 results) 
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Relative Number of Multi Node Graphs for C4.5, K-series
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Figure 9: Percentage of Multi-Node Graphs in T for C4.5, K-Series (Best C4.5 results) 
 
 

Relative Number of Multi Node Graphs for C4.5, U-series
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Figure 10: Percentage of Multi-Node Graphs in T for C4.5, U-Series (Best C4.5 results) 
 
 

Accuracy Comparison for NBC, F-series
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Figure 11: Comparative results for F-series with Naïve Bayes Classifier 
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Accuracy Comparison for NBC, J-series
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Figure 12: Comparative results for J-series with Naïve Bayes Classifier 
 
 

Accuracy Comparison for NBC, K-series
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Figure 13: Comparative results for K-series with Naïve Bayes Classifier 
 
 

Accuracy Comparison for NBC, U-series
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Figure 14: Comparative results for U-series with Naïve Bayes Classifier 
 

 


