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Abstract: Most real-world databases include a certain amount of exceptional values, 
generally termed as “outliers”.  The isolation of outliers is important both for improving the 
quality of original data and for reducing the impact of outlying values in the process of 
knowledge discovery in databases.  Most existing methods of outlier detection are based on 
manual inspection of graphically represented data.  In this paper, we present a new approach 
to automating the process of detecting and isolating outliers.  The process is based on 
modeling the human perception of exceptional values by using the fuzzy set theory.   
Separate procedures are developed for detecting outliers in discrete and continuous 
univariate data.  The outlier detection procedures are demonstrated on several standard 
datasets of varying data quality. 
Keywords:  Outlier detection, data preparation, data quality, data mining, knowledge 
discovery in databases, fuzzy set theory. 
 
 

1. Introduction 
The statistical definition of an “outlier” depends 
on the underlying distribution of the variable in 
question.  Thus, Mendenhall et al. [9] apply the 
term “outliers” to values “that lie very far from 
the middle of the distribution in either direction”.    
This intuitive definition is certainly limited to 
continuously valued variables having a smooth 
function of probability density.  However, the 
numeric distance is not the only consideration in 
detecting continuous outliers.  The importance of 
outlier frequency is emphasized in a slightly 
different definition, provided by Pyle [12]:  “An 
outlier is a single, or very low frequency, 
occurrence of the value of a variable that is far 
away from the bulk of the values of the 
variable”.  The frequency of occurrence should 
be an important criterion for detecting outliers in 
categorical (nominal) data, which is quite 
common in the real-world databases.  A more 
general definition of an outlier is given in [1]: an 
observation (or subset of observations) which 
appears to be inconsistent with the remainder of 
that set of data. 
The real cause of outlier occurrence is usually 
unknown to data users and/or analysts.  
Sometimes, this is a flawed value, resulting from 
the poor quality of a data set, i.e., a data entry or 
a data conversion error. Physical measurements, 
especially when performed with malfunctioning 

equipment, may produce a certain amount of 
distorted values. In these cases, no useful 
information is conveyed by the outlier value.  
However, it is also possible that an outlier 
represents correct, though exceptional, 
information [9].  For example, if clusters of 
outliers result from fluctuations in behavior of a 
controlled process, their values are important for 
process monitoring.  According to the approach 
suggested by [12], recorded measurements 
should be considered correct, unless shown as 
definite errors. 
 
1.1. Why outliers should be isolated? 
The main reason for isolating outliers is 
associated with data quality assurance.  The 
exceptional values are more likely to be 
incorrect.  According to the definition, given by 
Wand and Wang [14], unreliable data represents 
an unconformity between the state of the 
database and the state of the real world.  For a 
variety of database applications, the amount of 
erroneous data may reach ten percent and even 
more [15].  Thus, removing or replacing outliers 
can improve the quality of stored data. 
Isolating outliers may also have a positive 
impact on the results of data analysis and data 
mining.  Simple statistical estimates, like sample 
mean and standard deviation can be significantly 
biased by individual outliers that are far away 
from the middle of the distribution.  In 
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regression models, the outliers can affect the 
estimated correlation coefficient [10].   Presence 
of outliers in training and testing data can bring 
about several difficulties for methods of 
decision-tree learning, described by Mitchell in 
[11].  For example, using an outlying value of a 
predicting nominal attribute can unnecessarily 
increase the number of decision tree branches 
associated with that attribute.  In turn, this will 
lead to inaccurate calculation of attribute 
selection criterion (e.g., information gain).  
Consequently, the predicting accuracy of the 
resulting decision tree may be decreased.   As 
emphasized in [[12]], isolating outliers is an 
important step in preparing a data set for any 
kind of data analysis. 
 
1.2. Outlier detection and treatment 
Manual inspection of scatter plots is the most 
common approach to outlier detection [10], [12].    
Making an analogy with unsupervised and 
supervised methods of machine learning [11], 
two types of detection methods can be 
distinguished: univariate methods, which 
examine each variable individually, and 
multivariate methods, which take into account 
associations between variables in the same 
dataset.  In [12], a univariate method of detecting 
outliers is described.  According to the approach 
of [12], a value is considered outlier, if it is far 
away from other values of the same attribute.  
However, some very definite outliers can be 
detected only by examining the values of other 
attributes.  An example is given in [10], where 
one data point stands clearly apart from a 
bivariate relationship formed by the other points.  
Such an outlier can be detected only by a 
multivariate method, since it is based on 
dependency between two variables.   
Manual detection of outliers suffers from the two 
basic limitations of data visualization methods: 
subjectiveness and poor scalability (see [6]).  
The analysts have to apply their own subjective 
perception to determine the parameters like 
“very far away” and “low frequency”.  Manual 
inspection of scatter plots for every variable is 
also an extremely time-consuming task, not 
suitable for most commercial databases, 
containing hundreds of numeric and nominal 
attributes. 
An objective, quantitative approach to 
unsupervised detection of numeric outliers is 
described in [9].  It is based on the graphical 
technique of constructing a box plot, which 
represents the median of all the observations and 
two hinges, or medians of each half of the data 

set.  Most values are expected in the 
interquartile range (H) located between the two 
hinges.  Values lying outside the ±1.5H range are 
termed “mild outliers” and values outside the 
boundaries of ±3H are termed “extreme 
outliers”.  While this method represents a 
practical alternative to manual inspection of each 
box plot, it can deal only with continuous 
variables characterized by unimodal probability 
distributions.  The other limitation is imposed by 
the ternary classification of all values into 
“extreme outliers”, “mild outliers”, and “non-
outliers”.  The classification changes abruptly 
with moving a value across one of the 1.5H or 
3H boundaries.    
An information-theoretic approach to supervised 
detection of erroneous data has been developed 
by Guyon et al. in [4].  The method requires 
building a prediction model by using one of data 
mining techniques (e.g., neural networks or 
decision trees). The most “surprising” patterns 
(having the lowest probability to be predicted 
correctly by the model) are suspicious to be 
unreliable and should be treated as outliers.  
However, this approach ignores the fact that data 
conformity may also depend on the inherent 
distribution of database attributes and some 
subjective, user-dependent factors. 
Zadeh [16] applies the fuzzy set theory to 
calculating the usuality of given patterns.  The 
notion of usuality is closely related to the 
concept of disposition (proposition which is 
preponderantly but not necessarily true).  In [16], 
the fuzzy quantifier usually is represented by a 
fuzzy number of the same form as most. One 
example of a disposition is usually it takes about 
one hour to drive from A to B.  The fuzzy set of 
normal (or regular) values is considered the 
complement of a set of exceptions.  In the above 
example, a five-hour trip from A to B would 
have a higher membership grade in the set of 
exceptions than in the set of normal values. 
In [8], we have presented an advanced method, 
based on the information theory and fuzzy logic, 
for measuring reliability of multivariate data.  
The fuzzy degree of reliability depends on two 
factors:  

1) The distance between the value 
predicted by a data mining model and 
the actual value of an attribute. 

2) The user perception of “unexpected” 
data.  

 Rather than partitioning the attribute values into 
two “crisp” sets of “outliers” and “non-outliers”, 
the fuzzy logic approach assigns a continuous 
degree of reliability (ranging between 0.0 and 
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1.0) to each value. In this paper, we are 
extending the approach of [8] to detection of 
outliers in univariate data. 
No matter how the outliers are detected, they 
should be handled before applying a data mining 
procedure to the data set.  One trivial approach is 
to discard an entire record, if it includes at least 
one outlying value.  This is similar to ignoring 
records containing missing values by some data 
mining methods.  An alternative is to correct 
(“rectify”) an outlier to another value.  Thus, 
Pyle [12] suggests a procedure for remapping the 
variable’s outlying value to the range of valid 
values.  Outliers detected by a supervised 
method, based on the linear regression model, 
can be adjusted iteratively by assigning to each 
observation a weight depending on its residual 
from the fitted value [3].  Actually, if the 
outlying value is assumed completely erroneous, 
the correct value can be estimated by any method 
for estimating missing attribute values (see [11]). 
 
1.3. Paper organization 
This paper is organized as follows.   
In Section 2, we present novel, fuzzy-based 
methods for univariate detection of outliers in 
discrete and continuous attributes. In Section 3, 
the methods are applied to several machine 
learning datasets of varying size and quality.  
Section 4 concludes the paper with some 
directions for future research in outlier detection. 
 
2. Fuzzy-based detection of outliers 

in univariate data  
2.1. Detecting outliers in discrete variables 
According to [9], a discrete variable is assumed 
to have a countable number of values.  On the 
other hand, a continuous variable can have 
infinitely many values corresponding to the 
points on a line interval.  In practice, however, 
the distinction between these two types of 
attributes may be not so clear (see [12]).  The 
same attributes may be considered discrete or 
continuous, depending on the precision of 
measurement, and other application-related 
factors.  For the purpose of our discussion here, 
we assume the discrete attributes to include 
binary-valued (dichotomous) variables, 

categorical variables, and numeric variables with 
a limited number of values.  
Actually, any single or low frequency occurrence 
of a value may be considered an outlier. 
However the human perception of an outlying 
(rare) discrete value depends on some additional 
factors, like the number of records where the 
value occurs, the number of records with a non-
null value, and the total number of distinct 
values in an attribute. For instance, a single 
occurrence of a value in one record out of twenty 
does not seem very exceptional, but it is an 
obvious outlier in a database of 20,000 records.  
The value taken by only 1% of records is clearly 
exceptional if the attribute is binary-valued, but 
it is not necessarily an outlier in an attribute 
having more than 100 distinct values.   Our 
attitude to rare values also depends on the 
objectives of our analysis. For example, in a 
marketing survey, the records of potential buyers 
represent a very important part of the population, 
even if they constitute just one percent of the 
entire sample. 
To automate the cognitive process of detecting 
discrete outliers, we represent the conformity of 
an attribute value by the following membership 
function µR: 
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Where Vij is the discrete value No. j of the 
attribute Ai; γ is the shape factor, representing the 
user attitude towards conformity of rare values; 
Di is the total number of records where Ai ≠ null; 
TVi is the total number of distinct values taken 
by the attribute Ai; and Nij is the number of 
occurrences of the value Vij. 
It can be easily verified that the Equation (1) 
agrees with the definition of fuzzy measure (see 
[5]).  The conformity becomes close to zero, 
when the number of value occurrences is much 
smaller than the average number of records per 
value (given by Di / TVi).  On the other hand, if 
the data set is very small (Di close to zero), µR 
approaches one, which means that even a single 
occurrence of a value is not considered an 
outlier. 
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Figure 1: Discrete value conformity as a function of the shape factor γ 

 
The shape factor γ represents the subjective 
attitude of a particular data analyst to values of 
the same frequency.  Low values of γ (about 0.5) 
make µR a sigmoidal function gradually 
increasing from zero to one with the number of 
occurrences Nij.  For γ = 0, all values are 
considered conforming (µR = 1).  On the other 
hand, high values of γ (more than one) make µR a 
step function, marking almost any value as 
“outlier” (µR = 0).  In Figure 1, we show µR as a 
function of Nij for two values of the factor γ.  For 
our case studies in the next Section, we have 
used the value of γ = 0.5. 
The subset of outliers in each attribute is found 
by defining an α-cut of all the attribute values: 
{Vij: µR (Vij) < α}.  In our applications (see 
Section 3 below), we use α = 0.05.  If an 
attribute is dichotomous (has only two distinct 
values) and one of the values is recognized as an 
outlier, we can remove that attribute from the 
subsequent knowledge discovery process and 
even from the original database, since it does not 
provide us with any new information about 
specific records. Thus, in some cases, the outlier 
detection can be used for dimensionality 
reduction of data.  
 

2.2. Detecting outliers in continuous variables 
The sets of discrete and continuous data are not 
completely disjoint.  Numeric attributes taking a 
small number of values can be treated as discrete 
variables, and categorical values can be 
translated into consecutive numbers (examples of 
such transformations are represented in [12]).  
However, the criterion of value frequency (see 
sub-section 2.1 above) cannot be applied directly 
to detecting continuous outliers, since a 
continuous attribute can take an infinite number 
of values in its range.  In the continuous case, we 
should sort the distinct values of the inspected 
attribute and examine the distance between each 
single value and its neighboring values.  Greater 
that distance, lower is our confidence in a value 
(e.g., see the rightmost point in Figure 2a).  Still 
we may have several clusters of attribute values, 
located at a large distance from each other (see 
Figure 2b).  None of these clusters may contain 
outliers.   
To automate the human perception of non-
conforming (outlying) continuous values, we 
need a formal definition of value conformity, 
with respect to its preceding and succeeding 
values.  Such a definition is suggested below. 
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Figure 2: Examples of outliers (from[12]) 

 
  
Definition.  Given a set of sorted distinct values, 
a value is considered conforming from below 
(conforming from above), if it is close enough to 
the succeeding (preceding) values respectively. 
Thus, automated detection of outliers requires 
sorting the continuous attribute values in 
ascending order (from Vi1 to Vi,TVi, where TVi is 
the total number of distinct values).  Afterwards, 
the conformity of each continuous value is 
measured with respect to its preceding and 
succeeding values. The conformity from below is 
denoted by µRL and the conformity from above is 
denoted by µRH. Each conformity measure 
depends on the so-called “distance to density” 
ratio.  For the conformity from below, this is the 
ratio between the distance from each value to the 
subsequent value and the average density of M 
subsequent values (M is termed the “look-
ahead”).  Accordingly, the conformity from 
above is determined by the ratio between the 
distance from each value to the preceding value 
and the average density of M preceding values.  
Other factors involved in the conformity 
calculation include the shape factor β, the total 
number of records Di, and Nij, the number of 

occurrences of the value Vij.  The expressions for 
the membership functions µRL and µRH follow. 
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The shape factor β represents the user-dependent 
attitude to distances between succeeding values.  
Lower values of β (about 10-4) assign conformity 
of 0.5 even to a single value, having a 10 times 
larger distance to the neighboring value than the 
average density of succeeding (or preceding) 
values.  Higher values of β (like 10-3) provide a 
sharper decrease of conformity from 1.0 to zero, 
as the distance between succeeding values 
becomes larger.  In Figure 3, we show µR* as a 
function of the “distance to density” ratio for two 
different values of β (0.001 and 0.002), given 
that the value occurs only in one record out of 
1000.   The value of β = 0.001 has been used for 
in our case studies (see Section 3). 
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Figure 3: Conformity of a continuous value as a function of the shape factor β 

 
The procedure of determining the conformity of 
each continuous value depends on the available 
prior knowledge about the distribution of all the 
attribute values.   If our prior knowledge causes 
us to assume that the distribution is unimodal 
(making the situation in Fig. 2b unlikely), the 
outlier detection can be focused on checking 
only the conformity “from below” of the lowest 
values and the conformity “from above” of the 
highest values.  Moreover, we can stop the 
search for outliers, once we have found the first 
conforming value from each side because a 
unimodal distribution is supposed to have only 
one cluster of values.  The pseudocode of outlier 
detection in unimodal attributes is given in the 
algorithm A below. 
 
Algorithm A.  Outlier detection in Unimodal 
Attributes  
• Select the look-ahead M, the threshold α, 

and the shape factor β 
• Sort distinct values in ascending order 
• Initialize conformity of each value to 1.00 

(∀j: µRL (Vij) = µRH (Vij) = 1) 
Calculating conformity from below 
• Initialize the index of current value to zero 

(index of the lowest value) 
• Do  

• Calculate the “low value” conformity 
µRL (Vij) for the current value by 
Equation (2) 

• Increment the index of the current value 
by one 

• While the index of current value < 
(Total_Number_of_Values - M – 2) and 
µRL(Vij) < α 

• Set the lower bound of the attribute 
(Low_Bound) to the current value Vij 

Calculating conformity from above 
• Initialize the index of current value to 

Total_Number_of_Values – 1 (index of the 
highest value) 

• Do  
• Calculate the “high value” conformity 

µRH (Vij) for the current value by 
Equation (3) 

• Decrement the index of the current 
value by one 

• While the index of current value > M + 1 
and µRH (Vij) < α 

• Set the upper bound of the attribute 
(Upper_Bound) to the current value Vij 

• Finding outlying values 
• For each value V ij, 

• If (Vij < Low_Bound) or (Vij > 
Upper_Bound) 
• Denote Vij as outlier 

• End 
When no information about the attribute 
distribution is available, we can consider as an 
outlier only a value, which is far away from both 
its preceding and succeeding values. That is, in 
this case we should calculate two conformity 
degrees for each value: µRL and µRH.  An outlying 
value should have both conformity degrees 
below the threshold α.  If only one conformity 
degree is below α, this means that a value is the 
highest or the lowest in a cluster, but not 
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necessarily an outlier.  The algorithm for 
detecting outliers in continuous attributes of 
unknown distribution follows.  
 
Algorithm B.  Outlier detection in Attributes of 
Unknown Distribution  
• Select the look-ahead M, the threshold α, 

and the shape factor β 
• Sort distinct values in ascending order 
• Initialize reliabilities of each value to zero 

(∀j: µRL (Vij) = µRH (Vij) = 0) 
Calculating conformity from below 
• For index_of_current_value = 0 to 

index_of_current_value = 
(Total_Number_of_Values - M – 3)  
• Calculate the “low value” conformity 

µRL (Vij) for the current value by 
Equation (2) 

Calculating conformity from above 
• For index_of_current_value = 

(Total_Number_of_Values – 1) to 
index_of_current_value = M + 2  
• Calculate the “high value” conformity 

µRL (Vij) for the current value by 
Equation (3) 

• Finding outlying values 
• For each value V ij, 

• If max {µ RL, µ RH} < α 
• Denote Vij as outlier 

• End 
 
3. Evaluating quality of machine 

learning datasets 
We have applied the automated methods of 
detecting outliers in discrete and continuous 
attributes (see Section 2 above) to seven datasets 
from the UCI Machine Learning Repository [2]. 
The datasets in this repository are widely used by 
the data mining community for the empirical 
evaluation of learning algorithms.  There are 
many studies comparing the performance of 
different classification methods on these 
datasets, but we do not know about any 
documented attempt of evaluating their quality. 
Though these datasets are supposed to represent 
the “real-world” data, their documentation 
sometimes mentions certain amount of manual 
cleaning, performed by the data providers. The 
datasets selected by us for the outlier detection 
contain a diverse mixture of discrete and 
continuous attributes.  The brief description of 
each dataset follows. 
The Breast Cancer Database. This is a medical 
data set including 699 clinical cases. There are 

nine discrete multi-valued attributes (ranging 
from 1 to 10) that represent results of medical 
tests and one discrete binary-valued attribute 
standing for the class of each case.  The 
documentation indicates that several records 
have been removed from the original dataset 
(probably, due to data quality problems). 
Chess Endgames. This is an artificial data set 
representing a situation in the end of a chess 
game.  Each of 3,196 instances is a board-
description for this chess endgame.  There are 36 
attributes describing the board. All the attributes 
are nominal (mostly, binary).  Since the data was 
artificially created, no data cleaning was 
performed. 
Credit Approval. This is an encoded form of a 
proprietary database, containing data on credit 
card applications for 690 customers.   The data 
set includes eight discrete attributes (with 
different number of distinct values) and six 
continuous attributes. There were originally a 
few missing values, but these have all been 
replaced by the overall median.  There is no 
information about any other cleaning operations 
applied. 
Diabetes. This is a part of larger diagnostic 
dataset, and it contains data on 768 patients. In 
the dataset, there are eight continuous attributes 
and one binary-valued attribute.  No data 
cleaning is mentioned in the dataset 
documentation. 
Glass Identification. This database deals with 
classification of types of glass, based on 
chemical and physical tests.  It includes 214 
cases, with nine continuous attributes and one 
discrete attribute having seven distinct values.  
Using any kind of data cleaning by the data 
donors is not mentioned. 
Heart Disease. The dataset includes results of 
medical tests aimed at detecting a heart disease 
for 297 patients.  There are seven nominal 
(including three binary-valued) and six 
continuous attributes.  Other 62 attributes 
presenting in the original database have been 
excluded from the dataset.  According to the 
documentation, missing values were encoded 
with a pre-defined value. 
Iris Plants. R.A. Fisher has created this database 
in 1936 and, since then, it has been extensively 
used in the pattern recognition literature. The 
data set contains three classes of 50 instances 
each, where each class refers to a type of iris 
plant.  Each instance is described by four 
continuous attributes. 
The automated methods of outlier detection have 
been applied to the above datasets by using the 
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following parameters (tuned to the perception of 
the authors on small samples of graphically 
represented data): 
• Minimum conformity of non-outliers (α): 

0.05 
• Shape factor for calculating conformity of 

continuous values (β): 0.001 
• Shape factor for calculating conformity of 

discrete values (γ): 0.500 
• Look-ahead for calculating average density 

of consecutive values (M): 10 
Algorithm A (see above) has been applied to all 
continuous attributes, assuming their distribution 
to be unimodal.  This assumption was verified by 
comparing the outputs of Algorithm A and 
Algorithm B.  The results of outlier detection in 
all datasets are represented in Table 1 below.  In 
the third and the fourth columns from the left, we 
can see the number and the percentage of “non-
conforming records”, containing at least one 

outlying value.  The Iris dataset is the most 
“clean” one: it contains no outliers at all.  This 
finding is not surprising, taking into account the 
popularity of Iris in the Machine Learning 
community.  Most other datasets, tested by us, 
have a small amount of outliers in their records 
(between 0.5% in the Glass and 8.3% in the 
Breast).  However, the Chess dataset suffers 
from a significant portion of outlying values – 
more than 25% of its records contain at least one 
outlier!  The outliers are found in 12 binary-
valued attributes, where one of the values has a 
very low frequency (e.g., in spcop attribute, there 
is one record having the value of 0 vs. 3,195 
records having the value of 1). These attributes 
can be completely discarded from the data 
mining process.  As indicated above, our method 
of automated outlier detection can also be used 
as a dimensionality reduction tool.  

 
 

Dataset Total 
records 

Non-
conforming 
Records 

Percentage Discrete Attributes  Continuous Attributes  

    Total Containing 
outliers 

Total Containing 
outliers 

Breast 699 58 8.3% 10 6 0 0 

Chess 3196 838 26.2% 37 12 0 0 

Credit 690 41 5.9% 9 4 6 5 

Diabetes 768 14 1.8% 1 0 8 6 

Glass 214 1 0.5% 1 0 9 1 

Heart 297 5 1.7% 8 1 6 1 

Iris 150 0 0.0% 1 0 4 0 

Table 1. Detecting outliers in the Machine Learning Datasets 

 
In columns no. 5 – 8 of Table 1, we summarize 
the conformity of discrete and continuous 
attributes in each dataset.  One example is the 
popular Credit Approval, comprising a mixture 
of discrete and continuous attributes.  Since this 
dataset is based on real-world banking data, it is 
quite reasonable that four discrete attributes (out 
of nine) and five continuous attributes (out of 
six) contain outlying values.  In Figure 4, we 
show the number of occurrences (solid bars) and 
the calculated conformity (a solid line) for each 
discrete value of the attribute “Job Status” 
(denoted as A6 in the encoded versions of the 

Credit Approval dataset).    Visually, the values 
2, 3, 7, and 9 seem to be clear outliers, 
confirming the results of the automated outlier 
detection (their conformity is below the 
threshold α).  demonstrates detection of outliers 
in a continuous attribute (“Age”, or A2).  Only 
the lower values of this attribute are shown (18 
years and younger).  When looking at the chart, 
the 13.75 years old person seems considerably 
younger than most other customers. The 
automated method of outlier detection has 
assigned to this value the conformity “from 
below” of 0.007, marking it as an outlier. 
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Figure 4: Detecting outliers in a discrete attribute (“Job Status”) 
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Figure 5: Detecting outliers in a continuous attribute (“Age”) 

 
 
4. Conclusions 
In this paper, we have presented novel, fuzzy-
based procedures for automating the human 
perceptions of outlying values in univariate data.  
The prior knowledge about the data can be 
utilized to choose the appropriate procedure for a 
given dataset, and further to adapt the process of 
outlier detection to the form of attribute 
distribution (e.g., unimodal distribution).  The 
high dimensionality of modern databases 
provides a significant advantage to automated 

perceptions of outliers over the manual analysis 
of visualized data.  Unlike the case of human 
decision-making, the parameters of the 
automated detection of outliers can be 
completely controlled, making it an objective 
tool of data analysis.  The results of outlier 
detection can be used to improve the quality of 
data in a database and, in some cases, to enhance 
the performance of data mining algorithms. 
As already shown by us in [6], the fuzzy set 
theory enables to develop computational models 
of human perception for the problems, where the 
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graphically represented data has been 
traditionally analyzed by human experts.  In this 
paper, we have described one procedure for 
detecting outliers in discrete data and two 
procedures of outlier detection in continuous 
data.  More techniques may be developed by 
catching different aspects of human perception 
and making use of prior knowledge, available 
about attributes, including domain size, validity 
range and form of distribution.  The automated 
detection of outliers may be embedded in 
database management systems, to warn the users 
against possibly inaccurate information.  The 
integration of outlier detection with data mining 
methods has a potential benefit for extracting 
valid knowledge from “dirty” data. 
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